xref: /dragonfly/sys/kern/kern_memio.c (revision 59b0b316)
1 /*-
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department, and code derived from software contributed to
9  * Berkeley by William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: Utah $Hdr: mem.c 1.13 89/10/08$
36  *	from: @(#)mem.c	7.2 (Berkeley) 5/9/91
37  * $FreeBSD: src/sys/i386/i386/mem.c,v 1.79.2.9 2003/01/04 22:58:01 njl Exp $
38  */
39 
40 /*
41  * Memory special file
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/buf.h>
47 #include <sys/conf.h>
48 #include <sys/fcntl.h>
49 #include <sys/filio.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/memrange.h>
53 #include <sys/proc.h>
54 #include <sys/priv.h>
55 #include <sys/random.h>
56 #include <sys/signalvar.h>
57 #include <sys/uio.h>
58 #include <sys/vnode.h>
59 #include <sys/sysctl.h>
60 
61 #include <sys/signal2.h>
62 
63 #include <vm/vm.h>
64 #include <vm/pmap.h>
65 #include <vm/vm_extern.h>
66 
67 
68 static	d_open_t	mmopen;
69 static	d_close_t	mmclose;
70 static	d_read_t	mmread;
71 static	d_write_t	mmwrite;
72 static	d_ioctl_t	mmioctl;
73 #if 0
74 static	d_mmap_t	memmmap;
75 #endif
76 static	d_kqfilter_t	mmkqfilter;
77 static int memuksmap(cdev_t dev, vm_page_t fake);
78 
79 #define CDEV_MAJOR 2
80 static struct dev_ops mem_ops = {
81 	{ "mem", 0, D_MPSAFE },
82 	.d_open =	mmopen,
83 	.d_close =	mmclose,
84 	.d_read =	mmread,
85 	.d_write =	mmwrite,
86 	.d_ioctl =	mmioctl,
87 	.d_kqfilter =	mmkqfilter,
88 #if 0
89 	.d_mmap =	memmmap,
90 #endif
91 	.d_uksmap =	memuksmap
92 };
93 
94 static int rand_bolt;
95 static caddr_t	zbuf;
96 static cdev_t	zerodev = NULL;
97 static struct lock mem_lock = LOCK_INITIALIZER("memlk", 0, 0);
98 
99 MALLOC_DEFINE(M_MEMDESC, "memdesc", "memory range descriptors");
100 static int mem_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
101 static int random_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
102 
103 struct mem_range_softc mem_range_softc;
104 
105 static int seedenable;
106 SYSCTL_INT(_kern, OID_AUTO, seedenable, CTLFLAG_RW, &seedenable, 0, "");
107 
108 static int
109 mmopen(struct dev_open_args *ap)
110 {
111 	cdev_t dev = ap->a_head.a_dev;
112 	int error;
113 
114 	switch (minor(dev)) {
115 	case 0:
116 	case 1:
117 		/*
118 		 * /dev/mem and /dev/kmem
119 		 */
120 		if (ap->a_oflags & FWRITE) {
121 			if (securelevel > 0 || kernel_mem_readonly)
122 				return (EPERM);
123 		}
124 		error = 0;
125 		break;
126 	case 6:
127 		/*
128 		 * /dev/kpmap can only be opened for reading.
129 		 */
130 		if (ap->a_oflags & FWRITE)
131 			return (EPERM);
132 		error = 0;
133 		break;
134 	case 14:
135 		error = priv_check_cred(ap->a_cred, PRIV_ROOT, 0);
136 		if (error != 0)
137 			break;
138 		if (securelevel > 0 || kernel_mem_readonly) {
139 			error = EPERM;
140 			break;
141 		}
142 		error = cpu_set_iopl();
143 		break;
144 	default:
145 		error = 0;
146 		break;
147 	}
148 	return (error);
149 }
150 
151 static int
152 mmclose(struct dev_close_args *ap)
153 {
154 	cdev_t dev = ap->a_head.a_dev;
155 	int error;
156 
157 	switch (minor(dev)) {
158 	case 14:
159 		error = cpu_clr_iopl();
160 		break;
161 	default:
162 		error = 0;
163 		break;
164 	}
165 	return (error);
166 }
167 
168 
169 static int
170 mmrw(cdev_t dev, struct uio *uio, int flags)
171 {
172 	int o;
173 	u_int c;
174 	u_int poolsize;
175 	u_long v;
176 	struct iovec *iov;
177 	int error = 0;
178 	caddr_t buf = NULL;
179 
180 	while (uio->uio_resid > 0 && error == 0) {
181 		iov = uio->uio_iov;
182 		if (iov->iov_len == 0) {
183 			uio->uio_iov++;
184 			uio->uio_iovcnt--;
185 			if (uio->uio_iovcnt < 0)
186 				panic("mmrw");
187 			continue;
188 		}
189 		switch (minor(dev)) {
190 		case 0:
191 			/*
192 			 * minor device 0 is physical memory, /dev/mem
193 			 */
194 			v = uio->uio_offset;
195 			v &= ~(long)PAGE_MASK;
196 			pmap_kenter((vm_offset_t)ptvmmap, v);
197 			o = (int)uio->uio_offset & PAGE_MASK;
198 			c = (u_int)(PAGE_SIZE - ((uintptr_t)iov->iov_base & PAGE_MASK));
199 			c = min(c, (u_int)(PAGE_SIZE - o));
200 			c = min(c, (u_int)iov->iov_len);
201 			error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
202 			pmap_kremove((vm_offset_t)ptvmmap);
203 			continue;
204 
205 		case 1: {
206 			/*
207 			 * minor device 1 is kernel memory, /dev/kmem
208 			 */
209 			vm_offset_t saddr, eaddr;
210 			int prot;
211 
212 			c = iov->iov_len;
213 
214 			/*
215 			 * Make sure that all of the pages are currently
216 			 * resident so that we don't create any zero-fill
217 			 * pages.
218 			 */
219 			saddr = trunc_page(uio->uio_offset);
220 			eaddr = round_page(uio->uio_offset + c);
221 			if (saddr > eaddr)
222 				return EFAULT;
223 
224 			/*
225 			 * Make sure the kernel addresses are mapped.
226 			 * platform_direct_mapped() can be used to bypass
227 			 * default mapping via the page table (virtual kernels
228 			 * contain a lot of out-of-band data).
229 			 */
230 			prot = VM_PROT_READ;
231 			if (uio->uio_rw != UIO_READ)
232 				prot |= VM_PROT_WRITE;
233 			error = kvm_access_check(saddr, eaddr, prot);
234 			if (error)
235 				return (error);
236 			error = uiomove((caddr_t)(vm_offset_t)uio->uio_offset,
237 					(int)c, uio);
238 			continue;
239 		}
240 		case 2:
241 			/*
242 			 * minor device 2 (/dev/null) is EOF/RATHOLE
243 			 */
244 			if (uio->uio_rw == UIO_READ)
245 				return (0);
246 			c = iov->iov_len;
247 			break;
248 		case 3:
249 			/*
250 			 * minor device 3 (/dev/random) is source of filth
251 			 * on read, seeder on write
252 			 */
253 			if (buf == NULL)
254 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
255 			c = min(iov->iov_len, PAGE_SIZE);
256 			if (uio->uio_rw == UIO_WRITE) {
257 				error = uiomove(buf, (int)c, uio);
258 				if (error == 0 &&
259 				    seedenable &&
260 				    securelevel <= 0) {
261 					error = add_buffer_randomness_src(buf, c, RAND_SRC_SEEDING);
262 				} else if (error == 0) {
263 					error = EPERM;
264 				}
265 			} else {
266 				poolsize = read_random(buf, c);
267 				if (poolsize == 0) {
268 					if (buf)
269 						kfree(buf, M_TEMP);
270 					if ((flags & IO_NDELAY) != 0)
271 						return (EWOULDBLOCK);
272 					return (0);
273 				}
274 				c = min(c, poolsize);
275 				error = uiomove(buf, (int)c, uio);
276 			}
277 			continue;
278 		case 4:
279 			/*
280 			 * minor device 4 (/dev/urandom) is source of muck
281 			 * on read, writes are disallowed.
282 			 */
283 			c = min(iov->iov_len, PAGE_SIZE);
284 			if (uio->uio_rw == UIO_WRITE) {
285 				error = EPERM;
286 				break;
287 			}
288 			if (CURSIG(curthread->td_lwp) != 0) {
289 				/*
290 				 * Use tsleep() to get the error code right.
291 				 * It should return immediately.
292 				 */
293 				error = tsleep(&rand_bolt, PCATCH, "urand", 1);
294 				if (error != 0 && error != EWOULDBLOCK)
295 					continue;
296 			}
297 			if (buf == NULL)
298 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
299 			poolsize = read_random_unlimited(buf, c);
300 			c = min(c, poolsize);
301 			error = uiomove(buf, (int)c, uio);
302 			continue;
303 		/* case 5: read/write not supported, mmap only */
304 		/* case 6: read/write not supported, mmap only */
305 		case 12:
306 			/*
307 			 * minor device 12 (/dev/zero) is source of nulls
308 			 * on read, write are disallowed.
309 			 */
310 			if (uio->uio_rw == UIO_WRITE) {
311 				c = iov->iov_len;
312 				break;
313 			}
314 			if (zbuf == NULL) {
315 				zbuf = (caddr_t)kmalloc(PAGE_SIZE, M_TEMP,
316 				    M_WAITOK | M_ZERO);
317 			}
318 			c = min(iov->iov_len, PAGE_SIZE);
319 			error = uiomove(zbuf, (int)c, uio);
320 			continue;
321 		default:
322 			return (ENODEV);
323 		}
324 		if (error)
325 			break;
326 		iov->iov_base = (char *)iov->iov_base + c;
327 		iov->iov_len -= c;
328 		uio->uio_offset += c;
329 		uio->uio_resid -= c;
330 	}
331 	if (buf)
332 		kfree(buf, M_TEMP);
333 	return (error);
334 }
335 
336 static int
337 mmread(struct dev_read_args *ap)
338 {
339 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
340 }
341 
342 static int
343 mmwrite(struct dev_write_args *ap)
344 {
345 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
346 }
347 
348 /*******************************************************\
349 * allow user processes to MMAP some memory sections	*
350 * instead of going through read/write			*
351 \*******************************************************/
352 
353 static int user_kernel_mapping(int num, vm_ooffset_t offset,
354 				vm_ooffset_t *resultp);
355 
356 #if 0
357 
358 static int
359 memmmap(struct dev_mmap_args *ap)
360 {
361 	cdev_t dev = ap->a_head.a_dev;
362 	vm_ooffset_t result;
363 	int error;
364 
365 	switch (minor(dev)) {
366 	case 0:
367 		/*
368 		 * minor device 0 is physical memory
369 		 */
370 		ap->a_result = atop(ap->a_offset);
371 		error = 0;
372 		break;
373 	case 1:
374 		/*
375 		 * minor device 1 is kernel memory
376 		 */
377 		ap->a_result = atop(vtophys(ap->a_offset));
378 		error = 0;
379 		break;
380 	case 5:
381 	case 6:
382 		/*
383 		 * minor device 5 is /dev/upmap (see sys/upmap.h)
384 		 * minor device 6 is /dev/kpmap (see sys/upmap.h)
385 		 */
386 		result = 0;
387 		error = user_kernel_mapping(minor(dev), ap->a_offset, &result);
388 		ap->a_result = atop(result);
389 		break;
390 	default:
391 		error = EINVAL;
392 		break;
393 	}
394 	return error;
395 }
396 
397 #endif
398 
399 static int
400 memuksmap(cdev_t dev, vm_page_t fake)
401 {
402 	vm_ooffset_t result;
403 	int error;
404 
405 	switch (minor(dev)) {
406 	case 0:
407 		/*
408 		 * minor device 0 is physical memory
409 		 */
410 		fake->phys_addr = ptoa(fake->pindex);
411 		error = 0;
412 		break;
413 	case 1:
414 		/*
415 		 * minor device 1 is kernel memory
416 		 */
417 		fake->phys_addr = vtophys(ptoa(fake->pindex));
418 		error = 0;
419 		break;
420 	case 5:
421 	case 6:
422 		/*
423 		 * minor device 5 is /dev/upmap (see sys/upmap.h)
424 		 * minor device 6 is /dev/kpmap (see sys/upmap.h)
425 		 */
426 		result = 0;
427 		error = user_kernel_mapping(minor(dev),
428 					    ptoa(fake->pindex), &result);
429 		fake->phys_addr = result;
430 		break;
431 	default:
432 		error = EINVAL;
433 		break;
434 	}
435 	return error;
436 }
437 
438 static int
439 mmioctl(struct dev_ioctl_args *ap)
440 {
441 	cdev_t dev = ap->a_head.a_dev;
442 	int error;
443 
444 	lockmgr(&mem_lock, LK_EXCLUSIVE);
445 
446 	switch (minor(dev)) {
447 	case 0:
448 		error = mem_ioctl(dev, ap->a_cmd, ap->a_data,
449 				  ap->a_fflag, ap->a_cred);
450 		break;
451 	case 3:
452 	case 4:
453 		error = random_ioctl(dev, ap->a_cmd, ap->a_data,
454 				     ap->a_fflag, ap->a_cred);
455 		break;
456 	default:
457 		error = ENODEV;
458 		break;
459 	}
460 
461 	lockmgr(&mem_lock, LK_RELEASE);
462 
463 	return (error);
464 }
465 
466 /*
467  * Operations for changing memory attributes.
468  *
469  * This is basically just an ioctl shim for mem_range_attr_get
470  * and mem_range_attr_set.
471  */
472 static int
473 mem_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
474 {
475 	int nd, error = 0;
476 	struct mem_range_op *mo = (struct mem_range_op *)data;
477 	struct mem_range_desc *md;
478 
479 	/* is this for us? */
480 	if ((cmd != MEMRANGE_GET) &&
481 	    (cmd != MEMRANGE_SET))
482 		return (ENOTTY);
483 
484 	/* any chance we can handle this? */
485 	if (mem_range_softc.mr_op == NULL)
486 		return (EOPNOTSUPP);
487 
488 	/* do we have any descriptors? */
489 	if (mem_range_softc.mr_ndesc == 0)
490 		return (ENXIO);
491 
492 	switch (cmd) {
493 	case MEMRANGE_GET:
494 		nd = imin(mo->mo_arg[0], mem_range_softc.mr_ndesc);
495 		if (nd > 0) {
496 			md = (struct mem_range_desc *)
497 				kmalloc(nd * sizeof(struct mem_range_desc),
498 				       M_MEMDESC, M_WAITOK);
499 			error = mem_range_attr_get(md, &nd);
500 			if (!error)
501 				error = copyout(md, mo->mo_desc,
502 					nd * sizeof(struct mem_range_desc));
503 			kfree(md, M_MEMDESC);
504 		} else {
505 			nd = mem_range_softc.mr_ndesc;
506 		}
507 		mo->mo_arg[0] = nd;
508 		break;
509 
510 	case MEMRANGE_SET:
511 		md = (struct mem_range_desc *)kmalloc(sizeof(struct mem_range_desc),
512 						    M_MEMDESC, M_WAITOK);
513 		error = copyin(mo->mo_desc, md, sizeof(struct mem_range_desc));
514 		/* clamp description string */
515 		md->mr_owner[sizeof(md->mr_owner) - 1] = 0;
516 		if (error == 0)
517 			error = mem_range_attr_set(md, &mo->mo_arg[0]);
518 		kfree(md, M_MEMDESC);
519 		break;
520 	}
521 	return (error);
522 }
523 
524 /*
525  * Implementation-neutral, kernel-callable functions for manipulating
526  * memory range attributes.
527  */
528 int
529 mem_range_attr_get(struct mem_range_desc *mrd, int *arg)
530 {
531 	/* can we handle this? */
532 	if (mem_range_softc.mr_op == NULL)
533 		return (EOPNOTSUPP);
534 
535 	if (*arg == 0) {
536 		*arg = mem_range_softc.mr_ndesc;
537 	} else {
538 		bcopy(mem_range_softc.mr_desc, mrd, (*arg) * sizeof(struct mem_range_desc));
539 	}
540 	return (0);
541 }
542 
543 int
544 mem_range_attr_set(struct mem_range_desc *mrd, int *arg)
545 {
546 	/* can we handle this? */
547 	if (mem_range_softc.mr_op == NULL)
548 		return (EOPNOTSUPP);
549 
550 	return (mem_range_softc.mr_op->set(&mem_range_softc, mrd, arg));
551 }
552 
553 void
554 mem_range_AP_init(void)
555 {
556 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
557 		mem_range_softc.mr_op->initAP(&mem_range_softc);
558 }
559 
560 static int
561 random_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
562 {
563 	int error;
564 	int intr;
565 
566 	/*
567 	 * Even inspecting the state is privileged, since it gives a hint
568 	 * about how easily the randomness might be guessed.
569 	 */
570 	error = 0;
571 
572 	switch (cmd) {
573 	/* Really handled in upper layer */
574 	case FIOASYNC:
575 		break;
576 	case MEM_SETIRQ:
577 		intr = *(int16_t *)data;
578 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
579 			break;
580 		if (intr < 0 || intr >= MAX_INTS)
581 			return (EINVAL);
582 		register_randintr(intr);
583 		break;
584 	case MEM_CLEARIRQ:
585 		intr = *(int16_t *)data;
586 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
587 			break;
588 		if (intr < 0 || intr >= MAX_INTS)
589 			return (EINVAL);
590 		unregister_randintr(intr);
591 		break;
592 	case MEM_RETURNIRQ:
593 		error = ENOTSUP;
594 		break;
595 	case MEM_FINDIRQ:
596 		intr = *(int16_t *)data;
597 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
598 			break;
599 		if (intr < 0 || intr >= MAX_INTS)
600 			return (EINVAL);
601 		intr = next_registered_randintr(intr);
602 		if (intr == MAX_INTS)
603 			return (ENOENT);
604 		*(u_int16_t *)data = intr;
605 		break;
606 	default:
607 		error = ENOTSUP;
608 		break;
609 	}
610 	return (error);
611 }
612 
613 static int
614 mm_filter_read(struct knote *kn, long hint)
615 {
616 	return (1);
617 }
618 
619 static int
620 mm_filter_write(struct knote *kn, long hint)
621 {
622 	return (1);
623 }
624 
625 static void
626 dummy_filter_detach(struct knote *kn) {}
627 
628 /* Implemented in kern_nrandom.c */
629 static struct filterops random_read_filtops =
630         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, random_filter_read };
631 
632 static struct filterops mm_read_filtops =
633         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_read };
634 
635 static struct filterops mm_write_filtops =
636         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_write };
637 
638 static int
639 mmkqfilter(struct dev_kqfilter_args *ap)
640 {
641 	struct knote *kn = ap->a_kn;
642 	cdev_t dev = ap->a_head.a_dev;
643 
644 	ap->a_result = 0;
645 	switch (kn->kn_filter) {
646 	case EVFILT_READ:
647 		switch (minor(dev)) {
648 		case 3:
649 			kn->kn_fop = &random_read_filtops;
650 			break;
651 		default:
652 			kn->kn_fop = &mm_read_filtops;
653 			break;
654 		}
655 		break;
656 	case EVFILT_WRITE:
657 		kn->kn_fop = &mm_write_filtops;
658 		break;
659 	default:
660 		ap->a_result = EOPNOTSUPP;
661 		return (0);
662 	}
663 
664 	return (0);
665 }
666 
667 int
668 iszerodev(cdev_t dev)
669 {
670 	return (zerodev == dev);
671 }
672 
673 /*
674  * /dev/upmap and /dev/kpmap.
675  */
676 static int
677 user_kernel_mapping(int num, vm_ooffset_t offset, vm_ooffset_t *resultp)
678 {
679 	struct proc *p;
680 	int error;
681 	int invfork;
682 
683 	if ((p = curproc) == NULL)
684 		return (EINVAL);
685 
686 	/*
687 	 * If this is a child currently in vfork the pmap is shared with
688 	 * the parent!  We need to actually set-up the parent's p_upmap,
689 	 * not the child's, and we need to set the invfork flag.  Userland
690 	 * will probably adjust its static state so it must be consistent
691 	 * with the parent or userland will be really badly confused.
692 	 *
693 	 * (this situation can happen when user code in vfork() calls
694 	 *  libc's getpid() or some other function which then decides
695 	 *  it wants the upmap).
696 	 */
697 	if (p->p_flags & P_PPWAIT) {
698 		p = p->p_pptr;
699 		if (p == NULL)
700 			return (EINVAL);
701 		invfork = 1;
702 	} else {
703 		invfork = 0;
704 	}
705 
706 	error = EINVAL;
707 
708 	switch(num) {
709 	case 5:
710 		/*
711 		 * /dev/upmap - maps RW per-process shared user-kernel area.
712 		 */
713 		if (p->p_upmap == NULL)
714 			proc_usermap(p, invfork);
715 		else if (invfork)
716 			p->p_upmap->invfork = invfork;
717 
718 		if (p->p_upmap &&
719 		    offset < roundup2(sizeof(*p->p_upmap), PAGE_SIZE)) {
720 			/* only good for current process */
721 			*resultp = pmap_kextract((vm_offset_t)p->p_upmap +
722 						 offset);
723 			error = 0;
724 		}
725 		break;
726 	case 6:
727 		/*
728 		 * /dev/kpmap - maps RO shared kernel global page
729 		 */
730 		if (kpmap &&
731 		    offset < roundup2(sizeof(*kpmap), PAGE_SIZE)) {
732 			*resultp = pmap_kextract((vm_offset_t)kpmap +
733 						 offset);
734 			error = 0;
735 		}
736 		break;
737 	default:
738 		break;
739 	}
740 	return error;
741 }
742 
743 static void
744 mem_drvinit(void *unused)
745 {
746 
747 	/* Initialise memory range handling */
748 	if (mem_range_softc.mr_op != NULL)
749 		mem_range_softc.mr_op->init(&mem_range_softc);
750 
751 	make_dev(&mem_ops, 0, UID_ROOT, GID_KMEM, 0640, "mem");
752 	make_dev(&mem_ops, 1, UID_ROOT, GID_KMEM, 0640, "kmem");
753 	make_dev(&mem_ops, 2, UID_ROOT, GID_WHEEL, 0666, "null");
754 	make_dev(&mem_ops, 3, UID_ROOT, GID_WHEEL, 0644, "random");
755 	make_dev(&mem_ops, 4, UID_ROOT, GID_WHEEL, 0644, "urandom");
756 	make_dev(&mem_ops, 5, UID_ROOT, GID_WHEEL, 0666, "upmap");
757 	make_dev(&mem_ops, 6, UID_ROOT, GID_WHEEL, 0444, "kpmap");
758 	zerodev = make_dev(&mem_ops, 12, UID_ROOT, GID_WHEEL, 0666, "zero");
759 	make_dev(&mem_ops, 14, UID_ROOT, GID_WHEEL, 0600, "io");
760 }
761 
762 SYSINIT(memdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE + CDEV_MAJOR, mem_drvinit,
763     NULL);
764 
765