xref: /dragonfly/sys/kern/kern_memio.c (revision 685c703c)
1 /*-
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department, and code derived from software contributed to
9  * Berkeley by William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	from: Utah $Hdr: mem.c 1.13 89/10/08$
40  *	from: @(#)mem.c	7.2 (Berkeley) 5/9/91
41  * $FreeBSD: src/sys/i386/i386/mem.c,v 1.79.2.9 2003/01/04 22:58:01 njl Exp $
42  * $DragonFly: src/sys/kern/kern_memio.c,v 1.17 2006/07/28 02:17:39 dillon Exp $
43  */
44 
45 /*
46  * Memory special file
47  */
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/buf.h>
52 #include <sys/conf.h>
53 #include <sys/fcntl.h>
54 #include <sys/filio.h>
55 #include <sys/ioccom.h>
56 #include <sys/kernel.h>
57 #include <sys/malloc.h>
58 #include <sys/memrange.h>
59 #include <sys/proc.h>
60 #include <sys/random.h>
61 #include <sys/signalvar.h>
62 #include <sys/uio.h>
63 #include <sys/vnode.h>
64 
65 #include <machine/frame.h>
66 #include <machine/psl.h>
67 #include <machine/specialreg.h>
68 #include <i386/isa/intr_machdep.h>
69 
70 #include <vm/vm.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_extern.h>
73 
74 
75 static	d_open_t	mmopen;
76 static	d_close_t	mmclose;
77 static	d_read_t	mmread;
78 static	d_write_t	mmwrite;
79 static	d_ioctl_t	mmioctl;
80 static	d_mmap_t	memmmap;
81 static	d_poll_t	mmpoll;
82 
83 #define CDEV_MAJOR 2
84 static struct dev_ops mem_ops = {
85 	{ "mem", CDEV_MAJOR, D_MEM },
86 	.d_open =	mmopen,
87 	.d_close =	mmclose,
88 	.d_read =	mmread,
89 	.d_write =	mmwrite,
90 	.d_ioctl =	mmioctl,
91 	.d_poll =	mmpoll,
92 	.d_mmap =	memmmap,
93 };
94 
95 static int rand_bolt;
96 static caddr_t	zbuf;
97 
98 MALLOC_DEFINE(M_MEMDESC, "memdesc", "memory range descriptors");
99 static int mem_ioctl (dev_t, u_long, caddr_t, int, struct ucred *);
100 static int random_ioctl (dev_t, u_long, caddr_t, int, struct ucred *);
101 
102 struct mem_range_softc mem_range_softc;
103 
104 
105 static int
106 mmopen(struct dev_open_args *ap)
107 {
108 	dev_t dev = ap->a_head.a_dev;
109 	int error;
110 
111 	switch (minor(dev)) {
112 	case 0:
113 	case 1:
114 		if ((ap->a_oflags & FWRITE) && securelevel > 0)
115 			return (EPERM);
116 		break;
117 	case 14:
118 		error = suser_cred(ap->a_cred, 0);
119 		if (error != 0)
120 			return (error);
121 		if (securelevel > 0)
122 			return (EPERM);
123 		curproc->p_md.md_regs->tf_eflags |= PSL_IOPL;
124 		break;
125 	default:
126 		break;
127 	}
128 	return (0);
129 }
130 
131 static int
132 mmclose(struct dev_close_args *ap)
133 {
134 	dev_t dev = ap->a_head.a_dev;
135 
136 	switch (minor(dev)) {
137 	case 14:
138 		curproc->p_md.md_regs->tf_eflags &= ~PSL_IOPL;
139 		break;
140 	default:
141 		break;
142 	}
143 	return (0);
144 }
145 
146 
147 static int
148 mmrw(dev_t dev, struct uio *uio, int flags)
149 {
150 	int o;
151 	u_int c, v;
152 	u_int poolsize;
153 	struct iovec *iov;
154 	int error = 0;
155 	caddr_t buf = NULL;
156 
157 	while (uio->uio_resid > 0 && error == 0) {
158 		iov = uio->uio_iov;
159 		if (iov->iov_len == 0) {
160 			uio->uio_iov++;
161 			uio->uio_iovcnt--;
162 			if (uio->uio_iovcnt < 0)
163 				panic("mmrw");
164 			continue;
165 		}
166 		switch (minor(dev)) {
167 		case 0:
168 			/*
169 			 * minor device 0 is physical memory, /dev/mem
170 			 */
171 			v = uio->uio_offset;
172 			v &= ~PAGE_MASK;
173 			pmap_kenter((vm_offset_t)ptvmmap, v);
174 			o = (int)uio->uio_offset & PAGE_MASK;
175 			c = (u_int)(PAGE_SIZE - ((int)iov->iov_base & PAGE_MASK));
176 			c = min(c, (u_int)(PAGE_SIZE - o));
177 			c = min(c, (u_int)iov->iov_len);
178 			error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
179 			pmap_kremove((vm_offset_t)ptvmmap);
180 			continue;
181 
182 		case 1: {
183 			/*
184 			 * minor device 1 is kernel memory, /dev/kmem
185 			 */
186 			vm_offset_t addr, eaddr;
187 			c = iov->iov_len;
188 
189 			/*
190 			 * Make sure that all of the pages are currently
191 			 * resident so that we don't create any zero-fill
192 			 * pages.
193 			 */
194 			addr = trunc_page(uio->uio_offset);
195 			eaddr = round_page(uio->uio_offset + c);
196 
197 			if (addr < (vm_offset_t)VADDR(PTDPTDI, 0))
198 				return EFAULT;
199 			if (eaddr >= (vm_offset_t)VADDR(APTDPTDI, 0))
200 				return EFAULT;
201 			for (; addr < eaddr; addr += PAGE_SIZE)
202 				if (pmap_extract(kernel_pmap, addr) == 0)
203 					return EFAULT;
204 
205 			if (!kernacc((caddr_t)(int)uio->uio_offset, c,
206 			    uio->uio_rw == UIO_READ ?
207 			    VM_PROT_READ : VM_PROT_WRITE))
208 				return (EFAULT);
209 			error = uiomove((caddr_t)(int)uio->uio_offset, (int)c, uio);
210 			continue;
211 		}
212 		case 2:
213 			/*
214 			 * minor device 2 is EOF/RATHOLE
215 			 */
216 			if (uio->uio_rw == UIO_READ)
217 				return (0);
218 			c = iov->iov_len;
219 			break;
220 		case 3:
221 			/*
222 			 * minor device 3 (/dev/random) is source of filth
223 			 * on read, seeder on write
224 			 */
225 			if (buf == NULL)
226 				buf = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
227 			c = min(iov->iov_len, PAGE_SIZE);
228 			if (uio->uio_rw == UIO_WRITE) {
229 				error = uiomove(buf, (int)c, uio);
230 				if (error == 0)
231 					error = add_buffer_randomness(buf, c);
232 			} else {
233 				poolsize = read_random(buf, c);
234 				if (poolsize == 0) {
235 					if (buf)
236 						free(buf, M_TEMP);
237 					if ((flags & IO_NDELAY) != 0)
238 						return (EWOULDBLOCK);
239 					return (0);
240 				}
241 				c = min(c, poolsize);
242 				error = uiomove(buf, (int)c, uio);
243 			}
244 			continue;
245 		case 4:
246 			/*
247 			 * minor device 4 (/dev/urandom) is source of muck
248 			 * on read, writes are disallowed.
249 			 */
250 			c = min(iov->iov_len, PAGE_SIZE);
251 			if (uio->uio_rw == UIO_WRITE) {
252 				error = EPERM;
253 				break;
254 			}
255 			if (CURSIG(curproc) != 0) {
256 				/*
257 				 * Use tsleep() to get the error code right.
258 				 * It should return immediately.
259 				 */
260 				error = tsleep(&rand_bolt, PCATCH, "urand", 1);
261 				if (error != 0 && error != EWOULDBLOCK)
262 					continue;
263 			}
264 			if (buf == NULL)
265 				buf = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
266 			poolsize = read_random_unlimited(buf, c);
267 			c = min(c, poolsize);
268 			error = uiomove(buf, (int)c, uio);
269 			continue;
270 		case 12:
271 			/*
272 			 * minor device 12 (/dev/zero) is source of nulls
273 			 * on read, write are disallowed.
274 			 */
275 			if (uio->uio_rw == UIO_WRITE) {
276 				c = iov->iov_len;
277 				break;
278 			}
279 			if (zbuf == NULL) {
280 				zbuf = (caddr_t)
281 				    malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
282 				bzero(zbuf, PAGE_SIZE);
283 			}
284 			c = min(iov->iov_len, PAGE_SIZE);
285 			error = uiomove(zbuf, (int)c, uio);
286 			continue;
287 		default:
288 			return (ENODEV);
289 		}
290 		if (error)
291 			break;
292 		iov->iov_base += c;
293 		iov->iov_len -= c;
294 		uio->uio_offset += c;
295 		uio->uio_resid -= c;
296 	}
297 	if (buf)
298 		free(buf, M_TEMP);
299 	return (error);
300 }
301 
302 static int
303 mmread(struct dev_read_args *ap)
304 {
305 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
306 }
307 
308 static int
309 mmwrite(struct dev_write_args *ap)
310 {
311 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
312 }
313 
314 
315 
316 
317 
318 /*******************************************************\
319 * allow user processes to MMAP some memory sections	*
320 * instead of going through read/write			*
321 \*******************************************************/
322 
323 static int
324 memmmap(struct dev_mmap_args *ap)
325 {
326 	dev_t dev = ap->a_head.a_dev;
327 
328 	switch (minor(dev)) {
329 	case 0:
330 		/*
331 		 * minor device 0 is physical memory
332 		 */
333         	ap->a_result = i386_btop(ap->a_offset);
334 		return 0;
335 	case 1:
336 		/*
337 		 * minor device 1 is kernel memory
338 		 */
339         	ap->a_result = i386_btop(vtophys(ap->a_offset));
340 		return 0;
341 
342 	default:
343 		return EINVAL;
344 	}
345 }
346 
347 static int
348 mmioctl(struct dev_ioctl_args *ap)
349 {
350 	dev_t dev = ap->a_head.a_dev;
351 
352 	switch (minor(dev)) {
353 	case 0:
354 		return mem_ioctl(dev, ap->a_cmd, ap->a_data,
355 				 ap->a_fflag, ap->a_cred);
356 	case 3:
357 	case 4:
358 		return random_ioctl(dev, ap->a_cmd, ap->a_data,
359 				    ap->a_fflag, ap->a_cred);
360 	}
361 	return (ENODEV);
362 }
363 
364 /*
365  * Operations for changing memory attributes.
366  *
367  * This is basically just an ioctl shim for mem_range_attr_get
368  * and mem_range_attr_set.
369  */
370 static int
371 mem_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
372 {
373 	int nd, error = 0;
374 	struct mem_range_op *mo = (struct mem_range_op *)data;
375 	struct mem_range_desc *md;
376 
377 	/* is this for us? */
378 	if ((cmd != MEMRANGE_GET) &&
379 	    (cmd != MEMRANGE_SET))
380 		return (ENOTTY);
381 
382 	/* any chance we can handle this? */
383 	if (mem_range_softc.mr_op == NULL)
384 		return (EOPNOTSUPP);
385 
386 	/* do we have any descriptors? */
387 	if (mem_range_softc.mr_ndesc == 0)
388 		return (ENXIO);
389 
390 	switch (cmd) {
391 	case MEMRANGE_GET:
392 		nd = imin(mo->mo_arg[0], mem_range_softc.mr_ndesc);
393 		if (nd > 0) {
394 			md = (struct mem_range_desc *)
395 				malloc(nd * sizeof(struct mem_range_desc),
396 				       M_MEMDESC, M_WAITOK);
397 			error = mem_range_attr_get(md, &nd);
398 			if (!error)
399 				error = copyout(md, mo->mo_desc,
400 					nd * sizeof(struct mem_range_desc));
401 			free(md, M_MEMDESC);
402 		} else {
403 			nd = mem_range_softc.mr_ndesc;
404 		}
405 		mo->mo_arg[0] = nd;
406 		break;
407 
408 	case MEMRANGE_SET:
409 		md = (struct mem_range_desc *)malloc(sizeof(struct mem_range_desc),
410 						    M_MEMDESC, M_WAITOK);
411 		error = copyin(mo->mo_desc, md, sizeof(struct mem_range_desc));
412 		/* clamp description string */
413 		md->mr_owner[sizeof(md->mr_owner) - 1] = 0;
414 		if (error == 0)
415 			error = mem_range_attr_set(md, &mo->mo_arg[0]);
416 		free(md, M_MEMDESC);
417 		break;
418 	}
419 	return (error);
420 }
421 
422 /*
423  * Implementation-neutral, kernel-callable functions for manipulating
424  * memory range attributes.
425  */
426 int
427 mem_range_attr_get(mrd, arg)
428 	struct mem_range_desc *mrd;
429 	int *arg;
430 {
431 	/* can we handle this? */
432 	if (mem_range_softc.mr_op == NULL)
433 		return (EOPNOTSUPP);
434 
435 	if (*arg == 0) {
436 		*arg = mem_range_softc.mr_ndesc;
437 	} else {
438 		bcopy(mem_range_softc.mr_desc, mrd, (*arg) * sizeof(struct mem_range_desc));
439 	}
440 	return (0);
441 }
442 
443 int
444 mem_range_attr_set(mrd, arg)
445 	struct mem_range_desc *mrd;
446 	int *arg;
447 {
448 	/* can we handle this? */
449 	if (mem_range_softc.mr_op == NULL)
450 		return (EOPNOTSUPP);
451 
452 	return (mem_range_softc.mr_op->set(&mem_range_softc, mrd, arg));
453 }
454 
455 #ifdef SMP
456 void
457 mem_range_AP_init(void)
458 {
459 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
460 		return (mem_range_softc.mr_op->initAP(&mem_range_softc));
461 }
462 #endif
463 
464 static int
465 random_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
466 {
467 	int error;
468 	int intr;
469 
470 	/*
471 	 * Even inspecting the state is privileged, since it gives a hint
472 	 * about how easily the randomness might be guessed.
473 	 */
474 	error = 0;
475 
476 	switch (cmd) {
477 	/* Really handled in upper layer */
478 	case FIOASYNC:
479 		break;
480 	case MEM_SETIRQ:
481 		intr = *(int16_t *)data;
482 		if ((error = suser_cred(cred, 0)) != 0)
483 			break;
484 		if (intr < 0 || intr >= MAX_INTS)
485 			return (EINVAL);
486 		register_randintr(intr);
487 		break;
488 	case MEM_CLEARIRQ:
489 		intr = *(int16_t *)data;
490 		if ((error = suser_cred(cred, 0)) != 0)
491 			break;
492 		if (intr < 0 || intr >= MAX_INTS)
493 			return (EINVAL);
494 		unregister_randintr(intr);
495 		break;
496 	case MEM_RETURNIRQ:
497 		error = ENOTSUP;
498 		break;
499 	case MEM_FINDIRQ:
500 		intr = *(int16_t *)data;
501 		if ((error = suser_cred(cred, 0)) != 0)
502 			break;
503 		if (intr < 0 || intr >= MAX_INTS)
504 			return (EINVAL);
505 		intr = next_registered_randintr(intr);
506 		if (intr == MAX_INTS)
507 			return (ENOENT);
508 		*(u_int16_t *)data = intr;
509 		break;
510 	default:
511 		error = ENOTSUP;
512 		break;
513 	}
514 	return (error);
515 }
516 
517 int
518 mmpoll(struct dev_poll_args *ap)
519 {
520 	dev_t dev = ap->a_head.a_dev;
521 	int revents;
522 
523 	switch (minor(dev)) {
524 	case 3:		/* /dev/random */
525 		revents = random_poll(dev, ap->a_events);
526 		break;
527 	case 4:		/* /dev/urandom */
528 	default:
529 		revents = seltrue(dev, ap->a_events);
530 		break;
531 	}
532 	ap->a_events = revents;
533 	return (0);
534 }
535 
536 int
537 iszerodev(dev)
538 	dev_t dev;
539 {
540 	return ((major(dev) == mem_ops.head.maj)
541 	  && minor(dev) == 12);
542 }
543 
544 static void
545 mem_drvinit(void *unused)
546 {
547 
548 	/* Initialise memory range handling */
549 	if (mem_range_softc.mr_op != NULL)
550 		mem_range_softc.mr_op->init(&mem_range_softc);
551 
552 	dev_ops_add(&mem_ops, 0xf0, 0);
553 	make_dev(&mem_ops, 0, UID_ROOT, GID_KMEM, 0640, "mem");
554 	make_dev(&mem_ops, 1, UID_ROOT, GID_KMEM, 0640, "kmem");
555 	make_dev(&mem_ops, 2, UID_ROOT, GID_WHEEL, 0666, "null");
556 	make_dev(&mem_ops, 3, UID_ROOT, GID_WHEEL, 0644, "random");
557 	make_dev(&mem_ops, 4, UID_ROOT, GID_WHEEL, 0644, "urandom");
558 	make_dev(&mem_ops, 12, UID_ROOT, GID_WHEEL, 0666, "zero");
559 	make_dev(&mem_ops, 14, UID_ROOT, GID_WHEEL, 0600, "io");
560 }
561 
562 SYSINIT(memdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,mem_drvinit,NULL)
563 
564