xref: /dragonfly/sys/kern/kern_memio.c (revision d4e390fc)
1 /*-
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department, and code derived from software contributed to
9  * Berkeley by William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: Utah $Hdr: mem.c 1.13 89/10/08$
36  *	from: @(#)mem.c	7.2 (Berkeley) 5/9/91
37  * $FreeBSD: src/sys/i386/i386/mem.c,v 1.79.2.9 2003/01/04 22:58:01 njl Exp $
38  */
39 
40 /*
41  * Memory special file
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/buf.h>
47 #include <sys/conf.h>
48 #include <sys/fcntl.h>
49 #include <sys/filio.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/memrange.h>
53 #include <sys/proc.h>
54 #include <sys/priv.h>
55 #include <sys/random.h>
56 #include <sys/signalvar.h>
57 #include <sys/uio.h>
58 #include <sys/vnode.h>
59 #include <sys/sysctl.h>
60 
61 #include <sys/signal2.h>
62 
63 #include <vm/vm.h>
64 #include <vm/pmap.h>
65 #include <vm/vm_extern.h>
66 
67 
68 static	d_open_t	mmopen;
69 static	d_close_t	mmclose;
70 static	d_read_t	mmread;
71 static	d_write_t	mmwrite;
72 static	d_ioctl_t	mmioctl;
73 #if 0
74 static	d_mmap_t	memmmap;
75 #endif
76 static	d_kqfilter_t	mmkqfilter;
77 static int memuksmap(cdev_t dev, vm_page_t fake);
78 
79 #define CDEV_MAJOR 2
80 static struct dev_ops mem_ops = {
81 	{ "mem", 0, D_MPSAFE | D_QUICK },
82 	.d_open =	mmopen,
83 	.d_close =	mmclose,
84 	.d_read =	mmread,
85 	.d_write =	mmwrite,
86 	.d_ioctl =	mmioctl,
87 	.d_kqfilter =	mmkqfilter,
88 #if 0
89 	.d_mmap =	memmmap,
90 #endif
91 	.d_uksmap =	memuksmap
92 };
93 
94 static struct dev_ops mem_ops_mem = {
95 	{ "mem", 0, D_MEM | D_MPSAFE | D_QUICK },
96 	.d_open =	mmopen,
97 	.d_close =	mmclose,
98 	.d_read =	mmread,
99 	.d_write =	mmwrite,
100 	.d_ioctl =	mmioctl,
101 	.d_kqfilter =	mmkqfilter,
102 #if 0
103 	.d_mmap =	memmmap,
104 #endif
105 	.d_uksmap =	memuksmap
106 };
107 
108 static struct dev_ops mem_ops_noq = {
109 	{ "mem", 0, D_MPSAFE },
110 	.d_open =	mmopen,
111 	.d_close =	mmclose,
112 	.d_read =	mmread,
113 	.d_write =	mmwrite,
114 	.d_ioctl =	mmioctl,
115 	.d_kqfilter =	mmkqfilter,
116 #if 0
117 	.d_mmap =	memmmap,
118 #endif
119 	.d_uksmap =	memuksmap
120 };
121 
122 static int rand_bolt;
123 static caddr_t	zbuf;
124 static cdev_t	zerodev = NULL;
125 static struct lock mem_lock = LOCK_INITIALIZER("memlk", 0, 0);
126 
127 MALLOC_DEFINE(M_MEMDESC, "memdesc", "memory range descriptors");
128 static int mem_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
129 static int random_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
130 
131 struct mem_range_softc mem_range_softc;
132 
133 static int seedenable;
134 SYSCTL_INT(_kern, OID_AUTO, seedenable, CTLFLAG_RW, &seedenable, 0, "");
135 
136 static int
137 mmopen(struct dev_open_args *ap)
138 {
139 	cdev_t dev = ap->a_head.a_dev;
140 	int error;
141 
142 	switch (minor(dev)) {
143 	case 0:
144 	case 1:
145 		/*
146 		 * /dev/mem and /dev/kmem
147 		 */
148 		if (ap->a_oflags & FWRITE) {
149 			if (securelevel > 0 || kernel_mem_readonly)
150 				return (EPERM);
151 		}
152 		error = 0;
153 		break;
154 	case 6:
155 		/*
156 		 * /dev/kpmap can only be opened for reading.
157 		 */
158 		if (ap->a_oflags & FWRITE)
159 			return (EPERM);
160 		error = 0;
161 		break;
162 	case 14:
163 		error = priv_check_cred(ap->a_cred, PRIV_ROOT, 0);
164 		if (error != 0)
165 			break;
166 		if (securelevel > 0 || kernel_mem_readonly) {
167 			error = EPERM;
168 			break;
169 		}
170 		error = cpu_set_iopl();
171 		break;
172 	default:
173 		error = 0;
174 		break;
175 	}
176 	return (error);
177 }
178 
179 static int
180 mmclose(struct dev_close_args *ap)
181 {
182 	cdev_t dev = ap->a_head.a_dev;
183 	int error;
184 
185 	switch (minor(dev)) {
186 	case 14:
187 		error = cpu_clr_iopl();
188 		break;
189 	default:
190 		error = 0;
191 		break;
192 	}
193 	return (error);
194 }
195 
196 
197 static int
198 mmrw(cdev_t dev, struct uio *uio, int flags)
199 {
200 	int o;
201 	u_int c;
202 	u_int poolsize;
203 	u_long v;
204 	struct iovec *iov;
205 	int error = 0;
206 	caddr_t buf = NULL;
207 
208 	while (uio->uio_resid > 0 && error == 0) {
209 		iov = uio->uio_iov;
210 		if (iov->iov_len == 0) {
211 			uio->uio_iov++;
212 			uio->uio_iovcnt--;
213 			if (uio->uio_iovcnt < 0)
214 				panic("mmrw");
215 			continue;
216 		}
217 		switch (minor(dev)) {
218 		case 0:
219 			/*
220 			 * minor device 0 is physical memory, /dev/mem
221 			 */
222 			v = uio->uio_offset;
223 			v &= ~(long)PAGE_MASK;
224 			pmap_kenter((vm_offset_t)ptvmmap, v);
225 			o = (int)uio->uio_offset & PAGE_MASK;
226 			c = (u_int)(PAGE_SIZE - ((uintptr_t)iov->iov_base & PAGE_MASK));
227 			c = min(c, (u_int)(PAGE_SIZE - o));
228 			c = min(c, (u_int)iov->iov_len);
229 			error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
230 			pmap_kremove((vm_offset_t)ptvmmap);
231 			continue;
232 
233 		case 1: {
234 			/*
235 			 * minor device 1 is kernel memory, /dev/kmem
236 			 */
237 			vm_offset_t saddr, eaddr;
238 			int prot;
239 
240 			c = iov->iov_len;
241 
242 			/*
243 			 * Make sure that all of the pages are currently
244 			 * resident so that we don't create any zero-fill
245 			 * pages.
246 			 */
247 			saddr = trunc_page(uio->uio_offset);
248 			eaddr = round_page(uio->uio_offset + c);
249 			if (saddr > eaddr)
250 				return EFAULT;
251 
252 			/*
253 			 * Make sure the kernel addresses are mapped.
254 			 * platform_direct_mapped() can be used to bypass
255 			 * default mapping via the page table (virtual kernels
256 			 * contain a lot of out-of-band data).
257 			 */
258 			prot = VM_PROT_READ;
259 			if (uio->uio_rw != UIO_READ)
260 				prot |= VM_PROT_WRITE;
261 			error = kvm_access_check(saddr, eaddr, prot);
262 			if (error)
263 				return (error);
264 			error = uiomove((caddr_t)(vm_offset_t)uio->uio_offset,
265 					(int)c, uio);
266 			continue;
267 		}
268 		case 2:
269 			/*
270 			 * minor device 2 (/dev/null) is EOF/RATHOLE
271 			 */
272 			if (uio->uio_rw == UIO_READ)
273 				return (0);
274 			c = iov->iov_len;
275 			break;
276 		case 3:
277 			/*
278 			 * minor device 3 (/dev/random) is source of filth
279 			 * on read, seeder on write
280 			 */
281 			if (buf == NULL)
282 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
283 			c = min(iov->iov_len, PAGE_SIZE);
284 			if (uio->uio_rw == UIO_WRITE) {
285 				error = uiomove(buf, (int)c, uio);
286 				if (error == 0 &&
287 				    seedenable &&
288 				    securelevel <= 0) {
289 					error = add_buffer_randomness_src(buf, c, RAND_SRC_SEEDING);
290 				} else if (error == 0) {
291 					error = EPERM;
292 				}
293 			} else {
294 				poolsize = read_random(buf, c);
295 				if (poolsize == 0) {
296 					if (buf)
297 						kfree(buf, M_TEMP);
298 					if ((flags & IO_NDELAY) != 0)
299 						return (EWOULDBLOCK);
300 					return (0);
301 				}
302 				c = min(c, poolsize);
303 				error = uiomove(buf, (int)c, uio);
304 			}
305 			continue;
306 		case 4:
307 			/*
308 			 * minor device 4 (/dev/urandom) is source of muck
309 			 * on read, writes are disallowed.
310 			 */
311 			c = min(iov->iov_len, PAGE_SIZE);
312 			if (uio->uio_rw == UIO_WRITE) {
313 				error = EPERM;
314 				break;
315 			}
316 			if (CURSIG(curthread->td_lwp) != 0) {
317 				/*
318 				 * Use tsleep() to get the error code right.
319 				 * It should return immediately.
320 				 */
321 				error = tsleep(&rand_bolt, PCATCH, "urand", 1);
322 				if (error != 0 && error != EWOULDBLOCK)
323 					continue;
324 			}
325 			if (buf == NULL)
326 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
327 			poolsize = read_random_unlimited(buf, c);
328 			c = min(c, poolsize);
329 			error = uiomove(buf, (int)c, uio);
330 			continue;
331 		/* case 5: read/write not supported, mmap only */
332 		/* case 6: read/write not supported, mmap only */
333 		case 12:
334 			/*
335 			 * minor device 12 (/dev/zero) is source of nulls
336 			 * on read, write are disallowed.
337 			 */
338 			if (uio->uio_rw == UIO_WRITE) {
339 				c = iov->iov_len;
340 				break;
341 			}
342 			if (zbuf == NULL) {
343 				zbuf = (caddr_t)kmalloc(PAGE_SIZE, M_TEMP,
344 				    M_WAITOK | M_ZERO);
345 			}
346 			c = min(iov->iov_len, PAGE_SIZE);
347 			error = uiomove(zbuf, (int)c, uio);
348 			continue;
349 		default:
350 			return (ENODEV);
351 		}
352 		if (error)
353 			break;
354 		iov->iov_base = (char *)iov->iov_base + c;
355 		iov->iov_len -= c;
356 		uio->uio_offset += c;
357 		uio->uio_resid -= c;
358 	}
359 	if (buf)
360 		kfree(buf, M_TEMP);
361 	return (error);
362 }
363 
364 static int
365 mmread(struct dev_read_args *ap)
366 {
367 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
368 }
369 
370 static int
371 mmwrite(struct dev_write_args *ap)
372 {
373 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
374 }
375 
376 /*******************************************************\
377 * allow user processes to MMAP some memory sections	*
378 * instead of going through read/write			*
379 \*******************************************************/
380 
381 static int user_kernel_mapping(int num, vm_ooffset_t offset,
382 				vm_ooffset_t *resultp);
383 
384 #if 0
385 
386 static int
387 memmmap(struct dev_mmap_args *ap)
388 {
389 	cdev_t dev = ap->a_head.a_dev;
390 	vm_ooffset_t result;
391 	int error;
392 
393 	switch (minor(dev)) {
394 	case 0:
395 		/*
396 		 * minor device 0 is physical memory
397 		 */
398 		ap->a_result = atop(ap->a_offset);
399 		error = 0;
400 		break;
401 	case 1:
402 		/*
403 		 * minor device 1 is kernel memory
404 		 */
405 		ap->a_result = atop(vtophys(ap->a_offset));
406 		error = 0;
407 		break;
408 	case 5:
409 	case 6:
410 		/*
411 		 * minor device 5 is /dev/upmap (see sys/upmap.h)
412 		 * minor device 6 is /dev/kpmap (see sys/upmap.h)
413 		 */
414 		result = 0;
415 		error = user_kernel_mapping(minor(dev), ap->a_offset, &result);
416 		ap->a_result = atop(result);
417 		break;
418 	default:
419 		error = EINVAL;
420 		break;
421 	}
422 	return error;
423 }
424 
425 #endif
426 
427 static int
428 memuksmap(cdev_t dev, vm_page_t fake)
429 {
430 	vm_ooffset_t result;
431 	int error;
432 
433 	switch (minor(dev)) {
434 	case 0:
435 		/*
436 		 * minor device 0 is physical memory
437 		 */
438 		fake->phys_addr = ptoa(fake->pindex);
439 		error = 0;
440 		break;
441 	case 1:
442 		/*
443 		 * minor device 1 is kernel memory
444 		 */
445 		fake->phys_addr = vtophys(ptoa(fake->pindex));
446 		error = 0;
447 		break;
448 	case 5:
449 	case 6:
450 		/*
451 		 * minor device 5 is /dev/upmap (see sys/upmap.h)
452 		 * minor device 6 is /dev/kpmap (see sys/upmap.h)
453 		 */
454 		result = 0;
455 		error = user_kernel_mapping(minor(dev),
456 					    ptoa(fake->pindex), &result);
457 		fake->phys_addr = result;
458 		break;
459 	default:
460 		error = EINVAL;
461 		break;
462 	}
463 	return error;
464 }
465 
466 static int
467 mmioctl(struct dev_ioctl_args *ap)
468 {
469 	cdev_t dev = ap->a_head.a_dev;
470 	int error;
471 
472 	lockmgr(&mem_lock, LK_EXCLUSIVE);
473 
474 	switch (minor(dev)) {
475 	case 0:
476 		error = mem_ioctl(dev, ap->a_cmd, ap->a_data,
477 				  ap->a_fflag, ap->a_cred);
478 		break;
479 	case 3:
480 	case 4:
481 		error = random_ioctl(dev, ap->a_cmd, ap->a_data,
482 				     ap->a_fflag, ap->a_cred);
483 		break;
484 	default:
485 		error = ENODEV;
486 		break;
487 	}
488 
489 	lockmgr(&mem_lock, LK_RELEASE);
490 
491 	return (error);
492 }
493 
494 /*
495  * Operations for changing memory attributes.
496  *
497  * This is basically just an ioctl shim for mem_range_attr_get
498  * and mem_range_attr_set.
499  */
500 static int
501 mem_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
502 {
503 	int nd, error = 0;
504 	struct mem_range_op *mo = (struct mem_range_op *)data;
505 	struct mem_range_desc *md;
506 
507 	/* is this for us? */
508 	if ((cmd != MEMRANGE_GET) &&
509 	    (cmd != MEMRANGE_SET))
510 		return (ENOTTY);
511 
512 	/* any chance we can handle this? */
513 	if (mem_range_softc.mr_op == NULL)
514 		return (EOPNOTSUPP);
515 
516 	/* do we have any descriptors? */
517 	if (mem_range_softc.mr_ndesc == 0)
518 		return (ENXIO);
519 
520 	switch (cmd) {
521 	case MEMRANGE_GET:
522 		nd = imin(mo->mo_arg[0], mem_range_softc.mr_ndesc);
523 		if (nd > 0) {
524 			md = (struct mem_range_desc *)
525 				kmalloc(nd * sizeof(struct mem_range_desc),
526 				       M_MEMDESC, M_WAITOK);
527 			error = mem_range_attr_get(md, &nd);
528 			if (!error)
529 				error = copyout(md, mo->mo_desc,
530 					nd * sizeof(struct mem_range_desc));
531 			kfree(md, M_MEMDESC);
532 		} else {
533 			nd = mem_range_softc.mr_ndesc;
534 		}
535 		mo->mo_arg[0] = nd;
536 		break;
537 
538 	case MEMRANGE_SET:
539 		md = (struct mem_range_desc *)kmalloc(sizeof(struct mem_range_desc),
540 						    M_MEMDESC, M_WAITOK);
541 		error = copyin(mo->mo_desc, md, sizeof(struct mem_range_desc));
542 		/* clamp description string */
543 		md->mr_owner[sizeof(md->mr_owner) - 1] = 0;
544 		if (error == 0)
545 			error = mem_range_attr_set(md, &mo->mo_arg[0]);
546 		kfree(md, M_MEMDESC);
547 		break;
548 	}
549 	return (error);
550 }
551 
552 /*
553  * Implementation-neutral, kernel-callable functions for manipulating
554  * memory range attributes.
555  */
556 int
557 mem_range_attr_get(struct mem_range_desc *mrd, int *arg)
558 {
559 	/* can we handle this? */
560 	if (mem_range_softc.mr_op == NULL)
561 		return (EOPNOTSUPP);
562 
563 	if (*arg == 0) {
564 		*arg = mem_range_softc.mr_ndesc;
565 	} else {
566 		bcopy(mem_range_softc.mr_desc, mrd, (*arg) * sizeof(struct mem_range_desc));
567 	}
568 	return (0);
569 }
570 
571 int
572 mem_range_attr_set(struct mem_range_desc *mrd, int *arg)
573 {
574 	/* can we handle this? */
575 	if (mem_range_softc.mr_op == NULL)
576 		return (EOPNOTSUPP);
577 
578 	return (mem_range_softc.mr_op->set(&mem_range_softc, mrd, arg));
579 }
580 
581 void
582 mem_range_AP_init(void)
583 {
584 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
585 		mem_range_softc.mr_op->initAP(&mem_range_softc);
586 }
587 
588 static int
589 random_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
590 {
591 	int error;
592 	int intr;
593 
594 	/*
595 	 * Even inspecting the state is privileged, since it gives a hint
596 	 * about how easily the randomness might be guessed.
597 	 */
598 	error = 0;
599 
600 	switch (cmd) {
601 	/* Really handled in upper layer */
602 	case FIOASYNC:
603 		break;
604 	case MEM_SETIRQ:
605 		intr = *(int16_t *)data;
606 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
607 			break;
608 		if (intr < 0 || intr >= MAX_INTS)
609 			return (EINVAL);
610 		register_randintr(intr);
611 		break;
612 	case MEM_CLEARIRQ:
613 		intr = *(int16_t *)data;
614 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
615 			break;
616 		if (intr < 0 || intr >= MAX_INTS)
617 			return (EINVAL);
618 		unregister_randintr(intr);
619 		break;
620 	case MEM_RETURNIRQ:
621 		error = ENOTSUP;
622 		break;
623 	case MEM_FINDIRQ:
624 		intr = *(int16_t *)data;
625 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
626 			break;
627 		if (intr < 0 || intr >= MAX_INTS)
628 			return (EINVAL);
629 		intr = next_registered_randintr(intr);
630 		if (intr == MAX_INTS)
631 			return (ENOENT);
632 		*(u_int16_t *)data = intr;
633 		break;
634 	default:
635 		error = ENOTSUP;
636 		break;
637 	}
638 	return (error);
639 }
640 
641 static int
642 mm_filter_read(struct knote *kn, long hint)
643 {
644 	return (1);
645 }
646 
647 static int
648 mm_filter_write(struct knote *kn, long hint)
649 {
650 	return (1);
651 }
652 
653 static void
654 dummy_filter_detach(struct knote *kn) {}
655 
656 /* Implemented in kern_nrandom.c */
657 static struct filterops random_read_filtops =
658         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, random_filter_read };
659 
660 static struct filterops mm_read_filtops =
661         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_read };
662 
663 static struct filterops mm_write_filtops =
664         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_write };
665 
666 static int
667 mmkqfilter(struct dev_kqfilter_args *ap)
668 {
669 	struct knote *kn = ap->a_kn;
670 	cdev_t dev = ap->a_head.a_dev;
671 
672 	ap->a_result = 0;
673 	switch (kn->kn_filter) {
674 	case EVFILT_READ:
675 		switch (minor(dev)) {
676 		case 3:
677 			kn->kn_fop = &random_read_filtops;
678 			break;
679 		default:
680 			kn->kn_fop = &mm_read_filtops;
681 			break;
682 		}
683 		break;
684 	case EVFILT_WRITE:
685 		kn->kn_fop = &mm_write_filtops;
686 		break;
687 	default:
688 		ap->a_result = EOPNOTSUPP;
689 		return (0);
690 	}
691 
692 	return (0);
693 }
694 
695 int
696 iszerodev(cdev_t dev)
697 {
698 	return (zerodev == dev);
699 }
700 
701 /*
702  * /dev/upmap and /dev/kpmap.
703  */
704 static int
705 user_kernel_mapping(int num, vm_ooffset_t offset, vm_ooffset_t *resultp)
706 {
707 	struct proc *p;
708 	int error;
709 	int invfork;
710 
711 	if ((p = curproc) == NULL)
712 		return (EINVAL);
713 
714 	/*
715 	 * If this is a child currently in vfork the pmap is shared with
716 	 * the parent!  We need to actually set-up the parent's p_upmap,
717 	 * not the child's, and we need to set the invfork flag.  Userland
718 	 * will probably adjust its static state so it must be consistent
719 	 * with the parent or userland will be really badly confused.
720 	 *
721 	 * (this situation can happen when user code in vfork() calls
722 	 *  libc's getpid() or some other function which then decides
723 	 *  it wants the upmap).
724 	 */
725 	if (p->p_flags & P_PPWAIT) {
726 		p = p->p_pptr;
727 		if (p == NULL)
728 			return (EINVAL);
729 		invfork = 1;
730 	} else {
731 		invfork = 0;
732 	}
733 
734 	error = EINVAL;
735 
736 	switch(num) {
737 	case 5:
738 		/*
739 		 * /dev/upmap - maps RW per-process shared user-kernel area.
740 		 */
741 		if (p->p_upmap == NULL)
742 			proc_usermap(p, invfork);
743 		else if (invfork)
744 			p->p_upmap->invfork = invfork;
745 
746 		if (p->p_upmap &&
747 		    offset < roundup2(sizeof(*p->p_upmap), PAGE_SIZE)) {
748 			/* only good for current process */
749 			*resultp = pmap_kextract((vm_offset_t)p->p_upmap +
750 						 offset);
751 			error = 0;
752 		}
753 		break;
754 	case 6:
755 		/*
756 		 * /dev/kpmap - maps RO shared kernel global page
757 		 */
758 		if (kpmap &&
759 		    offset < roundup2(sizeof(*kpmap), PAGE_SIZE)) {
760 			*resultp = pmap_kextract((vm_offset_t)kpmap +
761 						 offset);
762 			error = 0;
763 		}
764 		break;
765 	default:
766 		break;
767 	}
768 	return error;
769 }
770 
771 static void
772 mem_drvinit(void *unused)
773 {
774 
775 	/* Initialise memory range handling */
776 	if (mem_range_softc.mr_op != NULL)
777 		mem_range_softc.mr_op->init(&mem_range_softc);
778 
779 	make_dev(&mem_ops_mem, 0, UID_ROOT, GID_KMEM, 0640, "mem");
780 	make_dev(&mem_ops_mem, 1, UID_ROOT, GID_KMEM, 0640, "kmem");
781 	make_dev(&mem_ops, 2, UID_ROOT, GID_WHEEL, 0666, "null");
782 	make_dev(&mem_ops, 3, UID_ROOT, GID_WHEEL, 0644, "random");
783 	make_dev(&mem_ops, 4, UID_ROOT, GID_WHEEL, 0644, "urandom");
784 	make_dev(&mem_ops, 5, UID_ROOT, GID_WHEEL, 0666, "upmap");
785 	make_dev(&mem_ops, 6, UID_ROOT, GID_WHEEL, 0444, "kpmap");
786 	zerodev = make_dev(&mem_ops, 12, UID_ROOT, GID_WHEEL, 0666, "zero");
787 	make_dev(&mem_ops_noq, 14, UID_ROOT, GID_WHEEL, 0600, "io");
788 }
789 
790 SYSINIT(memdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE + CDEV_MAJOR, mem_drvinit,
791     NULL);
792 
793