xref: /dragonfly/sys/kern/kern_memio.c (revision 5a894b1b)
1 /*-
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department, and code derived from software contributed to
9  * Berkeley by William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	from: Utah $Hdr: mem.c 1.13 89/10/08$
40  *	from: @(#)mem.c	7.2 (Berkeley) 5/9/91
41  * $FreeBSD: src/sys/i386/i386/mem.c,v 1.79.2.9 2003/01/04 22:58:01 njl Exp $
42  * $DragonFly: src/sys/kern/kern_memio.c,v 1.14 2006/06/27 16:38:41 dillon Exp $
43  */
44 
45 /*
46  * Memory special file
47  */
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/buf.h>
52 #include <sys/conf.h>
53 #include <sys/fcntl.h>
54 #include <sys/filio.h>
55 #include <sys/ioccom.h>
56 #include <sys/kernel.h>
57 #include <sys/malloc.h>
58 #include <sys/memrange.h>
59 #include <sys/proc.h>
60 #include <sys/random.h>
61 #include <sys/signalvar.h>
62 #include <sys/uio.h>
63 #include <sys/vnode.h>
64 
65 #include <machine/frame.h>
66 #include <machine/psl.h>
67 #include <machine/specialreg.h>
68 #include <i386/isa/intr_machdep.h>
69 
70 #include <vm/vm.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_extern.h>
73 
74 
75 static	d_open_t	mmopen;
76 static	d_close_t	mmclose;
77 static	d_read_t	mmrw;
78 static	d_ioctl_t	mmioctl;
79 static	d_mmap_t	memmmap;
80 static	d_poll_t	mmpoll;
81 
82 #define CDEV_MAJOR 2
83 static struct cdevsw mem_cdevsw = {
84 	/* name */	"mem",
85 	/* maj */	CDEV_MAJOR,
86 	/* flags */	D_MEM,
87 	/* port */	NULL,
88 	/* clone */	NULL,
89 
90 	/* open */	mmopen,
91 	/* close */	mmclose,
92 	/* read */	mmrw,
93 	/* write */	mmrw,
94 	/* ioctl */	mmioctl,
95 	/* poll */	mmpoll,
96 	/* mmap */	memmmap,
97 	/* strategy */	nostrategy,
98 	/* dump */	nodump,
99 	/* psize */	nopsize
100 };
101 
102 static int rand_bolt;
103 static caddr_t	zbuf;
104 
105 MALLOC_DEFINE(M_MEMDESC, "memdesc", "memory range descriptors");
106 static int mem_ioctl (dev_t, u_long, caddr_t, int, struct thread *);
107 static int random_ioctl (dev_t, u_long, caddr_t, int, struct thread *);
108 
109 struct mem_range_softc mem_range_softc;
110 
111 
112 static int
113 mmclose(dev_t dev, int flags, int fmt, struct thread *td)
114 {
115 	struct proc *p = td->td_proc;
116 
117 	switch (minor(dev)) {
118 	case 14:
119 		p->p_md.md_regs->tf_eflags &= ~PSL_IOPL;
120 		break;
121 	default:
122 		break;
123 	}
124 	return (0);
125 }
126 
127 static int
128 mmopen(dev_t dev, int flags, int fmt, struct thread *td)
129 {
130 	int error;
131 	struct proc *p = td->td_proc;
132 
133 	switch (minor(dev)) {
134 	case 0:
135 	case 1:
136 		if ((flags & FWRITE) && securelevel > 0)
137 			return (EPERM);
138 		break;
139 	case 14:
140 		error = suser(td);
141 		if (error != 0)
142 			return (error);
143 		if (securelevel > 0)
144 			return (EPERM);
145 		p->p_md.md_regs->tf_eflags |= PSL_IOPL;
146 		break;
147 	default:
148 		break;
149 	}
150 	return (0);
151 }
152 
153 static int
154 mmrw(dev, uio, flags)
155 	dev_t dev;
156 	struct uio *uio;
157 	int flags;
158 {
159 	int o;
160 	u_int c, v;
161 	u_int poolsize;
162 	struct iovec *iov;
163 	int error = 0;
164 	caddr_t buf = NULL;
165 
166 	while (uio->uio_resid > 0 && error == 0) {
167 		iov = uio->uio_iov;
168 		if (iov->iov_len == 0) {
169 			uio->uio_iov++;
170 			uio->uio_iovcnt--;
171 			if (uio->uio_iovcnt < 0)
172 				panic("mmrw");
173 			continue;
174 		}
175 		switch (minor(dev)) {
176 
177 /* minor device 0 is physical memory, /dev/mem */
178 		case 0:
179 			v = uio->uio_offset;
180 			v &= ~PAGE_MASK;
181 			pmap_kenter((vm_offset_t)ptvmmap, v);
182 			o = (int)uio->uio_offset & PAGE_MASK;
183 			c = (u_int)(PAGE_SIZE - ((int)iov->iov_base & PAGE_MASK));
184 			c = min(c, (u_int)(PAGE_SIZE - o));
185 			c = min(c, (u_int)iov->iov_len);
186 			error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
187 			pmap_kremove((vm_offset_t)ptvmmap);
188 			continue;
189 
190 /* minor device 1 is kernel memory, /dev/kmem */
191 		case 1: {
192 			vm_offset_t addr, eaddr;
193 			c = iov->iov_len;
194 
195 			/*
196 			 * Make sure that all of the pages are currently
197 			 * resident so that we don't create any zero-fill
198 			 * pages.
199 			 */
200 			addr = trunc_page(uio->uio_offset);
201 			eaddr = round_page(uio->uio_offset + c);
202 
203 			if (addr < (vm_offset_t)VADDR(PTDPTDI, 0))
204 				return EFAULT;
205 			if (eaddr >= (vm_offset_t)VADDR(APTDPTDI, 0))
206 				return EFAULT;
207 			for (; addr < eaddr; addr += PAGE_SIZE)
208 				if (pmap_extract(kernel_pmap, addr) == 0)
209 					return EFAULT;
210 
211 			if (!kernacc((caddr_t)(int)uio->uio_offset, c,
212 			    uio->uio_rw == UIO_READ ?
213 			    VM_PROT_READ : VM_PROT_WRITE))
214 				return (EFAULT);
215 			error = uiomove((caddr_t)(int)uio->uio_offset, (int)c, uio);
216 			continue;
217 		}
218 
219 /* minor device 2 is EOF/RATHOLE */
220 		case 2:
221 			if (uio->uio_rw == UIO_READ)
222 				return (0);
223 			c = iov->iov_len;
224 			break;
225 
226 /* minor device 3 (/dev/random) is source of filth on read, rathole on write */
227 		case 3:
228 			if (uio->uio_rw == UIO_WRITE) {
229 				c = iov->iov_len;
230 				break;
231 			}
232 			if (buf == NULL)
233 				buf = (caddr_t)
234 				    malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
235 			c = min(iov->iov_len, PAGE_SIZE);
236 			poolsize = read_random(buf, c);
237 			if (poolsize == 0) {
238 				if (buf)
239 					free(buf, M_TEMP);
240 				if ((flags & IO_NDELAY) != 0)
241 					return (EWOULDBLOCK);
242 				return (0);
243 			}
244 			c = min(c, poolsize);
245 			error = uiomove(buf, (int)c, uio);
246 			continue;
247 
248 /* minor device 4 (/dev/urandom) is source of muck on read, rathole on write */
249 		case 4:
250 			if (uio->uio_rw == UIO_WRITE) {
251 				c = iov->iov_len;
252 				break;
253 			}
254 			if (CURSIG(curproc) != 0) {
255 				/*
256 				 * Use tsleep() to get the error code right.
257 				 * It should return immediately.
258 				 */
259 				error = tsleep(&rand_bolt, PCATCH, "urand", 1);
260 				if (error != 0 && error != EWOULDBLOCK)
261 					continue;
262 			}
263 			if (buf == NULL)
264 				buf = (caddr_t)
265 				    malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
266 			c = min(iov->iov_len, PAGE_SIZE);
267 			poolsize = read_random_unlimited(buf, c);
268 			c = min(c, poolsize);
269 			error = uiomove(buf, (int)c, uio);
270 			continue;
271 
272 /* minor device 12 (/dev/zero) is source of nulls on read, rathole on write */
273 		case 12:
274 			if (uio->uio_rw == UIO_WRITE) {
275 				c = iov->iov_len;
276 				break;
277 			}
278 			if (zbuf == NULL) {
279 				zbuf = (caddr_t)
280 				    malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
281 				bzero(zbuf, PAGE_SIZE);
282 			}
283 			c = min(iov->iov_len, PAGE_SIZE);
284 			error = uiomove(zbuf, (int)c, uio);
285 			continue;
286 
287 		default:
288 			return (ENODEV);
289 		}
290 		if (error)
291 			break;
292 		iov->iov_base += c;
293 		iov->iov_len -= c;
294 		uio->uio_offset += c;
295 		uio->uio_resid -= c;
296 	}
297 	if (buf)
298 		free(buf, M_TEMP);
299 	return (error);
300 }
301 
302 
303 
304 
305 /*******************************************************\
306 * allow user processes to MMAP some memory sections	*
307 * instead of going through read/write			*
308 \*******************************************************/
309 static int
310 memmmap(dev_t dev, vm_offset_t offset, int nprot)
311 {
312 	switch (minor(dev))
313 	{
314 
315 /* minor device 0 is physical memory */
316 	case 0:
317         	return i386_btop(offset);
318 
319 /* minor device 1 is kernel memory */
320 	case 1:
321         	return i386_btop(vtophys(offset));
322 
323 	default:
324 		return -1;
325 	}
326 }
327 
328 static int
329 mmioctl(dev_t dev, u_long cmd, caddr_t data, int flags, struct thread *td)
330 {
331 
332 	switch (minor(dev)) {
333 	case 0:
334 		return mem_ioctl(dev, cmd, data, flags, td);
335 	case 3:
336 	case 4:
337 		return random_ioctl(dev, cmd, data, flags, td);
338 	}
339 	return (ENODEV);
340 }
341 
342 /*
343  * Operations for changing memory attributes.
344  *
345  * This is basically just an ioctl shim for mem_range_attr_get
346  * and mem_range_attr_set.
347  */
348 static int
349 mem_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags, struct thread *td)
350 {
351 	int nd, error = 0;
352 	struct mem_range_op *mo = (struct mem_range_op *)data;
353 	struct mem_range_desc *md;
354 
355 	/* is this for us? */
356 	if ((cmd != MEMRANGE_GET) &&
357 	    (cmd != MEMRANGE_SET))
358 		return (ENOTTY);
359 
360 	/* any chance we can handle this? */
361 	if (mem_range_softc.mr_op == NULL)
362 		return (EOPNOTSUPP);
363 
364 	/* do we have any descriptors? */
365 	if (mem_range_softc.mr_ndesc == 0)
366 		return (ENXIO);
367 
368 	switch (cmd) {
369 	case MEMRANGE_GET:
370 		nd = imin(mo->mo_arg[0], mem_range_softc.mr_ndesc);
371 		if (nd > 0) {
372 			md = (struct mem_range_desc *)
373 				malloc(nd * sizeof(struct mem_range_desc),
374 				       M_MEMDESC, M_WAITOK);
375 			error = mem_range_attr_get(md, &nd);
376 			if (!error)
377 				error = copyout(md, mo->mo_desc,
378 					nd * sizeof(struct mem_range_desc));
379 			free(md, M_MEMDESC);
380 		} else {
381 			nd = mem_range_softc.mr_ndesc;
382 		}
383 		mo->mo_arg[0] = nd;
384 		break;
385 
386 	case MEMRANGE_SET:
387 		md = (struct mem_range_desc *)malloc(sizeof(struct mem_range_desc),
388 						    M_MEMDESC, M_WAITOK);
389 		error = copyin(mo->mo_desc, md, sizeof(struct mem_range_desc));
390 		/* clamp description string */
391 		md->mr_owner[sizeof(md->mr_owner) - 1] = 0;
392 		if (error == 0)
393 			error = mem_range_attr_set(md, &mo->mo_arg[0]);
394 		free(md, M_MEMDESC);
395 		break;
396 	}
397 	return (error);
398 }
399 
400 /*
401  * Implementation-neutral, kernel-callable functions for manipulating
402  * memory range attributes.
403  */
404 int
405 mem_range_attr_get(mrd, arg)
406 	struct mem_range_desc *mrd;
407 	int *arg;
408 {
409 	/* can we handle this? */
410 	if (mem_range_softc.mr_op == NULL)
411 		return (EOPNOTSUPP);
412 
413 	if (*arg == 0) {
414 		*arg = mem_range_softc.mr_ndesc;
415 	} else {
416 		bcopy(mem_range_softc.mr_desc, mrd, (*arg) * sizeof(struct mem_range_desc));
417 	}
418 	return (0);
419 }
420 
421 int
422 mem_range_attr_set(mrd, arg)
423 	struct mem_range_desc *mrd;
424 	int *arg;
425 {
426 	/* can we handle this? */
427 	if (mem_range_softc.mr_op == NULL)
428 		return (EOPNOTSUPP);
429 
430 	return (mem_range_softc.mr_op->set(&mem_range_softc, mrd, arg));
431 }
432 
433 #ifdef SMP
434 void
435 mem_range_AP_init(void)
436 {
437 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
438 		return (mem_range_softc.mr_op->initAP(&mem_range_softc));
439 }
440 #endif
441 
442 static int
443 random_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags, struct thread *td)
444 {
445 	int error;
446 	int intr;
447 
448 	/*
449 	 * Even inspecting the state is privileged, since it gives a hint
450 	 * about how easily the randomness might be guessed.
451 	 */
452 	error = 0;
453 
454 	switch (cmd) {
455 	/* Really handled in upper layer */
456 	case FIOASYNC:
457 		break;
458 	case MEM_SETIRQ:
459 		intr = *(int16_t *)data;
460 		if ((error = suser(td)) != 0)
461 			break;
462 		if (intr < 0 || intr >= MAX_INTS)
463 			return (EINVAL);
464 		register_randintr(intr);
465 		break;
466 	case MEM_CLEARIRQ:
467 		intr = *(int16_t *)data;
468 		if ((error = suser(td)) != 0)
469 			break;
470 		if (intr < 0 || intr >= MAX_INTS)
471 			return (EINVAL);
472 		unregister_randintr(intr);
473 		break;
474 	case MEM_RETURNIRQ:
475 		error = ENOTSUP;
476 		break;
477 	case MEM_FINDIRQ:
478 		intr = *(int16_t *)data;
479 		if ((error = suser(td)) != 0)
480 			break;
481 		if (intr < 0 || intr >= MAX_INTS)
482 			return (EINVAL);
483 		intr = next_registered_randintr(intr);
484 		if (intr == MAX_INTS)
485 			return (ENOENT);
486 		*(u_int16_t *)data = intr;
487 		break;
488 	default:
489 		error = ENOTSUP;
490 		break;
491 	}
492 	return (error);
493 }
494 
495 int
496 mmpoll(dev_t dev, int events, struct thread *td)
497 {
498 	switch (minor(dev)) {
499 	case 3:		/* /dev/random */
500 		return random_poll(dev, events, td);
501 	case 4:		/* /dev/urandom */
502 	default:
503 		return seltrue(dev, events, td);
504 	}
505 }
506 
507 int
508 iszerodev(dev)
509 	dev_t dev;
510 {
511 	return ((major(dev) == mem_cdevsw.d_maj)
512 	  && minor(dev) == 12);
513 }
514 
515 static void
516 mem_drvinit(void *unused)
517 {
518 
519 	/* Initialise memory range handling */
520 	if (mem_range_softc.mr_op != NULL)
521 		mem_range_softc.mr_op->init(&mem_range_softc);
522 
523 	cdevsw_add(&mem_cdevsw, 0xf0, 0);
524 	make_dev(&mem_cdevsw, 0, UID_ROOT, GID_KMEM, 0640, "mem");
525 	make_dev(&mem_cdevsw, 1, UID_ROOT, GID_KMEM, 0640, "kmem");
526 	make_dev(&mem_cdevsw, 2, UID_ROOT, GID_WHEEL, 0666, "null");
527 	make_dev(&mem_cdevsw, 3, UID_ROOT, GID_WHEEL, 0644, "random");
528 	make_dev(&mem_cdevsw, 4, UID_ROOT, GID_WHEEL, 0644, "urandom");
529 	make_dev(&mem_cdevsw, 12, UID_ROOT, GID_WHEEL, 0666, "zero");
530 	make_dev(&mem_cdevsw, 14, UID_ROOT, GID_WHEEL, 0600, "io");
531 }
532 
533 SYSINIT(memdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,mem_drvinit,NULL)
534 
535