xref: /dragonfly/sys/kern/kern_memio.c (revision ffe53622)
1 /*-
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department, and code derived from software contributed to
9  * Berkeley by William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: Utah $Hdr: mem.c 1.13 89/10/08$
36  *	from: @(#)mem.c	7.2 (Berkeley) 5/9/91
37  * $FreeBSD: src/sys/i386/i386/mem.c,v 1.79.2.9 2003/01/04 22:58:01 njl Exp $
38  */
39 
40 /*
41  * Memory special file
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/buf.h>
47 #include <sys/conf.h>
48 #include <sys/fcntl.h>
49 #include <sys/filio.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/memrange.h>
53 #include <sys/proc.h>
54 #include <sys/priv.h>
55 #include <sys/random.h>
56 #include <sys/signalvar.h>
57 #include <sys/uio.h>
58 #include <sys/vnode.h>
59 #include <sys/sysctl.h>
60 
61 #include <sys/signal2.h>
62 
63 #include <vm/vm.h>
64 #include <vm/pmap.h>
65 #include <vm/vm_extern.h>
66 
67 
68 static	d_open_t	mmopen;
69 static	d_close_t	mmclose;
70 static	d_read_t	mmread;
71 static	d_write_t	mmwrite;
72 static	d_ioctl_t	mmioctl;
73 #if 0
74 static	d_mmap_t	memmmap;
75 #endif
76 static	d_kqfilter_t	mmkqfilter;
77 static int memuksmap(cdev_t dev, vm_page_t fake);
78 
79 #define CDEV_MAJOR 2
80 static struct dev_ops mem_ops = {
81 	{ "mem", 0, D_MPSAFE | D_QUICK },
82 	.d_open =	mmopen,
83 	.d_close =	mmclose,
84 	.d_read =	mmread,
85 	.d_write =	mmwrite,
86 	.d_ioctl =	mmioctl,
87 	.d_kqfilter =	mmkqfilter,
88 #if 0
89 	.d_mmap =	memmmap,
90 #endif
91 	.d_uksmap =	memuksmap
92 };
93 
94 static struct dev_ops mem_ops_noq = {
95 	{ "mem", 0, D_MPSAFE },
96 	.d_open =	mmopen,
97 	.d_close =	mmclose,
98 	.d_read =	mmread,
99 	.d_write =	mmwrite,
100 	.d_ioctl =	mmioctl,
101 	.d_kqfilter =	mmkqfilter,
102 #if 0
103 	.d_mmap =	memmmap,
104 #endif
105 	.d_uksmap =	memuksmap
106 };
107 
108 static int rand_bolt;
109 static caddr_t	zbuf;
110 static cdev_t	zerodev = NULL;
111 static struct lock mem_lock = LOCK_INITIALIZER("memlk", 0, 0);
112 
113 MALLOC_DEFINE(M_MEMDESC, "memdesc", "memory range descriptors");
114 static int mem_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
115 static int random_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
116 
117 struct mem_range_softc mem_range_softc;
118 
119 static int seedenable;
120 SYSCTL_INT(_kern, OID_AUTO, seedenable, CTLFLAG_RW, &seedenable, 0, "");
121 
122 static int
123 mmopen(struct dev_open_args *ap)
124 {
125 	cdev_t dev = ap->a_head.a_dev;
126 	int error;
127 
128 	switch (minor(dev)) {
129 	case 0:
130 	case 1:
131 		/*
132 		 * /dev/mem and /dev/kmem
133 		 */
134 		if (ap->a_oflags & FWRITE) {
135 			if (securelevel > 0 || kernel_mem_readonly)
136 				return (EPERM);
137 		}
138 		error = 0;
139 		break;
140 	case 6:
141 		/*
142 		 * /dev/kpmap can only be opened for reading.
143 		 */
144 		if (ap->a_oflags & FWRITE)
145 			return (EPERM);
146 		error = 0;
147 		break;
148 	case 14:
149 		error = priv_check_cred(ap->a_cred, PRIV_ROOT, 0);
150 		if (error != 0)
151 			break;
152 		if (securelevel > 0 || kernel_mem_readonly) {
153 			error = EPERM;
154 			break;
155 		}
156 		error = cpu_set_iopl();
157 		break;
158 	default:
159 		error = 0;
160 		break;
161 	}
162 	return (error);
163 }
164 
165 static int
166 mmclose(struct dev_close_args *ap)
167 {
168 	cdev_t dev = ap->a_head.a_dev;
169 	int error;
170 
171 	switch (minor(dev)) {
172 	case 14:
173 		error = cpu_clr_iopl();
174 		break;
175 	default:
176 		error = 0;
177 		break;
178 	}
179 	return (error);
180 }
181 
182 
183 static int
184 mmrw(cdev_t dev, struct uio *uio, int flags)
185 {
186 	int o;
187 	u_int c;
188 	u_int poolsize;
189 	u_long v;
190 	struct iovec *iov;
191 	int error = 0;
192 	caddr_t buf = NULL;
193 
194 	while (uio->uio_resid > 0 && error == 0) {
195 		iov = uio->uio_iov;
196 		if (iov->iov_len == 0) {
197 			uio->uio_iov++;
198 			uio->uio_iovcnt--;
199 			if (uio->uio_iovcnt < 0)
200 				panic("mmrw");
201 			continue;
202 		}
203 		switch (minor(dev)) {
204 		case 0:
205 			/*
206 			 * minor device 0 is physical memory, /dev/mem
207 			 */
208 			v = uio->uio_offset;
209 			v &= ~(long)PAGE_MASK;
210 			pmap_kenter((vm_offset_t)ptvmmap, v);
211 			o = (int)uio->uio_offset & PAGE_MASK;
212 			c = (u_int)(PAGE_SIZE - ((uintptr_t)iov->iov_base & PAGE_MASK));
213 			c = min(c, (u_int)(PAGE_SIZE - o));
214 			c = min(c, (u_int)iov->iov_len);
215 			error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
216 			pmap_kremove((vm_offset_t)ptvmmap);
217 			continue;
218 
219 		case 1: {
220 			/*
221 			 * minor device 1 is kernel memory, /dev/kmem
222 			 */
223 			vm_offset_t saddr, eaddr;
224 			int prot;
225 
226 			c = iov->iov_len;
227 
228 			/*
229 			 * Make sure that all of the pages are currently
230 			 * resident so that we don't create any zero-fill
231 			 * pages.
232 			 */
233 			saddr = trunc_page(uio->uio_offset);
234 			eaddr = round_page(uio->uio_offset + c);
235 			if (saddr > eaddr)
236 				return EFAULT;
237 
238 			/*
239 			 * Make sure the kernel addresses are mapped.
240 			 * platform_direct_mapped() can be used to bypass
241 			 * default mapping via the page table (virtual kernels
242 			 * contain a lot of out-of-band data).
243 			 */
244 			prot = VM_PROT_READ;
245 			if (uio->uio_rw != UIO_READ)
246 				prot |= VM_PROT_WRITE;
247 			error = kvm_access_check(saddr, eaddr, prot);
248 			if (error)
249 				return (error);
250 			error = uiomove((caddr_t)(vm_offset_t)uio->uio_offset,
251 					(int)c, uio);
252 			continue;
253 		}
254 		case 2:
255 			/*
256 			 * minor device 2 (/dev/null) is EOF/RATHOLE
257 			 */
258 			if (uio->uio_rw == UIO_READ)
259 				return (0);
260 			c = iov->iov_len;
261 			break;
262 		case 3:
263 			/*
264 			 * minor device 3 (/dev/random) is source of filth
265 			 * on read, seeder on write
266 			 */
267 			if (buf == NULL)
268 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
269 			c = min(iov->iov_len, PAGE_SIZE);
270 			if (uio->uio_rw == UIO_WRITE) {
271 				error = uiomove(buf, (int)c, uio);
272 				if (error == 0 &&
273 				    seedenable &&
274 				    securelevel <= 0) {
275 					error = add_buffer_randomness_src(buf, c, RAND_SRC_SEEDING);
276 				} else if (error == 0) {
277 					error = EPERM;
278 				}
279 			} else {
280 				poolsize = read_random(buf, c);
281 				if (poolsize == 0) {
282 					if (buf)
283 						kfree(buf, M_TEMP);
284 					if ((flags & IO_NDELAY) != 0)
285 						return (EWOULDBLOCK);
286 					return (0);
287 				}
288 				c = min(c, poolsize);
289 				error = uiomove(buf, (int)c, uio);
290 			}
291 			continue;
292 		case 4:
293 			/*
294 			 * minor device 4 (/dev/urandom) is source of muck
295 			 * on read, writes are disallowed.
296 			 */
297 			c = min(iov->iov_len, PAGE_SIZE);
298 			if (uio->uio_rw == UIO_WRITE) {
299 				error = EPERM;
300 				break;
301 			}
302 			if (CURSIG(curthread->td_lwp) != 0) {
303 				/*
304 				 * Use tsleep() to get the error code right.
305 				 * It should return immediately.
306 				 */
307 				error = tsleep(&rand_bolt, PCATCH, "urand", 1);
308 				if (error != 0 && error != EWOULDBLOCK)
309 					continue;
310 			}
311 			if (buf == NULL)
312 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
313 			poolsize = read_random_unlimited(buf, c);
314 			c = min(c, poolsize);
315 			error = uiomove(buf, (int)c, uio);
316 			continue;
317 		/* case 5: read/write not supported, mmap only */
318 		/* case 6: read/write not supported, mmap only */
319 		case 12:
320 			/*
321 			 * minor device 12 (/dev/zero) is source of nulls
322 			 * on read, write are disallowed.
323 			 */
324 			if (uio->uio_rw == UIO_WRITE) {
325 				c = iov->iov_len;
326 				break;
327 			}
328 			if (zbuf == NULL) {
329 				zbuf = (caddr_t)kmalloc(PAGE_SIZE, M_TEMP,
330 				    M_WAITOK | M_ZERO);
331 			}
332 			c = min(iov->iov_len, PAGE_SIZE);
333 			error = uiomove(zbuf, (int)c, uio);
334 			continue;
335 		default:
336 			return (ENODEV);
337 		}
338 		if (error)
339 			break;
340 		iov->iov_base = (char *)iov->iov_base + c;
341 		iov->iov_len -= c;
342 		uio->uio_offset += c;
343 		uio->uio_resid -= c;
344 	}
345 	if (buf)
346 		kfree(buf, M_TEMP);
347 	return (error);
348 }
349 
350 static int
351 mmread(struct dev_read_args *ap)
352 {
353 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
354 }
355 
356 static int
357 mmwrite(struct dev_write_args *ap)
358 {
359 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
360 }
361 
362 /*******************************************************\
363 * allow user processes to MMAP some memory sections	*
364 * instead of going through read/write			*
365 \*******************************************************/
366 
367 static int user_kernel_mapping(int num, vm_ooffset_t offset,
368 				vm_ooffset_t *resultp);
369 
370 #if 0
371 
372 static int
373 memmmap(struct dev_mmap_args *ap)
374 {
375 	cdev_t dev = ap->a_head.a_dev;
376 	vm_ooffset_t result;
377 	int error;
378 
379 	switch (minor(dev)) {
380 	case 0:
381 		/*
382 		 * minor device 0 is physical memory
383 		 */
384 		ap->a_result = atop(ap->a_offset);
385 		error = 0;
386 		break;
387 	case 1:
388 		/*
389 		 * minor device 1 is kernel memory
390 		 */
391 		ap->a_result = atop(vtophys(ap->a_offset));
392 		error = 0;
393 		break;
394 	case 5:
395 	case 6:
396 		/*
397 		 * minor device 5 is /dev/upmap (see sys/upmap.h)
398 		 * minor device 6 is /dev/kpmap (see sys/upmap.h)
399 		 */
400 		result = 0;
401 		error = user_kernel_mapping(minor(dev), ap->a_offset, &result);
402 		ap->a_result = atop(result);
403 		break;
404 	default:
405 		error = EINVAL;
406 		break;
407 	}
408 	return error;
409 }
410 
411 #endif
412 
413 static int
414 memuksmap(cdev_t dev, vm_page_t fake)
415 {
416 	vm_ooffset_t result;
417 	int error;
418 
419 	switch (minor(dev)) {
420 	case 0:
421 		/*
422 		 * minor device 0 is physical memory
423 		 */
424 		fake->phys_addr = ptoa(fake->pindex);
425 		error = 0;
426 		break;
427 	case 1:
428 		/*
429 		 * minor device 1 is kernel memory
430 		 */
431 		fake->phys_addr = vtophys(ptoa(fake->pindex));
432 		error = 0;
433 		break;
434 	case 5:
435 	case 6:
436 		/*
437 		 * minor device 5 is /dev/upmap (see sys/upmap.h)
438 		 * minor device 6 is /dev/kpmap (see sys/upmap.h)
439 		 */
440 		result = 0;
441 		error = user_kernel_mapping(minor(dev),
442 					    ptoa(fake->pindex), &result);
443 		fake->phys_addr = result;
444 		break;
445 	default:
446 		error = EINVAL;
447 		break;
448 	}
449 	return error;
450 }
451 
452 static int
453 mmioctl(struct dev_ioctl_args *ap)
454 {
455 	cdev_t dev = ap->a_head.a_dev;
456 	int error;
457 
458 	lockmgr(&mem_lock, LK_EXCLUSIVE);
459 
460 	switch (minor(dev)) {
461 	case 0:
462 		error = mem_ioctl(dev, ap->a_cmd, ap->a_data,
463 				  ap->a_fflag, ap->a_cred);
464 		break;
465 	case 3:
466 	case 4:
467 		error = random_ioctl(dev, ap->a_cmd, ap->a_data,
468 				     ap->a_fflag, ap->a_cred);
469 		break;
470 	default:
471 		error = ENODEV;
472 		break;
473 	}
474 
475 	lockmgr(&mem_lock, LK_RELEASE);
476 
477 	return (error);
478 }
479 
480 /*
481  * Operations for changing memory attributes.
482  *
483  * This is basically just an ioctl shim for mem_range_attr_get
484  * and mem_range_attr_set.
485  */
486 static int
487 mem_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
488 {
489 	int nd, error = 0;
490 	struct mem_range_op *mo = (struct mem_range_op *)data;
491 	struct mem_range_desc *md;
492 
493 	/* is this for us? */
494 	if ((cmd != MEMRANGE_GET) &&
495 	    (cmd != MEMRANGE_SET))
496 		return (ENOTTY);
497 
498 	/* any chance we can handle this? */
499 	if (mem_range_softc.mr_op == NULL)
500 		return (EOPNOTSUPP);
501 
502 	/* do we have any descriptors? */
503 	if (mem_range_softc.mr_ndesc == 0)
504 		return (ENXIO);
505 
506 	switch (cmd) {
507 	case MEMRANGE_GET:
508 		nd = imin(mo->mo_arg[0], mem_range_softc.mr_ndesc);
509 		if (nd > 0) {
510 			md = (struct mem_range_desc *)
511 				kmalloc(nd * sizeof(struct mem_range_desc),
512 				       M_MEMDESC, M_WAITOK);
513 			error = mem_range_attr_get(md, &nd);
514 			if (!error)
515 				error = copyout(md, mo->mo_desc,
516 					nd * sizeof(struct mem_range_desc));
517 			kfree(md, M_MEMDESC);
518 		} else {
519 			nd = mem_range_softc.mr_ndesc;
520 		}
521 		mo->mo_arg[0] = nd;
522 		break;
523 
524 	case MEMRANGE_SET:
525 		md = (struct mem_range_desc *)kmalloc(sizeof(struct mem_range_desc),
526 						    M_MEMDESC, M_WAITOK);
527 		error = copyin(mo->mo_desc, md, sizeof(struct mem_range_desc));
528 		/* clamp description string */
529 		md->mr_owner[sizeof(md->mr_owner) - 1] = 0;
530 		if (error == 0)
531 			error = mem_range_attr_set(md, &mo->mo_arg[0]);
532 		kfree(md, M_MEMDESC);
533 		break;
534 	}
535 	return (error);
536 }
537 
538 /*
539  * Implementation-neutral, kernel-callable functions for manipulating
540  * memory range attributes.
541  */
542 int
543 mem_range_attr_get(struct mem_range_desc *mrd, int *arg)
544 {
545 	/* can we handle this? */
546 	if (mem_range_softc.mr_op == NULL)
547 		return (EOPNOTSUPP);
548 
549 	if (*arg == 0) {
550 		*arg = mem_range_softc.mr_ndesc;
551 	} else {
552 		bcopy(mem_range_softc.mr_desc, mrd, (*arg) * sizeof(struct mem_range_desc));
553 	}
554 	return (0);
555 }
556 
557 int
558 mem_range_attr_set(struct mem_range_desc *mrd, int *arg)
559 {
560 	/* can we handle this? */
561 	if (mem_range_softc.mr_op == NULL)
562 		return (EOPNOTSUPP);
563 
564 	return (mem_range_softc.mr_op->set(&mem_range_softc, mrd, arg));
565 }
566 
567 void
568 mem_range_AP_init(void)
569 {
570 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
571 		mem_range_softc.mr_op->initAP(&mem_range_softc);
572 }
573 
574 static int
575 random_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
576 {
577 	int error;
578 	int intr;
579 
580 	/*
581 	 * Even inspecting the state is privileged, since it gives a hint
582 	 * about how easily the randomness might be guessed.
583 	 */
584 	error = 0;
585 
586 	switch (cmd) {
587 	/* Really handled in upper layer */
588 	case FIOASYNC:
589 		break;
590 	case MEM_SETIRQ:
591 		intr = *(int16_t *)data;
592 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
593 			break;
594 		if (intr < 0 || intr >= MAX_INTS)
595 			return (EINVAL);
596 		register_randintr(intr);
597 		break;
598 	case MEM_CLEARIRQ:
599 		intr = *(int16_t *)data;
600 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
601 			break;
602 		if (intr < 0 || intr >= MAX_INTS)
603 			return (EINVAL);
604 		unregister_randintr(intr);
605 		break;
606 	case MEM_RETURNIRQ:
607 		error = ENOTSUP;
608 		break;
609 	case MEM_FINDIRQ:
610 		intr = *(int16_t *)data;
611 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
612 			break;
613 		if (intr < 0 || intr >= MAX_INTS)
614 			return (EINVAL);
615 		intr = next_registered_randintr(intr);
616 		if (intr == MAX_INTS)
617 			return (ENOENT);
618 		*(u_int16_t *)data = intr;
619 		break;
620 	default:
621 		error = ENOTSUP;
622 		break;
623 	}
624 	return (error);
625 }
626 
627 static int
628 mm_filter_read(struct knote *kn, long hint)
629 {
630 	return (1);
631 }
632 
633 static int
634 mm_filter_write(struct knote *kn, long hint)
635 {
636 	return (1);
637 }
638 
639 static void
640 dummy_filter_detach(struct knote *kn) {}
641 
642 /* Implemented in kern_nrandom.c */
643 static struct filterops random_read_filtops =
644         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, random_filter_read };
645 
646 static struct filterops mm_read_filtops =
647         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_read };
648 
649 static struct filterops mm_write_filtops =
650         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_write };
651 
652 static int
653 mmkqfilter(struct dev_kqfilter_args *ap)
654 {
655 	struct knote *kn = ap->a_kn;
656 	cdev_t dev = ap->a_head.a_dev;
657 
658 	ap->a_result = 0;
659 	switch (kn->kn_filter) {
660 	case EVFILT_READ:
661 		switch (minor(dev)) {
662 		case 3:
663 			kn->kn_fop = &random_read_filtops;
664 			break;
665 		default:
666 			kn->kn_fop = &mm_read_filtops;
667 			break;
668 		}
669 		break;
670 	case EVFILT_WRITE:
671 		kn->kn_fop = &mm_write_filtops;
672 		break;
673 	default:
674 		ap->a_result = EOPNOTSUPP;
675 		return (0);
676 	}
677 
678 	return (0);
679 }
680 
681 int
682 iszerodev(cdev_t dev)
683 {
684 	return (zerodev == dev);
685 }
686 
687 /*
688  * /dev/upmap and /dev/kpmap.
689  */
690 static int
691 user_kernel_mapping(int num, vm_ooffset_t offset, vm_ooffset_t *resultp)
692 {
693 	struct proc *p;
694 	int error;
695 	int invfork;
696 
697 	if ((p = curproc) == NULL)
698 		return (EINVAL);
699 
700 	/*
701 	 * If this is a child currently in vfork the pmap is shared with
702 	 * the parent!  We need to actually set-up the parent's p_upmap,
703 	 * not the child's, and we need to set the invfork flag.  Userland
704 	 * will probably adjust its static state so it must be consistent
705 	 * with the parent or userland will be really badly confused.
706 	 *
707 	 * (this situation can happen when user code in vfork() calls
708 	 *  libc's getpid() or some other function which then decides
709 	 *  it wants the upmap).
710 	 */
711 	if (p->p_flags & P_PPWAIT) {
712 		p = p->p_pptr;
713 		if (p == NULL)
714 			return (EINVAL);
715 		invfork = 1;
716 	} else {
717 		invfork = 0;
718 	}
719 
720 	error = EINVAL;
721 
722 	switch(num) {
723 	case 5:
724 		/*
725 		 * /dev/upmap - maps RW per-process shared user-kernel area.
726 		 */
727 		if (p->p_upmap == NULL)
728 			proc_usermap(p, invfork);
729 		else if (invfork)
730 			p->p_upmap->invfork = invfork;
731 
732 		if (p->p_upmap &&
733 		    offset < roundup2(sizeof(*p->p_upmap), PAGE_SIZE)) {
734 			/* only good for current process */
735 			*resultp = pmap_kextract((vm_offset_t)p->p_upmap +
736 						 offset);
737 			error = 0;
738 		}
739 		break;
740 	case 6:
741 		/*
742 		 * /dev/kpmap - maps RO shared kernel global page
743 		 */
744 		if (kpmap &&
745 		    offset < roundup2(sizeof(*kpmap), PAGE_SIZE)) {
746 			*resultp = pmap_kextract((vm_offset_t)kpmap +
747 						 offset);
748 			error = 0;
749 		}
750 		break;
751 	default:
752 		break;
753 	}
754 	return error;
755 }
756 
757 static void
758 mem_drvinit(void *unused)
759 {
760 
761 	/* Initialise memory range handling */
762 	if (mem_range_softc.mr_op != NULL)
763 		mem_range_softc.mr_op->init(&mem_range_softc);
764 
765 	make_dev(&mem_ops, 0, UID_ROOT, GID_KMEM, 0640, "mem");
766 	make_dev(&mem_ops, 1, UID_ROOT, GID_KMEM, 0640, "kmem");
767 	make_dev(&mem_ops, 2, UID_ROOT, GID_WHEEL, 0666, "null");
768 	make_dev(&mem_ops, 3, UID_ROOT, GID_WHEEL, 0644, "random");
769 	make_dev(&mem_ops, 4, UID_ROOT, GID_WHEEL, 0644, "urandom");
770 	make_dev(&mem_ops, 5, UID_ROOT, GID_WHEEL, 0666, "upmap");
771 	make_dev(&mem_ops, 6, UID_ROOT, GID_WHEEL, 0444, "kpmap");
772 	zerodev = make_dev(&mem_ops, 12, UID_ROOT, GID_WHEEL, 0666, "zero");
773 	make_dev(&mem_ops_noq, 14, UID_ROOT, GID_WHEEL, 0600, "io");
774 }
775 
776 SYSINIT(memdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE + CDEV_MAJOR, mem_drvinit,
777     NULL);
778 
779