xref: /dragonfly/sys/kern/kern_memio.c (revision 82730a9c)
1 /*-
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department, and code derived from software contributed to
9  * Berkeley by William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: Utah $Hdr: mem.c 1.13 89/10/08$
36  *	from: @(#)mem.c	7.2 (Berkeley) 5/9/91
37  * $FreeBSD: src/sys/i386/i386/mem.c,v 1.79.2.9 2003/01/04 22:58:01 njl Exp $
38  */
39 
40 /*
41  * Memory special file
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/buf.h>
47 #include <sys/conf.h>
48 #include <sys/fcntl.h>
49 #include <sys/filio.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/memrange.h>
53 #include <sys/proc.h>
54 #include <sys/priv.h>
55 #include <sys/random.h>
56 #include <sys/signalvar.h>
57 #include <sys/uio.h>
58 #include <sys/vnode.h>
59 
60 #include <sys/signal2.h>
61 #include <sys/mplock2.h>
62 
63 #include <vm/vm.h>
64 #include <vm/pmap.h>
65 #include <vm/vm_extern.h>
66 
67 
68 static	d_open_t	mmopen;
69 static	d_close_t	mmclose;
70 static	d_read_t	mmread;
71 static	d_write_t	mmwrite;
72 static	d_ioctl_t	mmioctl;
73 static	d_mmap_t	memmmap;
74 static	d_kqfilter_t	mmkqfilter;
75 
76 #define CDEV_MAJOR 2
77 static struct dev_ops mem_ops = {
78 	{ "mem", 0, D_MPSAFE },
79 	.d_open =	mmopen,
80 	.d_close =	mmclose,
81 	.d_read =	mmread,
82 	.d_write =	mmwrite,
83 	.d_ioctl =	mmioctl,
84 	.d_kqfilter =	mmkqfilter,
85 	.d_mmap =	memmmap,
86 };
87 
88 static int rand_bolt;
89 static caddr_t	zbuf;
90 static cdev_t	zerodev = NULL;
91 
92 MALLOC_DEFINE(M_MEMDESC, "memdesc", "memory range descriptors");
93 static int mem_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
94 static int random_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
95 
96 struct mem_range_softc mem_range_softc;
97 
98 
99 static int
100 mmopen(struct dev_open_args *ap)
101 {
102 	cdev_t dev = ap->a_head.a_dev;
103 	int error;
104 
105 	switch (minor(dev)) {
106 	case 0:
107 	case 1:
108 		if (ap->a_oflags & FWRITE) {
109 			if (securelevel > 0 || kernel_mem_readonly)
110 				return (EPERM);
111 		}
112 		error = 0;
113 		break;
114 	case 14:
115 		error = priv_check_cred(ap->a_cred, PRIV_ROOT, 0);
116 		if (error != 0)
117 			break;
118 		if (securelevel > 0 || kernel_mem_readonly) {
119 			error = EPERM;
120 			break;
121 		}
122 		error = cpu_set_iopl();
123 		break;
124 	default:
125 		error = 0;
126 		break;
127 	}
128 	return (error);
129 }
130 
131 static int
132 mmclose(struct dev_close_args *ap)
133 {
134 	cdev_t dev = ap->a_head.a_dev;
135 	int error;
136 
137 	switch (minor(dev)) {
138 	case 14:
139 		error = cpu_clr_iopl();
140 		break;
141 	default:
142 		error = 0;
143 		break;
144 	}
145 	return (error);
146 }
147 
148 
149 static int
150 mmrw(cdev_t dev, struct uio *uio, int flags)
151 {
152 	int o;
153 	u_int c;
154 	u_int poolsize;
155 	u_long v;
156 	struct iovec *iov;
157 	int error = 0;
158 	caddr_t buf = NULL;
159 
160 	while (uio->uio_resid > 0 && error == 0) {
161 		iov = uio->uio_iov;
162 		if (iov->iov_len == 0) {
163 			uio->uio_iov++;
164 			uio->uio_iovcnt--;
165 			if (uio->uio_iovcnt < 0)
166 				panic("mmrw");
167 			continue;
168 		}
169 		switch (minor(dev)) {
170 		case 0:
171 			/*
172 			 * minor device 0 is physical memory, /dev/mem
173 			 */
174 			v = uio->uio_offset;
175 			v &= ~(long)PAGE_MASK;
176 			pmap_kenter((vm_offset_t)ptvmmap, v);
177 			o = (int)uio->uio_offset & PAGE_MASK;
178 			c = (u_int)(PAGE_SIZE - ((uintptr_t)iov->iov_base & PAGE_MASK));
179 			c = min(c, (u_int)(PAGE_SIZE - o));
180 			c = min(c, (u_int)iov->iov_len);
181 			error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
182 			pmap_kremove((vm_offset_t)ptvmmap);
183 			continue;
184 
185 		case 1: {
186 			/*
187 			 * minor device 1 is kernel memory, /dev/kmem
188 			 */
189 			vm_offset_t saddr, eaddr;
190 			int prot;
191 
192 			c = iov->iov_len;
193 
194 			/*
195 			 * Make sure that all of the pages are currently
196 			 * resident so that we don't create any zero-fill
197 			 * pages.
198 			 */
199 			saddr = trunc_page(uio->uio_offset);
200 			eaddr = round_page(uio->uio_offset + c);
201 			if (saddr > eaddr)
202 				return EFAULT;
203 
204 			/*
205 			 * Make sure the kernel addresses are mapped.
206 			 * platform_direct_mapped() can be used to bypass
207 			 * default mapping via the page table (virtual kernels
208 			 * contain a lot of out-of-band data).
209 			 */
210 			prot = VM_PROT_READ;
211 			if (uio->uio_rw != UIO_READ)
212 				prot |= VM_PROT_WRITE;
213 			error = kvm_access_check(saddr, eaddr, prot);
214 			if (error)
215 				return (error);
216 			error = uiomove((caddr_t)(vm_offset_t)uio->uio_offset,
217 					(int)c, uio);
218 			continue;
219 		}
220 		case 2:
221 			/*
222 			 * minor device 2 (/dev/null) is EOF/RATHOLE
223 			 */
224 			if (uio->uio_rw == UIO_READ)
225 				return (0);
226 			c = iov->iov_len;
227 			break;
228 		case 3:
229 			/*
230 			 * minor device 3 (/dev/random) is source of filth
231 			 * on read, seeder on write
232 			 */
233 			if (buf == NULL)
234 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
235 			c = min(iov->iov_len, PAGE_SIZE);
236 			if (uio->uio_rw == UIO_WRITE) {
237 				error = uiomove(buf, (int)c, uio);
238 				if (error == 0)
239 					error = add_buffer_randomness(buf, c);
240 			} else {
241 				poolsize = read_random(buf, c);
242 				if (poolsize == 0) {
243 					if (buf)
244 						kfree(buf, M_TEMP);
245 					if ((flags & IO_NDELAY) != 0)
246 						return (EWOULDBLOCK);
247 					return (0);
248 				}
249 				c = min(c, poolsize);
250 				error = uiomove(buf, (int)c, uio);
251 			}
252 			continue;
253 		case 4:
254 			/*
255 			 * minor device 4 (/dev/urandom) is source of muck
256 			 * on read, writes are disallowed.
257 			 */
258 			c = min(iov->iov_len, PAGE_SIZE);
259 			if (uio->uio_rw == UIO_WRITE) {
260 				error = EPERM;
261 				break;
262 			}
263 			if (CURSIG(curthread->td_lwp) != 0) {
264 				/*
265 				 * Use tsleep() to get the error code right.
266 				 * It should return immediately.
267 				 */
268 				error = tsleep(&rand_bolt, PCATCH, "urand", 1);
269 				if (error != 0 && error != EWOULDBLOCK)
270 					continue;
271 			}
272 			if (buf == NULL)
273 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
274 			poolsize = read_random_unlimited(buf, c);
275 			c = min(c, poolsize);
276 			error = uiomove(buf, (int)c, uio);
277 			continue;
278 		case 12:
279 			/*
280 			 * minor device 12 (/dev/zero) is source of nulls
281 			 * on read, write are disallowed.
282 			 */
283 			if (uio->uio_rw == UIO_WRITE) {
284 				c = iov->iov_len;
285 				break;
286 			}
287 			if (zbuf == NULL) {
288 				zbuf = (caddr_t)kmalloc(PAGE_SIZE, M_TEMP,
289 				    M_WAITOK | M_ZERO);
290 			}
291 			c = min(iov->iov_len, PAGE_SIZE);
292 			error = uiomove(zbuf, (int)c, uio);
293 			continue;
294 		default:
295 			return (ENODEV);
296 		}
297 		if (error)
298 			break;
299 		iov->iov_base = (char *)iov->iov_base + c;
300 		iov->iov_len -= c;
301 		uio->uio_offset += c;
302 		uio->uio_resid -= c;
303 	}
304 	if (buf)
305 		kfree(buf, M_TEMP);
306 	return (error);
307 }
308 
309 static int
310 mmread(struct dev_read_args *ap)
311 {
312 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
313 }
314 
315 static int
316 mmwrite(struct dev_write_args *ap)
317 {
318 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
319 }
320 
321 
322 
323 
324 
325 /*******************************************************\
326 * allow user processes to MMAP some memory sections	*
327 * instead of going through read/write			*
328 \*******************************************************/
329 
330 static int
331 memmmap(struct dev_mmap_args *ap)
332 {
333 	cdev_t dev = ap->a_head.a_dev;
334 
335 	switch (minor(dev)) {
336 	case 0:
337 		/*
338 		 * minor device 0 is physical memory
339 		 */
340 #if defined(__i386__)
341         	ap->a_result = i386_btop(ap->a_offset);
342 #elif defined(__x86_64__)
343 		ap->a_result = x86_64_btop(ap->a_offset);
344 #endif
345 		return 0;
346 	case 1:
347 		/*
348 		 * minor device 1 is kernel memory
349 		 */
350 #if defined(__i386__)
351         	ap->a_result = i386_btop(vtophys(ap->a_offset));
352 #elif defined(__x86_64__)
353         	ap->a_result = x86_64_btop(vtophys(ap->a_offset));
354 #endif
355 		return 0;
356 
357 	default:
358 		return EINVAL;
359 	}
360 }
361 
362 static int
363 mmioctl(struct dev_ioctl_args *ap)
364 {
365 	cdev_t dev = ap->a_head.a_dev;
366 	int error;
367 
368 	get_mplock();
369 
370 	switch (minor(dev)) {
371 	case 0:
372 		error = mem_ioctl(dev, ap->a_cmd, ap->a_data,
373 				  ap->a_fflag, ap->a_cred);
374 		break;
375 	case 3:
376 	case 4:
377 		error = random_ioctl(dev, ap->a_cmd, ap->a_data,
378 				     ap->a_fflag, ap->a_cred);
379 		break;
380 	default:
381 		error = ENODEV;
382 		break;
383 	}
384 
385 	rel_mplock();
386 	return (error);
387 }
388 
389 /*
390  * Operations for changing memory attributes.
391  *
392  * This is basically just an ioctl shim for mem_range_attr_get
393  * and mem_range_attr_set.
394  */
395 static int
396 mem_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
397 {
398 	int nd, error = 0;
399 	struct mem_range_op *mo = (struct mem_range_op *)data;
400 	struct mem_range_desc *md;
401 
402 	/* is this for us? */
403 	if ((cmd != MEMRANGE_GET) &&
404 	    (cmd != MEMRANGE_SET))
405 		return (ENOTTY);
406 
407 	/* any chance we can handle this? */
408 	if (mem_range_softc.mr_op == NULL)
409 		return (EOPNOTSUPP);
410 
411 	/* do we have any descriptors? */
412 	if (mem_range_softc.mr_ndesc == 0)
413 		return (ENXIO);
414 
415 	switch (cmd) {
416 	case MEMRANGE_GET:
417 		nd = imin(mo->mo_arg[0], mem_range_softc.mr_ndesc);
418 		if (nd > 0) {
419 			md = (struct mem_range_desc *)
420 				kmalloc(nd * sizeof(struct mem_range_desc),
421 				       M_MEMDESC, M_WAITOK);
422 			error = mem_range_attr_get(md, &nd);
423 			if (!error)
424 				error = copyout(md, mo->mo_desc,
425 					nd * sizeof(struct mem_range_desc));
426 			kfree(md, M_MEMDESC);
427 		} else {
428 			nd = mem_range_softc.mr_ndesc;
429 		}
430 		mo->mo_arg[0] = nd;
431 		break;
432 
433 	case MEMRANGE_SET:
434 		md = (struct mem_range_desc *)kmalloc(sizeof(struct mem_range_desc),
435 						    M_MEMDESC, M_WAITOK);
436 		error = copyin(mo->mo_desc, md, sizeof(struct mem_range_desc));
437 		/* clamp description string */
438 		md->mr_owner[sizeof(md->mr_owner) - 1] = 0;
439 		if (error == 0)
440 			error = mem_range_attr_set(md, &mo->mo_arg[0]);
441 		kfree(md, M_MEMDESC);
442 		break;
443 	}
444 	return (error);
445 }
446 
447 /*
448  * Implementation-neutral, kernel-callable functions for manipulating
449  * memory range attributes.
450  */
451 int
452 mem_range_attr_get(struct mem_range_desc *mrd, int *arg)
453 {
454 	/* can we handle this? */
455 	if (mem_range_softc.mr_op == NULL)
456 		return (EOPNOTSUPP);
457 
458 	if (*arg == 0) {
459 		*arg = mem_range_softc.mr_ndesc;
460 	} else {
461 		bcopy(mem_range_softc.mr_desc, mrd, (*arg) * sizeof(struct mem_range_desc));
462 	}
463 	return (0);
464 }
465 
466 int
467 mem_range_attr_set(struct mem_range_desc *mrd, int *arg)
468 {
469 	/* can we handle this? */
470 	if (mem_range_softc.mr_op == NULL)
471 		return (EOPNOTSUPP);
472 
473 	return (mem_range_softc.mr_op->set(&mem_range_softc, mrd, arg));
474 }
475 
476 void
477 mem_range_AP_init(void)
478 {
479 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
480 		mem_range_softc.mr_op->initAP(&mem_range_softc);
481 }
482 
483 static int
484 random_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
485 {
486 	int error;
487 	int intr;
488 
489 	/*
490 	 * Even inspecting the state is privileged, since it gives a hint
491 	 * about how easily the randomness might be guessed.
492 	 */
493 	error = 0;
494 
495 	switch (cmd) {
496 	/* Really handled in upper layer */
497 	case FIOASYNC:
498 		break;
499 	case MEM_SETIRQ:
500 		intr = *(int16_t *)data;
501 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
502 			break;
503 		if (intr < 0 || intr >= MAX_INTS)
504 			return (EINVAL);
505 		register_randintr(intr);
506 		break;
507 	case MEM_CLEARIRQ:
508 		intr = *(int16_t *)data;
509 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
510 			break;
511 		if (intr < 0 || intr >= MAX_INTS)
512 			return (EINVAL);
513 		unregister_randintr(intr);
514 		break;
515 	case MEM_RETURNIRQ:
516 		error = ENOTSUP;
517 		break;
518 	case MEM_FINDIRQ:
519 		intr = *(int16_t *)data;
520 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
521 			break;
522 		if (intr < 0 || intr >= MAX_INTS)
523 			return (EINVAL);
524 		intr = next_registered_randintr(intr);
525 		if (intr == MAX_INTS)
526 			return (ENOENT);
527 		*(u_int16_t *)data = intr;
528 		break;
529 	default:
530 		error = ENOTSUP;
531 		break;
532 	}
533 	return (error);
534 }
535 
536 static int
537 mm_filter_read(struct knote *kn, long hint)
538 {
539 	return (1);
540 }
541 
542 static int
543 mm_filter_write(struct knote *kn, long hint)
544 {
545 	return (1);
546 }
547 
548 static void
549 dummy_filter_detach(struct knote *kn) {}
550 
551 /* Implemented in kern_nrandom.c */
552 static struct filterops random_read_filtops =
553         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, random_filter_read };
554 
555 static struct filterops mm_read_filtops =
556         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_read };
557 
558 static struct filterops mm_write_filtops =
559         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_write };
560 
561 int
562 mmkqfilter(struct dev_kqfilter_args *ap)
563 {
564 	struct knote *kn = ap->a_kn;
565 	cdev_t dev = ap->a_head.a_dev;
566 
567 	ap->a_result = 0;
568 	switch (kn->kn_filter) {
569 	case EVFILT_READ:
570 		switch (minor(dev)) {
571 		case 3:
572 			kn->kn_fop = &random_read_filtops;
573 			break;
574 		default:
575 			kn->kn_fop = &mm_read_filtops;
576 			break;
577 		}
578 		break;
579 	case EVFILT_WRITE:
580 		kn->kn_fop = &mm_write_filtops;
581 		break;
582 	default:
583 		ap->a_result = EOPNOTSUPP;
584 		return (0);
585 	}
586 
587 	return (0);
588 }
589 
590 int
591 iszerodev(cdev_t dev)
592 {
593 	return (zerodev == dev);
594 }
595 
596 static void
597 mem_drvinit(void *unused)
598 {
599 
600 	/* Initialise memory range handling */
601 	if (mem_range_softc.mr_op != NULL)
602 		mem_range_softc.mr_op->init(&mem_range_softc);
603 
604 	make_dev(&mem_ops, 0, UID_ROOT, GID_KMEM, 0640, "mem");
605 	make_dev(&mem_ops, 1, UID_ROOT, GID_KMEM, 0640, "kmem");
606 	make_dev(&mem_ops, 2, UID_ROOT, GID_WHEEL, 0666, "null");
607 	make_dev(&mem_ops, 3, UID_ROOT, GID_WHEEL, 0644, "random");
608 	make_dev(&mem_ops, 4, UID_ROOT, GID_WHEEL, 0644, "urandom");
609 	zerodev = make_dev(&mem_ops, 12, UID_ROOT, GID_WHEEL, 0666, "zero");
610 	make_dev(&mem_ops, 14, UID_ROOT, GID_WHEEL, 0600, "io");
611 }
612 
613 SYSINIT(memdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,mem_drvinit,NULL)
614 
615