xref: /dragonfly/sys/kern/kern_memio.c (revision 606a6e92)
1 /*-
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department, and code derived from software contributed to
9  * Berkeley by William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	from: Utah $Hdr: mem.c 1.13 89/10/08$
40  *	from: @(#)mem.c	7.2 (Berkeley) 5/9/91
41  * $FreeBSD: src/sys/i386/i386/mem.c,v 1.79.2.9 2003/01/04 22:58:01 njl Exp $
42  * $DragonFly: src/sys/kern/kern_memio.c,v 1.11 2004/05/19 22:52:57 dillon Exp $
43  */
44 
45 /*
46  * Memory special file
47  */
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/buf.h>
52 #include <sys/conf.h>
53 #include <sys/fcntl.h>
54 #include <sys/filio.h>
55 #include <sys/ioccom.h>
56 #include <sys/kernel.h>
57 #include <sys/malloc.h>
58 #include <sys/memrange.h>
59 #include <sys/proc.h>
60 #include <sys/random.h>
61 #include <sys/signalvar.h>
62 #include <sys/uio.h>
63 #include <sys/vnode.h>
64 
65 #include <machine/frame.h>
66 #include <machine/psl.h>
67 #include <machine/specialreg.h>
68 #include <i386/isa/intr_machdep.h>
69 
70 #include <vm/vm.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_extern.h>
73 
74 
75 static	d_open_t	mmopen;
76 static	d_close_t	mmclose;
77 static	d_read_t	mmrw;
78 static	d_ioctl_t	mmioctl;
79 static	d_mmap_t	memmmap;
80 static	d_poll_t	mmpoll;
81 
82 #define CDEV_MAJOR 2
83 static struct cdevsw mem_cdevsw = {
84 	/* name */	"mem",
85 	/* maj */	CDEV_MAJOR,
86 	/* flags */	D_MEM,
87 	/* port */	NULL,
88 	/* clone */	NULL,
89 
90 	/* open */	mmopen,
91 	/* close */	mmclose,
92 	/* read */	mmrw,
93 	/* write */	mmrw,
94 	/* ioctl */	mmioctl,
95 	/* poll */	mmpoll,
96 	/* mmap */	memmmap,
97 	/* strategy */	nostrategy,
98 	/* dump */	nodump,
99 	/* psize */	nopsize
100 };
101 
102 static int rand_bolt;
103 static caddr_t	zbuf;
104 
105 MALLOC_DEFINE(M_MEMDESC, "memdesc", "memory range descriptors");
106 static int mem_ioctl (dev_t, u_long, caddr_t, int, struct thread *);
107 static int random_ioctl (dev_t, u_long, caddr_t, int, struct thread *);
108 
109 struct mem_range_softc mem_range_softc;
110 
111 
112 static int
113 mmclose(dev_t dev, int flags, int fmt, struct thread *td)
114 {
115 	struct proc *p = td->td_proc;
116 
117 	switch (minor(dev)) {
118 	case 14:
119 		p->p_md.md_regs->tf_eflags &= ~PSL_IOPL;
120 		break;
121 	default:
122 		break;
123 	}
124 	return (0);
125 }
126 
127 static int
128 mmopen(dev_t dev, int flags, int fmt, struct thread *td)
129 {
130 	int error;
131 	struct proc *p = td->td_proc;
132 
133 	switch (minor(dev)) {
134 	case 0:
135 	case 1:
136 		if ((flags & FWRITE) && securelevel > 0)
137 			return (EPERM);
138 		break;
139 	case 14:
140 		error = suser(td);
141 		if (error != 0)
142 			return (error);
143 		if (securelevel > 0)
144 			return (EPERM);
145 		p->p_md.md_regs->tf_eflags |= PSL_IOPL;
146 		break;
147 	default:
148 		break;
149 	}
150 	return (0);
151 }
152 
153 static int
154 mmrw(dev, uio, flags)
155 	dev_t dev;
156 	struct uio *uio;
157 	int flags;
158 {
159 	int o;
160 	u_int c, v;
161 	u_int poolsize;
162 	struct iovec *iov;
163 	int error = 0;
164 	caddr_t buf = NULL;
165 
166 	while (uio->uio_resid > 0 && error == 0) {
167 		iov = uio->uio_iov;
168 		if (iov->iov_len == 0) {
169 			uio->uio_iov++;
170 			uio->uio_iovcnt--;
171 			if (uio->uio_iovcnt < 0)
172 				panic("mmrw");
173 			continue;
174 		}
175 		switch (minor(dev)) {
176 
177 /* minor device 0 is physical memory */
178 		case 0:
179 			v = uio->uio_offset;
180 			v &= ~PAGE_MASK;
181 			pmap_kenter((vm_offset_t)ptvmmap, v);
182 			o = (int)uio->uio_offset & PAGE_MASK;
183 			c = (u_int)(PAGE_SIZE - ((int)iov->iov_base & PAGE_MASK));
184 			c = min(c, (u_int)(PAGE_SIZE - o));
185 			c = min(c, (u_int)iov->iov_len);
186 			error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
187 			pmap_kremove((vm_offset_t)ptvmmap);
188 			continue;
189 
190 /* minor device 1 is kernel memory */
191 		case 1: {
192 			vm_offset_t addr, eaddr;
193 			c = iov->iov_len;
194 
195 			/*
196 			 * Make sure that all of the pages are currently resident so
197 			 * that we don't create any zero-fill pages.
198 			 */
199 			addr = trunc_page(uio->uio_offset);
200 			eaddr = round_page(uio->uio_offset + c);
201 
202 			if (addr < (vm_offset_t)VADDR(PTDPTDI, 0))
203 				return EFAULT;
204 			if (eaddr >= (vm_offset_t)VADDR(APTDPTDI, 0))
205 				return EFAULT;
206 			for (; addr < eaddr; addr += PAGE_SIZE)
207 				if (pmap_extract(kernel_pmap, addr) == 0)
208 					return EFAULT;
209 
210 			if (!kernacc((caddr_t)(int)uio->uio_offset, c,
211 			    uio->uio_rw == UIO_READ ?
212 			    VM_PROT_READ : VM_PROT_WRITE))
213 				return (EFAULT);
214 			error = uiomove((caddr_t)(int)uio->uio_offset, (int)c, uio);
215 			continue;
216 		}
217 
218 /* minor device 2 is EOF/RATHOLE */
219 		case 2:
220 			if (uio->uio_rw == UIO_READ)
221 				return (0);
222 			c = iov->iov_len;
223 			break;
224 
225 /* minor device 3 (/dev/random) is source of filth on read, rathole on write */
226 		case 3:
227 			if (uio->uio_rw == UIO_WRITE) {
228 				c = iov->iov_len;
229 				break;
230 			}
231 			if (buf == NULL)
232 				buf = (caddr_t)
233 				    malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
234 			c = min(iov->iov_len, PAGE_SIZE);
235 			poolsize = read_random(buf, c);
236 			if (poolsize == 0) {
237 				if (buf)
238 					free(buf, M_TEMP);
239 				if ((flags & IO_NDELAY) != 0)
240 					return (EWOULDBLOCK);
241 				return (0);
242 			}
243 			c = min(c, poolsize);
244 			error = uiomove(buf, (int)c, uio);
245 			continue;
246 
247 /* minor device 4 (/dev/urandom) is source of muck on read, rathole on write */
248 		case 4:
249 			if (uio->uio_rw == UIO_WRITE) {
250 				c = iov->iov_len;
251 				break;
252 			}
253 			if (CURSIG(curproc) != 0) {
254 				/*
255 				 * Use tsleep() to get the error code right.
256 				 * It should return immediately.
257 				 */
258 				error = tsleep(&rand_bolt, PCATCH, "urand", 1);
259 				if (error != 0 && error != EWOULDBLOCK)
260 					continue;
261 			}
262 			if (buf == NULL)
263 				buf = (caddr_t)
264 				    malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
265 			c = min(iov->iov_len, PAGE_SIZE);
266 			poolsize = read_random_unlimited(buf, c);
267 			c = min(c, poolsize);
268 			error = uiomove(buf, (int)c, uio);
269 			continue;
270 
271 /* minor device 12 (/dev/zero) is source of nulls on read, rathole on write */
272 		case 12:
273 			if (uio->uio_rw == UIO_WRITE) {
274 				c = iov->iov_len;
275 				break;
276 			}
277 			if (zbuf == NULL) {
278 				zbuf = (caddr_t)
279 				    malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
280 				bzero(zbuf, PAGE_SIZE);
281 			}
282 			c = min(iov->iov_len, PAGE_SIZE);
283 			error = uiomove(zbuf, (int)c, uio);
284 			continue;
285 
286 		default:
287 			return (ENODEV);
288 		}
289 		if (error)
290 			break;
291 		iov->iov_base += c;
292 		iov->iov_len -= c;
293 		uio->uio_offset += c;
294 		uio->uio_resid -= c;
295 	}
296 	if (buf)
297 		free(buf, M_TEMP);
298 	return (error);
299 }
300 
301 
302 
303 
304 /*******************************************************\
305 * allow user processes to MMAP some memory sections	*
306 * instead of going through read/write			*
307 \*******************************************************/
308 static int
309 memmmap(dev_t dev, vm_offset_t offset, int nprot)
310 {
311 	switch (minor(dev))
312 	{
313 
314 /* minor device 0 is physical memory */
315 	case 0:
316         	return i386_btop(offset);
317 
318 /* minor device 1 is kernel memory */
319 	case 1:
320         	return i386_btop(vtophys(offset));
321 
322 	default:
323 		return -1;
324 	}
325 }
326 
327 static int
328 mmioctl(dev_t dev, u_long cmd, caddr_t data, int flags, struct thread *td)
329 {
330 
331 	switch (minor(dev)) {
332 	case 0:
333 		return mem_ioctl(dev, cmd, data, flags, td);
334 	case 3:
335 	case 4:
336 		return random_ioctl(dev, cmd, data, flags, td);
337 	}
338 	return (ENODEV);
339 }
340 
341 /*
342  * Operations for changing memory attributes.
343  *
344  * This is basically just an ioctl shim for mem_range_attr_get
345  * and mem_range_attr_set.
346  */
347 static int
348 mem_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags, struct thread *td)
349 {
350 	int nd, error = 0;
351 	struct mem_range_op *mo = (struct mem_range_op *)data;
352 	struct mem_range_desc *md;
353 
354 	/* is this for us? */
355 	if ((cmd != MEMRANGE_GET) &&
356 	    (cmd != MEMRANGE_SET))
357 		return (ENOTTY);
358 
359 	/* any chance we can handle this? */
360 	if (mem_range_softc.mr_op == NULL)
361 		return (EOPNOTSUPP);
362 
363 	/* do we have any descriptors? */
364 	if (mem_range_softc.mr_ndesc == 0)
365 		return (ENXIO);
366 
367 	switch (cmd) {
368 	case MEMRANGE_GET:
369 		nd = imin(mo->mo_arg[0], mem_range_softc.mr_ndesc);
370 		if (nd > 0) {
371 			md = (struct mem_range_desc *)
372 				malloc(nd * sizeof(struct mem_range_desc),
373 				       M_MEMDESC, M_WAITOK);
374 			error = mem_range_attr_get(md, &nd);
375 			if (!error)
376 				error = copyout(md, mo->mo_desc,
377 					nd * sizeof(struct mem_range_desc));
378 			free(md, M_MEMDESC);
379 		} else {
380 			nd = mem_range_softc.mr_ndesc;
381 		}
382 		mo->mo_arg[0] = nd;
383 		break;
384 
385 	case MEMRANGE_SET:
386 		md = (struct mem_range_desc *)malloc(sizeof(struct mem_range_desc),
387 						    M_MEMDESC, M_WAITOK);
388 		error = copyin(mo->mo_desc, md, sizeof(struct mem_range_desc));
389 		/* clamp description string */
390 		md->mr_owner[sizeof(md->mr_owner) - 1] = 0;
391 		if (error == 0)
392 			error = mem_range_attr_set(md, &mo->mo_arg[0]);
393 		free(md, M_MEMDESC);
394 		break;
395 	}
396 	return (error);
397 }
398 
399 /*
400  * Implementation-neutral, kernel-callable functions for manipulating
401  * memory range attributes.
402  */
403 int
404 mem_range_attr_get(mrd, arg)
405 	struct mem_range_desc *mrd;
406 	int *arg;
407 {
408 	/* can we handle this? */
409 	if (mem_range_softc.mr_op == NULL)
410 		return (EOPNOTSUPP);
411 
412 	if (*arg == 0) {
413 		*arg = mem_range_softc.mr_ndesc;
414 	} else {
415 		bcopy(mem_range_softc.mr_desc, mrd, (*arg) * sizeof(struct mem_range_desc));
416 	}
417 	return (0);
418 }
419 
420 int
421 mem_range_attr_set(mrd, arg)
422 	struct mem_range_desc *mrd;
423 	int *arg;
424 {
425 	/* can we handle this? */
426 	if (mem_range_softc.mr_op == NULL)
427 		return (EOPNOTSUPP);
428 
429 	return (mem_range_softc.mr_op->set(&mem_range_softc, mrd, arg));
430 }
431 
432 #ifdef SMP
433 void
434 mem_range_AP_init(void)
435 {
436 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
437 		return (mem_range_softc.mr_op->initAP(&mem_range_softc));
438 }
439 #endif
440 
441 static int
442 random_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags, struct thread *td)
443 {
444 	static intrmask_t interrupt_allowed;
445 	intrmask_t interrupt_mask;
446 	int error, intr;
447 
448 	/*
449 	 * We're the random or urandom device.  The only ioctls are for
450 	 * selecting and inspecting which interrupts are used in the muck
451 	 * gathering business and the fcntl() stuff.
452 	 */
453 	if (cmd != MEM_SETIRQ && cmd != MEM_CLEARIRQ && cmd != MEM_RETURNIRQ
454 		&& cmd != FIONBIO && cmd != FIOASYNC)
455 		return (ENOTTY);
456 
457 	/*
458 	 * XXX the data is 16-bit due to a historical botch, so we use
459 	 * magic 16's instead of ICU_LEN and can't support 24 interrupts
460 	 * under SMP.
461 	 * Even inspecting the state is privileged, since it gives a hint
462 	 * about how easily the randomness might be guessed.
463 	 */
464 	intr = *(int16_t *)data;
465 	interrupt_mask = 1 << intr;
466 	switch (cmd) {
467 	/* Really handled in upper layer */
468 	case FIOASYNC:
469 	case FIONBIO:
470 		break;
471 	case MEM_SETIRQ:
472 		error = suser(td);
473 		if (error != 0)
474 			return (error);
475 		if (intr < 0 || intr >= 16)
476 			return (EINVAL);
477 		if (interrupt_allowed & interrupt_mask)
478 			break;
479 		interrupt_allowed |= interrupt_mask;
480 		register_randintr(intr);
481 		break;
482 	case MEM_CLEARIRQ:
483 		error = suser(td);
484 		if (error != 0)
485 			return (error);
486 		if (intr < 0 || intr >= 16)
487 			return (EINVAL);
488 		if (!(interrupt_allowed & interrupt_mask))
489 			break;
490 		interrupt_allowed &= ~interrupt_mask;
491 		unregister_randintr(intr);
492 		break;
493 	case MEM_RETURNIRQ:
494 		error = suser(td);
495 		if (error != 0)
496 			return (error);
497 		*(u_int16_t *)data = interrupt_allowed;
498 		break;
499 	}
500 	return (0);
501 }
502 
503 int
504 mmpoll(dev_t dev, int events, struct thread *td)
505 {
506 	switch (minor(dev)) {
507 	case 3:		/* /dev/random */
508 		return random_poll(dev, events, td);
509 	case 4:		/* /dev/urandom */
510 	default:
511 		return seltrue(dev, events, td);
512 	}
513 }
514 
515 int
516 iszerodev(dev)
517 	dev_t dev;
518 {
519 	return ((major(dev) == mem_cdevsw.d_maj)
520 	  && minor(dev) == 12);
521 }
522 
523 static void
524 mem_drvinit(void *unused)
525 {
526 
527 	/* Initialise memory range handling */
528 	if (mem_range_softc.mr_op != NULL)
529 		mem_range_softc.mr_op->init(&mem_range_softc);
530 
531 	cdevsw_add(&mem_cdevsw, 0xf0, 0);
532 	make_dev(&mem_cdevsw, 0, UID_ROOT, GID_KMEM, 0640, "mem");
533 	make_dev(&mem_cdevsw, 1, UID_ROOT, GID_KMEM, 0640, "kmem");
534 	make_dev(&mem_cdevsw, 2, UID_ROOT, GID_WHEEL, 0666, "null");
535 	make_dev(&mem_cdevsw, 3, UID_ROOT, GID_WHEEL, 0644, "random");
536 	make_dev(&mem_cdevsw, 4, UID_ROOT, GID_WHEEL, 0644, "urandom");
537 	make_dev(&mem_cdevsw, 12, UID_ROOT, GID_WHEEL, 0666, "zero");
538 	make_dev(&mem_cdevsw, 14, UID_ROOT, GID_WHEEL, 0600, "io");
539 }
540 
541 SYSINIT(memdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,mem_drvinit,NULL)
542 
543