xref: /dragonfly/sys/kern/kern_memio.c (revision 6ab64ab6)
1 /*-
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department, and code derived from software contributed to
9  * Berkeley by William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: Utah $Hdr: mem.c 1.13 89/10/08$
36  *	from: @(#)mem.c	7.2 (Berkeley) 5/9/91
37  * $FreeBSD: src/sys/i386/i386/mem.c,v 1.79.2.9 2003/01/04 22:58:01 njl Exp $
38  */
39 
40 /*
41  * Memory special file
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/buf.h>
47 #include <sys/conf.h>
48 #include <sys/fcntl.h>
49 #include <sys/filio.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/memrange.h>
53 #include <sys/proc.h>
54 #include <sys/priv.h>
55 #include <sys/random.h>
56 #include <sys/signalvar.h>
57 #include <sys/uio.h>
58 #include <sys/vnode.h>
59 #include <sys/sysctl.h>
60 
61 #include <sys/signal2.h>
62 #include <sys/mplock2.h>
63 
64 #include <vm/vm.h>
65 #include <vm/pmap.h>
66 #include <vm/vm_extern.h>
67 
68 
69 static	d_open_t	mmopen;
70 static	d_close_t	mmclose;
71 static	d_read_t	mmread;
72 static	d_write_t	mmwrite;
73 static	d_ioctl_t	mmioctl;
74 #if 0
75 static	d_mmap_t	memmmap;
76 #endif
77 static	d_kqfilter_t	mmkqfilter;
78 static int memuksmap(cdev_t dev, vm_page_t fake);
79 
80 #define CDEV_MAJOR 2
81 static struct dev_ops mem_ops = {
82 	{ "mem", 0, D_MPSAFE },
83 	.d_open =	mmopen,
84 	.d_close =	mmclose,
85 	.d_read =	mmread,
86 	.d_write =	mmwrite,
87 	.d_ioctl =	mmioctl,
88 	.d_kqfilter =	mmkqfilter,
89 #if 0
90 	.d_mmap =	memmmap,
91 #endif
92 	.d_uksmap =	memuksmap
93 };
94 
95 static int rand_bolt;
96 static caddr_t	zbuf;
97 static cdev_t	zerodev = NULL;
98 
99 MALLOC_DEFINE(M_MEMDESC, "memdesc", "memory range descriptors");
100 static int mem_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
101 static int random_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
102 
103 struct mem_range_softc mem_range_softc;
104 
105 static int seedenable;
106 SYSCTL_INT(_kern, OID_AUTO, seedenable, CTLFLAG_RW, &seedenable, 0, "");
107 
108 static int
109 mmopen(struct dev_open_args *ap)
110 {
111 	cdev_t dev = ap->a_head.a_dev;
112 	int error;
113 
114 	switch (minor(dev)) {
115 	case 0:
116 	case 1:
117 		/*
118 		 * /dev/mem and /dev/kmem
119 		 */
120 		if (ap->a_oflags & FWRITE) {
121 			if (securelevel > 0 || kernel_mem_readonly)
122 				return (EPERM);
123 		}
124 		error = 0;
125 		break;
126 	case 6:
127 		/*
128 		 * /dev/kpmap can only be opened for reading.
129 		 */
130 		if (ap->a_oflags & FWRITE)
131 			return (EPERM);
132 		error = 0;
133 		break;
134 	case 14:
135 		error = priv_check_cred(ap->a_cred, PRIV_ROOT, 0);
136 		if (error != 0)
137 			break;
138 		if (securelevel > 0 || kernel_mem_readonly) {
139 			error = EPERM;
140 			break;
141 		}
142 		error = cpu_set_iopl();
143 		break;
144 	default:
145 		error = 0;
146 		break;
147 	}
148 	return (error);
149 }
150 
151 static int
152 mmclose(struct dev_close_args *ap)
153 {
154 	cdev_t dev = ap->a_head.a_dev;
155 	int error;
156 
157 	switch (minor(dev)) {
158 	case 14:
159 		error = cpu_clr_iopl();
160 		break;
161 	default:
162 		error = 0;
163 		break;
164 	}
165 	return (error);
166 }
167 
168 
169 static int
170 mmrw(cdev_t dev, struct uio *uio, int flags)
171 {
172 	int o;
173 	u_int c;
174 	u_int poolsize;
175 	u_long v;
176 	struct iovec *iov;
177 	int error = 0;
178 	caddr_t buf = NULL;
179 
180 	while (uio->uio_resid > 0 && error == 0) {
181 		iov = uio->uio_iov;
182 		if (iov->iov_len == 0) {
183 			uio->uio_iov++;
184 			uio->uio_iovcnt--;
185 			if (uio->uio_iovcnt < 0)
186 				panic("mmrw");
187 			continue;
188 		}
189 		switch (minor(dev)) {
190 		case 0:
191 			/*
192 			 * minor device 0 is physical memory, /dev/mem
193 			 */
194 			v = uio->uio_offset;
195 			v &= ~(long)PAGE_MASK;
196 			pmap_kenter((vm_offset_t)ptvmmap, v);
197 			o = (int)uio->uio_offset & PAGE_MASK;
198 			c = (u_int)(PAGE_SIZE - ((uintptr_t)iov->iov_base & PAGE_MASK));
199 			c = min(c, (u_int)(PAGE_SIZE - o));
200 			c = min(c, (u_int)iov->iov_len);
201 			error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
202 			pmap_kremove((vm_offset_t)ptvmmap);
203 			continue;
204 
205 		case 1: {
206 			/*
207 			 * minor device 1 is kernel memory, /dev/kmem
208 			 */
209 			vm_offset_t saddr, eaddr;
210 			int prot;
211 
212 			c = iov->iov_len;
213 
214 			/*
215 			 * Make sure that all of the pages are currently
216 			 * resident so that we don't create any zero-fill
217 			 * pages.
218 			 */
219 			saddr = trunc_page(uio->uio_offset);
220 			eaddr = round_page(uio->uio_offset + c);
221 			if (saddr > eaddr)
222 				return EFAULT;
223 
224 			/*
225 			 * Make sure the kernel addresses are mapped.
226 			 * platform_direct_mapped() can be used to bypass
227 			 * default mapping via the page table (virtual kernels
228 			 * contain a lot of out-of-band data).
229 			 */
230 			prot = VM_PROT_READ;
231 			if (uio->uio_rw != UIO_READ)
232 				prot |= VM_PROT_WRITE;
233 			error = kvm_access_check(saddr, eaddr, prot);
234 			if (error)
235 				return (error);
236 			error = uiomove((caddr_t)(vm_offset_t)uio->uio_offset,
237 					(int)c, uio);
238 			continue;
239 		}
240 		case 2:
241 			/*
242 			 * minor device 2 (/dev/null) is EOF/RATHOLE
243 			 */
244 			if (uio->uio_rw == UIO_READ)
245 				return (0);
246 			c = iov->iov_len;
247 			break;
248 		case 3:
249 			/*
250 			 * minor device 3 (/dev/random) is source of filth
251 			 * on read, seeder on write
252 			 */
253 			if (buf == NULL)
254 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
255 			c = min(iov->iov_len, PAGE_SIZE);
256 			if (uio->uio_rw == UIO_WRITE) {
257 				error = uiomove(buf, (int)c, uio);
258 				if (error == 0 &&
259 				    seedenable &&
260 				    securelevel <= 0) {
261 					error = add_buffer_randomness_src(buf, c, RAND_SRC_SEEDING);
262 				} else if (error == 0) {
263 					error = EPERM;
264 				}
265 			} else {
266 				poolsize = read_random(buf, c);
267 				if (poolsize == 0) {
268 					if (buf)
269 						kfree(buf, M_TEMP);
270 					if ((flags & IO_NDELAY) != 0)
271 						return (EWOULDBLOCK);
272 					return (0);
273 				}
274 				c = min(c, poolsize);
275 				error = uiomove(buf, (int)c, uio);
276 			}
277 			continue;
278 		case 4:
279 			/*
280 			 * minor device 4 (/dev/urandom) is source of muck
281 			 * on read, writes are disallowed.
282 			 */
283 			c = min(iov->iov_len, PAGE_SIZE);
284 			if (uio->uio_rw == UIO_WRITE) {
285 				error = EPERM;
286 				break;
287 			}
288 			if (CURSIG(curthread->td_lwp) != 0) {
289 				/*
290 				 * Use tsleep() to get the error code right.
291 				 * It should return immediately.
292 				 */
293 				error = tsleep(&rand_bolt, PCATCH, "urand", 1);
294 				if (error != 0 && error != EWOULDBLOCK)
295 					continue;
296 			}
297 			if (buf == NULL)
298 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
299 			poolsize = read_random_unlimited(buf, c);
300 			c = min(c, poolsize);
301 			error = uiomove(buf, (int)c, uio);
302 			continue;
303 		/* case 5: read/write not supported, mmap only */
304 		/* case 6: read/write not supported, mmap only */
305 		case 12:
306 			/*
307 			 * minor device 12 (/dev/zero) is source of nulls
308 			 * on read, write are disallowed.
309 			 */
310 			if (uio->uio_rw == UIO_WRITE) {
311 				c = iov->iov_len;
312 				break;
313 			}
314 			if (zbuf == NULL) {
315 				zbuf = (caddr_t)kmalloc(PAGE_SIZE, M_TEMP,
316 				    M_WAITOK | M_ZERO);
317 			}
318 			c = min(iov->iov_len, PAGE_SIZE);
319 			error = uiomove(zbuf, (int)c, uio);
320 			continue;
321 		default:
322 			return (ENODEV);
323 		}
324 		if (error)
325 			break;
326 		iov->iov_base = (char *)iov->iov_base + c;
327 		iov->iov_len -= c;
328 		uio->uio_offset += c;
329 		uio->uio_resid -= c;
330 	}
331 	if (buf)
332 		kfree(buf, M_TEMP);
333 	return (error);
334 }
335 
336 static int
337 mmread(struct dev_read_args *ap)
338 {
339 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
340 }
341 
342 static int
343 mmwrite(struct dev_write_args *ap)
344 {
345 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
346 }
347 
348 /*******************************************************\
349 * allow user processes to MMAP some memory sections	*
350 * instead of going through read/write			*
351 \*******************************************************/
352 
353 static int user_kernel_mapping(int num, vm_ooffset_t offset,
354 				vm_ooffset_t *resultp);
355 
356 #if 0
357 
358 static int
359 memmmap(struct dev_mmap_args *ap)
360 {
361 	cdev_t dev = ap->a_head.a_dev;
362 	vm_ooffset_t result;
363 	int error;
364 
365 	switch (minor(dev)) {
366 	case 0:
367 		/*
368 		 * minor device 0 is physical memory
369 		 */
370 		ap->a_result = atop(ap->a_offset);
371 		error = 0;
372 		break;
373 	case 1:
374 		/*
375 		 * minor device 1 is kernel memory
376 		 */
377 		ap->a_result = atop(vtophys(ap->a_offset));
378 		error = 0;
379 		break;
380 	case 5:
381 	case 6:
382 		/*
383 		 * minor device 5 is /dev/upmap (see sys/upmap.h)
384 		 * minor device 6 is /dev/kpmap (see sys/upmap.h)
385 		 */
386 		result = 0;
387 		error = user_kernel_mapping(minor(dev), ap->a_offset, &result);
388 		ap->a_result = atop(result);
389 		break;
390 	default:
391 		error = EINVAL;
392 		break;
393 	}
394 	return error;
395 }
396 
397 #endif
398 
399 static int
400 memuksmap(cdev_t dev, vm_page_t fake)
401 {
402 	vm_ooffset_t result;
403 	int error;
404 
405 	switch (minor(dev)) {
406 	case 0:
407 		/*
408 		 * minor device 0 is physical memory
409 		 */
410 		fake->phys_addr = ptoa(fake->pindex);
411 		error = 0;
412 		break;
413 	case 1:
414 		/*
415 		 * minor device 1 is kernel memory
416 		 */
417 		fake->phys_addr = vtophys(ptoa(fake->pindex));
418 		error = 0;
419 		break;
420 	case 5:
421 	case 6:
422 		/*
423 		 * minor device 5 is /dev/upmap (see sys/upmap.h)
424 		 * minor device 6 is /dev/kpmap (see sys/upmap.h)
425 		 */
426 		result = 0;
427 		error = user_kernel_mapping(minor(dev),
428 					    ptoa(fake->pindex), &result);
429 		fake->phys_addr = result;
430 		break;
431 	default:
432 		error = EINVAL;
433 		break;
434 	}
435 	return error;
436 }
437 
438 static int
439 mmioctl(struct dev_ioctl_args *ap)
440 {
441 	cdev_t dev = ap->a_head.a_dev;
442 	int error;
443 
444 	get_mplock();
445 
446 	switch (minor(dev)) {
447 	case 0:
448 		error = mem_ioctl(dev, ap->a_cmd, ap->a_data,
449 				  ap->a_fflag, ap->a_cred);
450 		break;
451 	case 3:
452 	case 4:
453 		error = random_ioctl(dev, ap->a_cmd, ap->a_data,
454 				     ap->a_fflag, ap->a_cred);
455 		break;
456 	default:
457 		error = ENODEV;
458 		break;
459 	}
460 
461 	rel_mplock();
462 	return (error);
463 }
464 
465 /*
466  * Operations for changing memory attributes.
467  *
468  * This is basically just an ioctl shim for mem_range_attr_get
469  * and mem_range_attr_set.
470  */
471 static int
472 mem_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
473 {
474 	int nd, error = 0;
475 	struct mem_range_op *mo = (struct mem_range_op *)data;
476 	struct mem_range_desc *md;
477 
478 	/* is this for us? */
479 	if ((cmd != MEMRANGE_GET) &&
480 	    (cmd != MEMRANGE_SET))
481 		return (ENOTTY);
482 
483 	/* any chance we can handle this? */
484 	if (mem_range_softc.mr_op == NULL)
485 		return (EOPNOTSUPP);
486 
487 	/* do we have any descriptors? */
488 	if (mem_range_softc.mr_ndesc == 0)
489 		return (ENXIO);
490 
491 	switch (cmd) {
492 	case MEMRANGE_GET:
493 		nd = imin(mo->mo_arg[0], mem_range_softc.mr_ndesc);
494 		if (nd > 0) {
495 			md = (struct mem_range_desc *)
496 				kmalloc(nd * sizeof(struct mem_range_desc),
497 				       M_MEMDESC, M_WAITOK);
498 			error = mem_range_attr_get(md, &nd);
499 			if (!error)
500 				error = copyout(md, mo->mo_desc,
501 					nd * sizeof(struct mem_range_desc));
502 			kfree(md, M_MEMDESC);
503 		} else {
504 			nd = mem_range_softc.mr_ndesc;
505 		}
506 		mo->mo_arg[0] = nd;
507 		break;
508 
509 	case MEMRANGE_SET:
510 		md = (struct mem_range_desc *)kmalloc(sizeof(struct mem_range_desc),
511 						    M_MEMDESC, M_WAITOK);
512 		error = copyin(mo->mo_desc, md, sizeof(struct mem_range_desc));
513 		/* clamp description string */
514 		md->mr_owner[sizeof(md->mr_owner) - 1] = 0;
515 		if (error == 0)
516 			error = mem_range_attr_set(md, &mo->mo_arg[0]);
517 		kfree(md, M_MEMDESC);
518 		break;
519 	}
520 	return (error);
521 }
522 
523 /*
524  * Implementation-neutral, kernel-callable functions for manipulating
525  * memory range attributes.
526  */
527 int
528 mem_range_attr_get(struct mem_range_desc *mrd, int *arg)
529 {
530 	/* can we handle this? */
531 	if (mem_range_softc.mr_op == NULL)
532 		return (EOPNOTSUPP);
533 
534 	if (*arg == 0) {
535 		*arg = mem_range_softc.mr_ndesc;
536 	} else {
537 		bcopy(mem_range_softc.mr_desc, mrd, (*arg) * sizeof(struct mem_range_desc));
538 	}
539 	return (0);
540 }
541 
542 int
543 mem_range_attr_set(struct mem_range_desc *mrd, int *arg)
544 {
545 	/* can we handle this? */
546 	if (mem_range_softc.mr_op == NULL)
547 		return (EOPNOTSUPP);
548 
549 	return (mem_range_softc.mr_op->set(&mem_range_softc, mrd, arg));
550 }
551 
552 void
553 mem_range_AP_init(void)
554 {
555 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
556 		mem_range_softc.mr_op->initAP(&mem_range_softc);
557 }
558 
559 static int
560 random_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
561 {
562 	int error;
563 	int intr;
564 
565 	/*
566 	 * Even inspecting the state is privileged, since it gives a hint
567 	 * about how easily the randomness might be guessed.
568 	 */
569 	error = 0;
570 
571 	switch (cmd) {
572 	/* Really handled in upper layer */
573 	case FIOASYNC:
574 		break;
575 	case MEM_SETIRQ:
576 		intr = *(int16_t *)data;
577 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
578 			break;
579 		if (intr < 0 || intr >= MAX_INTS)
580 			return (EINVAL);
581 		register_randintr(intr);
582 		break;
583 	case MEM_CLEARIRQ:
584 		intr = *(int16_t *)data;
585 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
586 			break;
587 		if (intr < 0 || intr >= MAX_INTS)
588 			return (EINVAL);
589 		unregister_randintr(intr);
590 		break;
591 	case MEM_RETURNIRQ:
592 		error = ENOTSUP;
593 		break;
594 	case MEM_FINDIRQ:
595 		intr = *(int16_t *)data;
596 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
597 			break;
598 		if (intr < 0 || intr >= MAX_INTS)
599 			return (EINVAL);
600 		intr = next_registered_randintr(intr);
601 		if (intr == MAX_INTS)
602 			return (ENOENT);
603 		*(u_int16_t *)data = intr;
604 		break;
605 	default:
606 		error = ENOTSUP;
607 		break;
608 	}
609 	return (error);
610 }
611 
612 static int
613 mm_filter_read(struct knote *kn, long hint)
614 {
615 	return (1);
616 }
617 
618 static int
619 mm_filter_write(struct knote *kn, long hint)
620 {
621 	return (1);
622 }
623 
624 static void
625 dummy_filter_detach(struct knote *kn) {}
626 
627 /* Implemented in kern_nrandom.c */
628 static struct filterops random_read_filtops =
629         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, random_filter_read };
630 
631 static struct filterops mm_read_filtops =
632         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_read };
633 
634 static struct filterops mm_write_filtops =
635         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_write };
636 
637 static int
638 mmkqfilter(struct dev_kqfilter_args *ap)
639 {
640 	struct knote *kn = ap->a_kn;
641 	cdev_t dev = ap->a_head.a_dev;
642 
643 	ap->a_result = 0;
644 	switch (kn->kn_filter) {
645 	case EVFILT_READ:
646 		switch (minor(dev)) {
647 		case 3:
648 			kn->kn_fop = &random_read_filtops;
649 			break;
650 		default:
651 			kn->kn_fop = &mm_read_filtops;
652 			break;
653 		}
654 		break;
655 	case EVFILT_WRITE:
656 		kn->kn_fop = &mm_write_filtops;
657 		break;
658 	default:
659 		ap->a_result = EOPNOTSUPP;
660 		return (0);
661 	}
662 
663 	return (0);
664 }
665 
666 int
667 iszerodev(cdev_t dev)
668 {
669 	return (zerodev == dev);
670 }
671 
672 /*
673  * /dev/upmap and /dev/kpmap.
674  */
675 static int
676 user_kernel_mapping(int num, vm_ooffset_t offset, vm_ooffset_t *resultp)
677 {
678 	struct proc *p;
679 	int error;
680 	int invfork;
681 
682 	if ((p = curproc) == NULL)
683 		return (EINVAL);
684 
685 	/*
686 	 * If this is a child currently in vfork the pmap is shared with
687 	 * the parent!  We need to actually set-up the parent's p_upmap,
688 	 * not the child's, and we need to set the invfork flag.  Userland
689 	 * will probably adjust its static state so it must be consistent
690 	 * with the parent or userland will be really badly confused.
691 	 *
692 	 * (this situation can happen when user code in vfork() calls
693 	 *  libc's getpid() or some other function which then decides
694 	 *  it wants the upmap).
695 	 */
696 	if (p->p_flags & P_PPWAIT) {
697 		p = p->p_pptr;
698 		if (p == NULL)
699 			return (EINVAL);
700 		invfork = 1;
701 	} else {
702 		invfork = 0;
703 	}
704 
705 	error = EINVAL;
706 
707 	switch(num) {
708 	case 5:
709 		/*
710 		 * /dev/upmap - maps RW per-process shared user-kernel area.
711 		 */
712 		if (p->p_upmap == NULL)
713 			proc_usermap(p, invfork);
714 		else if (invfork)
715 			p->p_upmap->invfork = invfork;
716 
717 		if (p->p_upmap &&
718 		    offset < roundup2(sizeof(*p->p_upmap), PAGE_SIZE)) {
719 			/* only good for current process */
720 			*resultp = pmap_kextract((vm_offset_t)p->p_upmap +
721 						 offset);
722 			error = 0;
723 		}
724 		break;
725 	case 6:
726 		/*
727 		 * /dev/kpmap - maps RO shared kernel global page
728 		 */
729 		if (kpmap &&
730 		    offset < roundup2(sizeof(*kpmap), PAGE_SIZE)) {
731 			*resultp = pmap_kextract((vm_offset_t)kpmap +
732 						 offset);
733 			error = 0;
734 		}
735 		break;
736 	default:
737 		break;
738 	}
739 	return error;
740 }
741 
742 static void
743 mem_drvinit(void *unused)
744 {
745 
746 	/* Initialise memory range handling */
747 	if (mem_range_softc.mr_op != NULL)
748 		mem_range_softc.mr_op->init(&mem_range_softc);
749 
750 	make_dev(&mem_ops, 0, UID_ROOT, GID_KMEM, 0640, "mem");
751 	make_dev(&mem_ops, 1, UID_ROOT, GID_KMEM, 0640, "kmem");
752 	make_dev(&mem_ops, 2, UID_ROOT, GID_WHEEL, 0666, "null");
753 	make_dev(&mem_ops, 3, UID_ROOT, GID_WHEEL, 0644, "random");
754 	make_dev(&mem_ops, 4, UID_ROOT, GID_WHEEL, 0644, "urandom");
755 	make_dev(&mem_ops, 5, UID_ROOT, GID_WHEEL, 0666, "upmap");
756 	make_dev(&mem_ops, 6, UID_ROOT, GID_WHEEL, 0444, "kpmap");
757 	zerodev = make_dev(&mem_ops, 12, UID_ROOT, GID_WHEEL, 0666, "zero");
758 	make_dev(&mem_ops, 14, UID_ROOT, GID_WHEEL, 0600, "io");
759 }
760 
761 SYSINIT(memdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE + CDEV_MAJOR, mem_drvinit,
762     NULL);
763 
764