xref: /dragonfly/sys/kern/kern_memio.c (revision 60e242c5)
1 /*-
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department, and code derived from software contributed to
9  * Berkeley by William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: Utah $Hdr: mem.c 1.13 89/10/08$
36  *	from: @(#)mem.c	7.2 (Berkeley) 5/9/91
37  * $FreeBSD: src/sys/i386/i386/mem.c,v 1.79.2.9 2003/01/04 22:58:01 njl Exp $
38  */
39 
40 /*
41  * Memory special file
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/buf.h>
47 #include <sys/conf.h>
48 #include <sys/fcntl.h>
49 #include <sys/filio.h>
50 #include <sys/interrupt.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/memrange.h>
54 #include <sys/proc.h>
55 #include <sys/caps.h>
56 #include <sys/queue.h>
57 #include <sys/random.h>
58 #include <sys/signalvar.h>
59 #include <sys/uio.h>
60 #include <sys/vnode.h>
61 #include <sys/sysctl.h>
62 
63 #include <sys/signal2.h>
64 #include <sys/spinlock2.h>
65 
66 #include <vm/vm.h>
67 #include <vm/pmap.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_extern.h>
70 
71 
72 static	d_open_t	mmopen;
73 static	d_close_t	mmclose;
74 static	d_read_t	mmread;
75 static	d_write_t	mmwrite;
76 static	d_ioctl_t	mmioctl;
77 #if 0
78 static	d_mmap_t	memmmap;
79 #endif
80 static	d_kqfilter_t	mmkqfilter;
81 static int memuksmap(vm_map_backing_t ba, int op, cdev_t dev, vm_page_t fake);
82 
83 #define CDEV_MAJOR 2
84 static struct dev_ops mem_ops = {
85 	{ "mem", 0, D_MPSAFE | D_QUICK },
86 	.d_open =	mmopen,
87 	.d_close =	mmclose,
88 	.d_read =	mmread,
89 	.d_write =	mmwrite,
90 	.d_ioctl =	mmioctl,
91 	.d_kqfilter =	mmkqfilter,
92 #if 0
93 	.d_mmap =	memmmap,
94 #endif
95 	.d_uksmap =	memuksmap
96 };
97 
98 static struct dev_ops mem_ops_mem = {
99 	{ "mem", 0, D_MEM | D_MPSAFE | D_QUICK },
100 	.d_open =	mmopen,
101 	.d_close =	mmclose,
102 	.d_read =	mmread,
103 	.d_write =	mmwrite,
104 	.d_ioctl =	mmioctl,
105 	.d_kqfilter =	mmkqfilter,
106 #if 0
107 	.d_mmap =	memmmap,
108 #endif
109 	.d_uksmap =	memuksmap
110 };
111 
112 static struct dev_ops mem_ops_noq = {
113 	{ "mem", 0, D_MPSAFE },
114 	.d_open =	mmopen,
115 	.d_close =	mmclose,
116 	.d_read =	mmread,
117 	.d_write =	mmwrite,
118 	.d_ioctl =	mmioctl,
119 	.d_kqfilter =	mmkqfilter,
120 #if 0
121 	.d_mmap =	memmmap,
122 #endif
123 	.d_uksmap =	memuksmap
124 };
125 
126 static int rand_bolt;
127 static caddr_t	zbuf;
128 static cdev_t	zerodev = NULL;
129 static struct lock mem_lock = LOCK_INITIALIZER("memlk", 0, 0);
130 
131 MALLOC_DEFINE(M_MEMDESC, "memdesc", "memory range descriptors");
132 static int mem_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
133 static int random_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
134 
135 struct mem_range_softc mem_range_softc;
136 
137 static int seedenable;
138 SYSCTL_INT(_kern, OID_AUTO, seedenable, CTLFLAG_RW, &seedenable, 0, "");
139 
140 static int
141 mmopen(struct dev_open_args *ap)
142 {
143 	cdev_t dev = ap->a_head.a_dev;
144 	int error;
145 
146 	switch (minor(dev)) {
147 	case 0:
148 	case 1:
149 		/*
150 		 * /dev/mem and /dev/kmem
151 		 */
152 		error = caps_priv_check(ap->a_cred, SYSCAP_RESTRICTEDROOT |
153 						    __SYSCAP_NOROOTTEST);
154 		if (error == 0) {
155 			if (ap->a_oflags & FWRITE) {
156 				if (securelevel > 0 || kernel_mem_readonly)
157 					error = EPERM;
158 			}
159 		}
160 		break;
161 	case 3:
162 	case 4:
163 		/*
164 		 * /dev/random
165 		 * /dev/urandom
166 		 *
167 		 * Cannot be written to from RESTRICTEDROOT environments.
168 		 */
169 		error = 0;
170 		if (ap->a_oflags & FWRITE) {
171 			error = caps_priv_check(ap->a_cred,
172 						SYSCAP_RESTRICTEDROOT |
173 						__SYSCAP_NOROOTTEST);
174 		}
175 		break;
176 	case 6:
177 		/*
178 		 * /dev/kpmap can only be opened for reading.
179 		 */
180 		error = 0;
181 		if (ap->a_oflags & FWRITE)
182 			error = EPERM;
183 		break;
184 	case 14:
185 		/*
186 		 * /dev/io
187 		 */
188 		error = caps_priv_check(ap->a_cred, SYSCAP_RESTRICTEDROOT);
189 		if (error == 0) {
190 			if (securelevel > 0 || kernel_mem_readonly)
191 				error = EPERM;
192 			else
193 				error = cpu_set_iopl();
194 		}
195 		break;
196 	default:
197 		error = 0;
198 		break;
199 	}
200 	return (error);
201 }
202 
203 static int
204 mmclose(struct dev_close_args *ap)
205 {
206 	cdev_t dev = ap->a_head.a_dev;
207 	int error;
208 
209 	switch (minor(dev)) {
210 	case 14:
211 		error = cpu_clr_iopl();
212 		break;
213 	default:
214 		error = 0;
215 		break;
216 	}
217 	return (error);
218 }
219 
220 
221 static int
222 mmrw(cdev_t dev, struct uio *uio, int flags)
223 {
224 	int o;
225 	u_int c;
226 	u_int poolsize;
227 	u_long v;
228 	struct iovec *iov;
229 	int error = 0;
230 	caddr_t buf = NULL;
231 
232 	while (uio->uio_resid > 0 && error == 0) {
233 		iov = uio->uio_iov;
234 		if (iov->iov_len == 0) {
235 			uio->uio_iov++;
236 			uio->uio_iovcnt--;
237 			if (uio->uio_iovcnt < 0)
238 				panic("mmrw");
239 			continue;
240 		}
241 		switch (minor(dev)) {
242 		case 0:
243 			/*
244 			 * minor device 0 is physical memory, /dev/mem
245 			 */
246 			v = uio->uio_offset;
247 			v &= ~(long)PAGE_MASK;
248 			pmap_kenter((vm_offset_t)ptvmmap, v);
249 			o = (int)uio->uio_offset & PAGE_MASK;
250 			c = (u_int)(PAGE_SIZE - ((uintptr_t)iov->iov_base & PAGE_MASK));
251 			c = min(c, (u_int)(PAGE_SIZE - o));
252 			c = min(c, (u_int)iov->iov_len);
253 			error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
254 			pmap_kremove((vm_offset_t)ptvmmap);
255 			continue;
256 
257 		case 1: {
258 			/*
259 			 * minor device 1 is kernel memory, /dev/kmem
260 			 */
261 			vm_offset_t saddr, eaddr;
262 			int prot;
263 
264 			c = iov->iov_len;
265 
266 			/*
267 			 * Make sure that all of the pages are currently
268 			 * resident so that we don't create any zero-fill
269 			 * pages.
270 			 */
271 			saddr = trunc_page(uio->uio_offset);
272 			eaddr = round_page(uio->uio_offset + c);
273 			if (saddr > eaddr)
274 				return EFAULT;
275 
276 			/*
277 			 * Make sure the kernel addresses are mapped.
278 			 * platform_direct_mapped() can be used to bypass
279 			 * default mapping via the page table (virtual kernels
280 			 * contain a lot of out-of-band data).
281 			 */
282 			prot = VM_PROT_READ;
283 			if (uio->uio_rw != UIO_READ)
284 				prot |= VM_PROT_WRITE;
285 			error = kvm_access_check(saddr, eaddr, prot);
286 			if (error)
287 				return (error);
288 			error = uiomove((caddr_t)(vm_offset_t)uio->uio_offset,
289 					(int)c, uio);
290 			continue;
291 		}
292 		case 2:
293 			/*
294 			 * minor device 2 (/dev/null) is EOF/RATHOLE
295 			 */
296 			if (uio->uio_rw == UIO_READ)
297 				return (0);
298 			c = iov->iov_len;
299 			break;
300 		case 3:
301 			/*
302 			 * minor device 3 (/dev/random) is source of filth
303 			 * on read, seeder on write
304 			 */
305 			if (buf == NULL)
306 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
307 			c = min(iov->iov_len, PAGE_SIZE);
308 			if (uio->uio_rw == UIO_WRITE) {
309 				error = uiomove(buf, (int)c, uio);
310 				if (error == 0 &&
311 				    seedenable &&
312 				    securelevel <= 0)
313 				{
314 					error = add_buffer_randomness_src(buf, c, RAND_SRC_SEEDING);
315 				} else if (error == 0) {
316 					error = EPERM;
317 				}
318 			} else {
319 				poolsize = read_random(buf, c, 0);
320 				if (poolsize == 0) {
321 					if (buf)
322 						kfree(buf, M_TEMP);
323 					if ((flags & IO_NDELAY) != 0)
324 						return (EWOULDBLOCK);
325 					return (0);
326 				}
327 				c = min(c, poolsize);
328 				error = uiomove(buf, (int)c, uio);
329 			}
330 			continue;
331 		case 4:
332 			/*
333 			 * minor device 4 (/dev/urandom) is source of muck
334 			 * on read, writes are disallowed.
335 			 */
336 			c = min(iov->iov_len, PAGE_SIZE);
337 			if (uio->uio_rw == UIO_WRITE) {
338 				error = EPERM;
339 				break;
340 			}
341 			if (CURSIG(curthread->td_lwp) != 0) {
342 				/*
343 				 * Use tsleep() to get the error code right.
344 				 * It should return immediately.
345 				 */
346 				error = tsleep(&rand_bolt, PCATCH, "urand", 1);
347 				if (error != 0 && error != EWOULDBLOCK)
348 					continue;
349 			}
350 			if (buf == NULL)
351 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
352 			poolsize = read_random(buf, c, 1);
353 			c = min(c, poolsize);
354 			error = uiomove(buf, (int)c, uio);
355 			continue;
356 		/* case 5: read/write not supported, mmap only */
357 		/* case 6: read/write not supported, mmap only */
358 		case 12:
359 			/*
360 			 * minor device 12 (/dev/zero) is source of nulls
361 			 * on read, write are disallowed.
362 			 */
363 			if (uio->uio_rw == UIO_WRITE) {
364 				c = iov->iov_len;
365 				break;
366 			}
367 			if (zbuf == NULL) {
368 				zbuf = (caddr_t)kmalloc(PAGE_SIZE, M_TEMP,
369 				    M_WAITOK | M_ZERO);
370 			}
371 			c = min(iov->iov_len, PAGE_SIZE);
372 			error = uiomove(zbuf, (int)c, uio);
373 			continue;
374 		default:
375 			return (ENODEV);
376 		}
377 		if (error)
378 			break;
379 		iov->iov_base = (char *)iov->iov_base + c;
380 		iov->iov_len -= c;
381 		uio->uio_offset += c;
382 		uio->uio_resid -= c;
383 	}
384 	if (buf)
385 		kfree(buf, M_TEMP);
386 	return (error);
387 }
388 
389 static int
390 mmread(struct dev_read_args *ap)
391 {
392 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
393 }
394 
395 static int
396 mmwrite(struct dev_write_args *ap)
397 {
398 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
399 }
400 
401 /*******************************************************\
402 * allow user processes to MMAP some memory sections	*
403 * instead of going through read/write			*
404 \*******************************************************/
405 
406 static int user_kernel_mapping(vm_map_backing_t ba, int num,
407 			vm_ooffset_t offset, vm_ooffset_t *resultp);
408 
409 static int
410 memuksmap(vm_map_backing_t ba, int op, cdev_t dev, vm_page_t fake)
411 {
412 	vm_ooffset_t result;
413 	int error;
414 	struct lwp *lp;
415 
416 	error = 0;
417 
418 	switch(op) {
419 	case UKSMAPOP_ADD:
420 		/*
421 		 * We only need to track mappings for /dev/lpmap, all process
422 		 * mappings will be deleted when the process exits and we
423 		 * do not need to track kernel mappings.
424 		 */
425 		if (minor(dev) == 7) {
426 			lp = ba->aux_info;
427 			spin_lock(&lp->lwp_spin);
428 			TAILQ_INSERT_TAIL(&lp->lwp_lpmap_backing_list,
429 					  ba, entry);
430 			spin_unlock(&lp->lwp_spin);
431 		}
432 		break;
433 	case UKSMAPOP_REM:
434 		/*
435 		 * We only need to track mappings for /dev/lpmap, all process
436 		 * mappings will be deleted when the process exits and we
437 		 * do not need to track kernel mappings.
438 		 */
439 		if (minor(dev) == 7) {
440 			lp = ba->aux_info;
441 			spin_lock(&lp->lwp_spin);
442 			TAILQ_REMOVE(&lp->lwp_lpmap_backing_list, ba, entry);
443 			spin_unlock(&lp->lwp_spin);
444 		}
445 		break;
446 	case UKSMAPOP_FAULT:
447 		switch (minor(dev)) {
448 		case 0:
449 			/*
450 			 * minor device 0 is physical memory
451 			 */
452 			fake->phys_addr = ptoa(fake->pindex);
453 			break;
454 		case 1:
455 			/*
456 			 * minor device 1 is kernel memory
457 			 */
458 			fake->phys_addr = vtophys(ptoa(fake->pindex));
459 			break;
460 		case 5:
461 		case 6:
462 		case 7:
463 			/*
464 			 * minor device 5 is /dev/upmap (see sys/upmap.h)
465 			 * minor device 6 is /dev/kpmap (see sys/upmap.h)
466 			 * minor device 7 is /dev/lpmap (see sys/upmap.h)
467 			 */
468 			result = 0;
469 			error = user_kernel_mapping(ba,
470 						    minor(dev),
471 						    ptoa(fake->pindex),
472 						    &result);
473 			fake->phys_addr = result;
474 			break;
475 		default:
476 			error = EINVAL;
477 			break;
478 		}
479 		break;
480 	default:
481 		error = EINVAL;
482 		break;
483 	}
484 	return error;
485 }
486 
487 static int
488 mmioctl(struct dev_ioctl_args *ap)
489 {
490 	cdev_t dev = ap->a_head.a_dev;
491 	int error;
492 
493 	lockmgr(&mem_lock, LK_EXCLUSIVE);
494 
495 	switch (minor(dev)) {
496 	case 0:
497 		error = mem_ioctl(dev, ap->a_cmd, ap->a_data,
498 				  ap->a_fflag, ap->a_cred);
499 		break;
500 	case 3:
501 	case 4:
502 		error = random_ioctl(dev, ap->a_cmd, ap->a_data,
503 				     ap->a_fflag, ap->a_cred);
504 		break;
505 	default:
506 		error = ENODEV;
507 		break;
508 	}
509 
510 	lockmgr(&mem_lock, LK_RELEASE);
511 
512 	return (error);
513 }
514 
515 /*
516  * Operations for changing memory attributes.
517  *
518  * This is basically just an ioctl shim for mem_range_attr_get
519  * and mem_range_attr_set.
520  */
521 static int
522 mem_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
523 {
524 	int nd, error = 0;
525 	struct mem_range_op *mo = (struct mem_range_op *)data;
526 	struct mem_range_desc *md;
527 
528 	/* is this for us? */
529 	if ((cmd != MEMRANGE_GET) &&
530 	    (cmd != MEMRANGE_SET))
531 		return (ENOTTY);
532 
533 	/* any chance we can handle this? */
534 	if (mem_range_softc.mr_op == NULL)
535 		return (EOPNOTSUPP);
536 
537 	/* do we have any descriptors? */
538 	if (mem_range_softc.mr_ndesc == 0)
539 		return (ENXIO);
540 
541 	switch (cmd) {
542 	case MEMRANGE_GET:
543 		nd = imin(mo->mo_arg[0], mem_range_softc.mr_ndesc);
544 		if (nd > 0) {
545 			md = (struct mem_range_desc *)
546 				kmalloc(nd * sizeof(struct mem_range_desc),
547 				       M_MEMDESC, M_WAITOK);
548 			error = mem_range_attr_get(md, &nd);
549 			if (!error)
550 				error = copyout(md, mo->mo_desc,
551 					nd * sizeof(struct mem_range_desc));
552 			kfree(md, M_MEMDESC);
553 		} else {
554 			nd = mem_range_softc.mr_ndesc;
555 		}
556 		mo->mo_arg[0] = nd;
557 		break;
558 
559 	case MEMRANGE_SET:
560 		md = (struct mem_range_desc *)kmalloc(sizeof(struct mem_range_desc),
561 						    M_MEMDESC, M_WAITOK);
562 		error = copyin(mo->mo_desc, md, sizeof(struct mem_range_desc));
563 		/* clamp description string */
564 		md->mr_owner[sizeof(md->mr_owner) - 1] = 0;
565 		if (error == 0)
566 			error = mem_range_attr_set(md, &mo->mo_arg[0]);
567 		kfree(md, M_MEMDESC);
568 		break;
569 	}
570 	return (error);
571 }
572 
573 /*
574  * Implementation-neutral, kernel-callable functions for manipulating
575  * memory range attributes.
576  */
577 int
578 mem_range_attr_get(struct mem_range_desc *mrd, int *arg)
579 {
580 	/* can we handle this? */
581 	if (mem_range_softc.mr_op == NULL)
582 		return (EOPNOTSUPP);
583 
584 	if (*arg == 0) {
585 		*arg = mem_range_softc.mr_ndesc;
586 	} else {
587 		bcopy(mem_range_softc.mr_desc, mrd, (*arg) * sizeof(struct mem_range_desc));
588 	}
589 	return (0);
590 }
591 
592 int
593 mem_range_attr_set(struct mem_range_desc *mrd, int *arg)
594 {
595 	/* can we handle this? */
596 	if (mem_range_softc.mr_op == NULL)
597 		return (EOPNOTSUPP);
598 
599 	return (mem_range_softc.mr_op->set(&mem_range_softc, mrd, arg));
600 }
601 
602 void
603 mem_range_AP_init(void)
604 {
605 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
606 		mem_range_softc.mr_op->initAP(&mem_range_softc);
607 }
608 
609 static int
610 random_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
611 {
612 	int error;
613 	int intr;
614 
615 	/*
616 	 * Even inspecting the state is privileged, since it gives a hint
617 	 * about how easily the randomness might be guessed.
618 	 */
619 	error = 0;
620 
621 	switch (cmd) {
622 	/* Really handled in upper layer */
623 	case FIOASYNC:
624 		break;
625 	case MEM_SETIRQ:
626 		intr = *(int16_t *)data;
627 		if ((error = caps_priv_check(cred, SYSCAP_RESTRICTEDROOT)) != 0)
628 			break;
629 		if (intr < 0 || intr >= MAX_INTS)
630 			return (EINVAL);
631 		register_randintr(intr);
632 		break;
633 	case MEM_CLEARIRQ:
634 		intr = *(int16_t *)data;
635 		if ((error = caps_priv_check(cred, SYSCAP_RESTRICTEDROOT)) != 0)
636 			break;
637 		if (intr < 0 || intr >= MAX_INTS)
638 			return (EINVAL);
639 		unregister_randintr(intr);
640 		break;
641 	case MEM_RETURNIRQ:
642 		error = ENOTSUP;
643 		break;
644 	case MEM_FINDIRQ:
645 		intr = *(int16_t *)data;
646 		if ((error = caps_priv_check(cred, SYSCAP_RESTRICTEDROOT)) != 0)
647 			break;
648 		if (intr < 0 || intr >= MAX_INTS)
649 			return (EINVAL);
650 		intr = next_registered_randintr(intr);
651 		if (intr == MAX_INTS)
652 			return (ENOENT);
653 		*(u_int16_t *)data = intr;
654 		break;
655 	default:
656 		error = ENOTSUP;
657 		break;
658 	}
659 	return (error);
660 }
661 
662 static int
663 mm_filter_read(struct knote *kn, long hint)
664 {
665 	return (1);
666 }
667 
668 static int
669 mm_filter_write(struct knote *kn, long hint)
670 {
671 	return (1);
672 }
673 
674 static void
675 dummy_filter_detach(struct knote *kn) {}
676 
677 /* Implemented in kern_nrandom.c */
678 static struct filterops random_read_filtops =
679         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, random_filter_read };
680 
681 static struct filterops mm_read_filtops =
682         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_read };
683 
684 static struct filterops mm_write_filtops =
685         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_write };
686 
687 static int
688 mmkqfilter(struct dev_kqfilter_args *ap)
689 {
690 	struct knote *kn = ap->a_kn;
691 	cdev_t dev = ap->a_head.a_dev;
692 
693 	ap->a_result = 0;
694 	switch (kn->kn_filter) {
695 	case EVFILT_READ:
696 		switch (minor(dev)) {
697 		case 3:
698 			kn->kn_fop = &random_read_filtops;
699 			break;
700 		default:
701 			kn->kn_fop = &mm_read_filtops;
702 			break;
703 		}
704 		break;
705 	case EVFILT_WRITE:
706 		kn->kn_fop = &mm_write_filtops;
707 		break;
708 	default:
709 		ap->a_result = EOPNOTSUPP;
710 		return (0);
711 	}
712 
713 	return (0);
714 }
715 
716 int
717 iszerodev(cdev_t dev)
718 {
719 	return (zerodev == dev);
720 }
721 
722 /*
723  * /dev/lpmap, /dev/upmap, /dev/kpmap.
724  */
725 static int
726 user_kernel_mapping(vm_map_backing_t ba, int num, vm_ooffset_t offset,
727 		    vm_ooffset_t *resultp)
728 {
729 	struct proc *p;
730 	struct lwp *lp;
731 	int error;
732 	int invfork;
733 
734 	if (offset < 0)
735 		return (EINVAL);
736 
737 	error = EINVAL;
738 
739 	switch(num) {
740 	case 5:
741 		/*
742 		 * /dev/upmap - maps RW per-process shared user-kernel area.
743 		 */
744 
745 		/*
746 		 * If this is a child currently in vfork the pmap is shared
747 		 * with the parent!  We need to actually set-up the parent's
748 		 * p_upmap, not the child's, and we need to set the invfork
749 		 * flag.  Userland will probably adjust its static state so
750 		 * it must be consistent with the parent or userland will be
751 		 * really badly confused.
752 		 *
753 		 * (this situation can happen when user code in vfork() calls
754 		 *  libc's getpid() or some other function which then decides
755 		 *  it wants the upmap).
756 		 */
757 		p = ba->aux_info;
758 		if (p == NULL)
759 			break;
760 		if (p->p_flags & P_PPWAIT) {
761 			p = p->p_pptr;
762 			if (p == NULL)
763 				return (EINVAL);
764 			invfork = 1;
765 		} else {
766 			invfork = 0;
767 		}
768 
769 		/*
770 		 * Create the kernel structure as required, set the invfork
771 		 * flag if we are faulting in on a vfork().
772 		 */
773 		if (p->p_upmap == NULL)
774 			proc_usermap(p, invfork);
775 		if (p->p_upmap && invfork)
776 			p->p_upmap->invfork = invfork;
777 
778 		/*
779 		 * Extract address for pmap
780 		 */
781 		if (p->p_upmap &&
782 		    offset < roundup2(sizeof(*p->p_upmap), PAGE_SIZE)) {
783 			/* only good for current process */
784 			*resultp = pmap_kextract((vm_offset_t)p->p_upmap +
785 						 offset);
786 			error = 0;
787 		}
788 		break;
789 	case 6:
790 		/*
791 		 * /dev/kpmap - maps RO shared kernel global page
792 		 *
793 		 * Extract address for pmap
794 		 */
795 		if (kpmap &&
796 		    offset < roundup2(sizeof(*kpmap), PAGE_SIZE)) {
797 			*resultp = pmap_kextract((vm_offset_t)kpmap + offset);
798 			error = 0;
799 		}
800 		break;
801 	case 7:
802 		/*
803 		 * /dev/lpmap - maps RW per-thread shared user-kernel area.
804 		 */
805 		lp = ba->aux_info;
806 		if (lp == NULL)
807 			break;
808 
809 		/*
810 		 * Create the kernel structure as required
811 		 */
812 		if (lp->lwp_lpmap == NULL)
813 			lwp_usermap(lp, -1);	/* second arg not yet XXX */
814 
815 		/*
816 		 * Extract address for pmap
817 		 */
818 		if (lp->lwp_lpmap &&
819 		    offset < roundup2(sizeof(*lp->lwp_lpmap), PAGE_SIZE)) {
820 			/* only good for current process */
821 			*resultp = pmap_kextract((vm_offset_t)lp->lwp_lpmap +
822 						 offset);
823 			error = 0;
824 		}
825 		break;
826 	default:
827 		break;
828 	}
829 	return error;
830 }
831 
832 static void
833 mem_drvinit(void *unused)
834 {
835 
836 	/* Initialise memory range handling */
837 	if (mem_range_softc.mr_op != NULL)
838 		mem_range_softc.mr_op->init(&mem_range_softc);
839 
840 	make_dev(&mem_ops_mem, 0, UID_ROOT, GID_KMEM, 0640, "mem");
841 	make_dev(&mem_ops_mem, 1, UID_ROOT, GID_KMEM, 0640, "kmem");
842 	make_dev(&mem_ops, 2, UID_ROOT, GID_WHEEL, 0666, "null");
843 	make_dev(&mem_ops, 3, UID_ROOT, GID_WHEEL, 0644, "random");
844 	make_dev(&mem_ops, 4, UID_ROOT, GID_WHEEL, 0644, "urandom");
845 	make_dev(&mem_ops, 5, UID_ROOT, GID_WHEEL, 0666, "upmap");
846 	make_dev(&mem_ops, 6, UID_ROOT, GID_WHEEL, 0444, "kpmap");
847 	make_dev(&mem_ops, 7, UID_ROOT, GID_WHEEL, 0666, "lpmap");
848 	zerodev = make_dev(&mem_ops, 12, UID_ROOT, GID_WHEEL, 0666, "zero");
849 	make_dev(&mem_ops_noq, 14, UID_ROOT, GID_WHEEL, 0600, "io");
850 }
851 
852 SYSINIT(memdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE + CDEV_MAJOR, mem_drvinit,
853     NULL);
854 
855