xref: /dragonfly/sys/kern/kern_nrandom.c (revision 0db87cb7)
1 /*
2  * Copyright (c) 2004-2014 The DragonFly Project. All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * by Alex Hornung <alex@alexhornung.com>
7  * by Robin J Carey
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions, and the following disclaimer,
14  *    without modification, immediately at the beginning of the file.
15  * 2. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
22  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 /*			   --- NOTES ---
31  *
32  * Note: The word "entropy" is often incorrectly used to describe
33  * random data. The word "entropy" originates from the science of
34  * Physics. The correct descriptive definition would be something
35  * along the lines of "seed", "unpredictable numbers" or
36  * "unpredictable data".
37  *
38  * Note: Some /dev/[u]random implementations save "seed" between
39  * boots which represents a security hazard since an adversary
40  * could acquire this data (since it is stored in a file). If
41  * the unpredictable data used in the above routines is only
42  * generated during Kernel operation, then an adversary can only
43  * acquire that data through a Kernel security compromise and/or
44  * a cryptographic algorithm failure/cryptanalysis.
45  *
46  * Note: On FreeBSD-4.11, interrupts have to be manually enabled
47  * using the rndcontrol(8) command.
48  *
49  *		--- DESIGN (FreeBSD-4.11 based) ---
50  *
51  *   The rnddev module automatically initializes itself the first time
52  * it is used (client calls any public rnddev_*() interface routine).
53  * Both CSPRNGs are initially seeded from the precise nano[up]time() routines.
54  * Tests show this method produces good enough results, suitable for intended
55  * use. It is necessary for both CSPRNGs to be completely seeded, initially.
56  *
57  *   After initialization and during Kernel operation the only suitable
58  * unpredictable data available is:
59  *
60  *	(1) Keyboard scan-codes.
61  *	(2) Nanouptime acquired by a Keyboard/Read-Event.
62  *	(3) Suitable interrupt source; hard-disk/ATA-device.
63  *
64  *      (X) Mouse-event (xyz-data unsuitable); NOT IMPLEMENTED.
65  *
66  *   This data is added to both CSPRNGs in real-time as it happens/
67  * becomes-available. Additionally, unpredictable (?) data may be
68  * acquired from a true-random number generator if such a device is
69  * available to the system (not advisable !).
70  *   Nanouptime() acquired by a Read-Event is a very important aspect of
71  * this design, since it ensures that unpredictable data is added to
72  * the CSPRNGs even if there are no other sources.
73  *   The nanouptime() Kernel routine is used since time relative to
74  * boot is less adversary-known than time itself.
75  *
76  *   This design has been thoroughly tested with debug logging
77  * and the output from both /dev/random and /dev/urandom has
78  * been tested with the DIEHARD test-suite; both pass.
79  *
80  * MODIFICATIONS MADE TO ORIGINAL "kern_random.c":
81  *
82  * 6th July 2005:
83  *
84  * o Changed ReadSeed() function to schedule future read-seed-events
85  *   by at least one second. Previous implementation used a randomised
86  *   scheduling { 0, 1, 2, 3 seconds }.
87  * o Changed SEED_NANOUP() function to use a "previous" accumulator
88  *   algorithm similar to ReadSeed(). This ensures that there is no
89  *   way that an adversary can tell what number is being added to the
90  *   CSPRNGs, since the number added to the CSPRNGs at Event-Time is
91  *   the sum of nanouptime()@Event and an unknown/secret number.
92  * o Changed rnddev_add_interrupt() function to schedule future
93  *   interrupt-events by at least one second. Previous implementation
94  *   had no scheduling algorithm which allowed an "interrupt storm"
95  *   to occur resulting in skewed data entering into the CSPRNGs.
96  *
97  *
98  * 9th July 2005:
99  *
100  * o Some small cleanups and change all internal functions to be
101  *   static/private.
102  * o Removed ReadSeed() since its functionality is already performed
103  *   by another function { rnddev_add_interrupt_OR_read() } and remove
104  *   the silly rndByte accumulator/feedback-thing (since multipying by
105  *   rndByte could yield a value of 0).
106  * o Made IBAA/L14 public interface become static/private;
107  *   Local to this file (not changed to that in the original C modules).
108  *
109  * 16th July 2005:
110  *
111  * o SEED_NANOUP() -> NANOUP_EVENT() function rename.
112  * o Make NANOUP_EVENT() handle the time-buffering directly so that all
113  *   time-stamp-events use this single time-buffer (including keyboard).
114  *   This removes dependancy on "time_second" Kernel variable.
115  * o Removed second-time-buffer code in rnddev_add_interrupt_OR_read (void).
116  * o Rewrote the time-buffering algorithm in NANOUP_EVENT() to use a
117  *   randomised time-delay range.
118  *
119  * 12th Dec 2005:
120  *
121  * o Updated to (hopefully final) L15 algorithm.
122  *
123  * 12th June 2006:
124  *
125  * o Added missing (u_char *) cast in RnddevRead() function.
126  * o Changed copyright to 3-clause BSD license and cleaned up the layout
127  *   of this file.
128  *
129  * For a proper changelog, refer to the version control history of this
130  * file.
131  */
132 
133 #include <sys/types.h>
134 #include <sys/kernel.h>
135 #include <sys/systm.h>
136 #include <sys/poll.h>
137 #include <sys/event.h>
138 #include <sys/random.h>
139 #include <sys/systimer.h>
140 #include <sys/time.h>
141 #include <sys/proc.h>
142 #include <sys/lock.h>
143 #include <sys/sysctl.h>
144 #include <sys/spinlock.h>
145 #include <sys/csprng.h>
146 #include <machine/atomic.h>
147 #include <machine/clock.h>
148 
149 #include <sys/thread2.h>
150 #include <sys/spinlock2.h>
151 #include <sys/mplock2.h>
152 
153 
154 struct csprng_state csprng_state;
155 
156 /*
157  * Portability note: The u_char/unsigned char type is used where
158  * uint8_t from <stdint.h> or u_int8_t from <sys/types.h> should really
159  * be being used. On FreeBSD, it is safe to make the assumption that these
160  * different types are equivalent (on all architectures).
161  * The FreeBSD <sys/crypto/rc4> module also makes this assumption.
162  */
163 
164 /*------------------------------ IBAA ----------------------------------*/
165 
166 /*-------------------------- IBAA CSPRNG -------------------------------*/
167 
168 /*
169  * NOTE: The original source code from which this source code (IBAA)
170  *       was taken has no copyright/license. The algorithm has no patent
171  *       and is freely/publicly available from:
172  *
173  *           http://www.burtleburtle.net/bob/rand/isaac.html
174  */
175 
176 /*
177  * ^ means XOR, & means bitwise AND, a<<b means shift a by b.
178  * barrel(a) shifts a 19 bits to the left, and bits wrap around
179  * ind(x) is (x AND 255), or (x mod 256)
180  */
181 typedef	u_int32_t	u4;   /* unsigned four bytes, 32 bits */
182 
183 #define	ALPHA		(8)
184 #define	SIZE		(1 << ALPHA)
185 #define MASK		(SIZE - 1)
186 #define	ind(x)		((x) & (SIZE - 1))
187 #define	barrel(a)	(((a) << 20) ^ ((a) >> 12))  /* beta=32,shift=20 */
188 
189 static void IBAA
190 (
191 	u4 *m,		/* Memory: array of SIZE ALPHA-bit terms */
192 	u4 *r,		/* Results: the sequence, same size as m */
193 	u4 *aa,		/* Accumulator: a single value */
194 	u4 *bb,		/* the previous result */
195 	u4 *counter	/* counter */
196 )
197 {
198 	u4 a, b, x, y, i;
199 
200 	a = *aa;
201 	b = *bb + *counter;
202 	++*counter;
203 	for (i = 0; i < SIZE; ++i) {
204 		x = m[i];
205 		a = barrel(a) + m[ind(i + (SIZE / 2))];	/* set a */
206 		m[i] = y = m[ind(x)] + a + b;		/* set m */
207 		r[i] = b = m[ind(y >> ALPHA)] + x;	/* set r */
208 	}
209 	*bb = b; *aa = a;
210 }
211 
212 /*-------------------------- IBAA CSPRNG -------------------------------*/
213 
214 
215 static u4	IBAA_memory[SIZE];
216 static u4	IBAA_results[SIZE];
217 static u4	IBAA_aa;
218 static u4	IBAA_bb;
219 static u4	IBAA_counter;
220 
221 static volatile int IBAA_byte_index;
222 
223 
224 static void	IBAA_Init(void);
225 static void	IBAA_Call(void);
226 static void	IBAA_Seed(const u_int32_t val);
227 static u_char	IBAA_Byte(void);
228 
229 /*
230  * Initialize IBAA.
231  */
232 static void
233 IBAA_Init(void)
234 {
235 	size_t	i;
236 
237 	for (i = 0; i < SIZE; ++i) {
238 		IBAA_memory[i] = i;
239 	}
240 	IBAA_aa = IBAA_bb = 0;
241 	IBAA_counter = 0;
242 	IBAA_byte_index = sizeof(IBAA_results);	/* force IBAA_Call() */
243 }
244 
245 /*
246  * PRIVATE: Call IBAA to produce 256 32-bit u4 results.
247  */
248 static void
249 IBAA_Call (void)
250 {
251 	IBAA(IBAA_memory, IBAA_results, &IBAA_aa, &IBAA_bb, &IBAA_counter);
252 	IBAA_byte_index = 0;
253 }
254 
255 /*
256  * Add a 32-bit u4 seed value into IBAAs memory.  Mix the low 4 bits
257  * with 4 bits of PNG data to reduce the possibility of a seeding-based
258  * attack.
259  */
260 static void
261 IBAA_Seed (const u_int32_t val)
262 {
263 	static int memIndex;
264 	u4 *iptr;
265 
266 	iptr = &IBAA_memory[memIndex & MASK];
267 	*iptr = ((*iptr << 3) | (*iptr >> 29)) + (val ^ (IBAA_Byte() & 15));
268 	++memIndex;
269 }
270 
271 static void
272 IBAA_Vector (const char *buf, int bytes)
273 {
274 	int i;
275 
276 	while (bytes >= sizeof(int)) {
277 		IBAA_Seed(*(const int *)buf);
278 		buf += sizeof(int);
279 		bytes -= sizeof(int);
280 	}
281 
282 	/*
283 	 * Warm up the generator to get rid of weak initial states.
284 	 */
285 	for (i = 0; i < 10; ++i)
286 		IBAA_Call();
287 }
288 
289 /*
290  * Extract a byte from IBAAs 256 32-bit u4 results array.
291  *
292  * NOTE: This code is designed to prevent MP races from taking
293  * IBAA_byte_index out of bounds.
294  */
295 static u_char
296 IBAA_Byte(void)
297 {
298 	u_char result;
299 	int index;
300 
301 	index = IBAA_byte_index;
302 	if (index == sizeof(IBAA_results)) {
303 		IBAA_Call();
304 		index = 0;
305 	}
306 	result = ((u_char *)IBAA_results)[index];
307 	IBAA_byte_index = index + 1;
308 	return result;
309 }
310 
311 /*------------------------------ IBAA ----------------------------------*/
312 
313 
314 /*------------------------------- L15 ----------------------------------*/
315 
316 /*
317  * IMPORTANT NOTE: LByteType must be exactly 8-bits in size or this software
318  * will not function correctly.
319  */
320 typedef unsigned char	LByteType;
321 
322 #define	L15_STATE_SIZE	256
323 
324 static LByteType	L15_x, L15_y;
325 static LByteType	L15_start_x;
326 static LByteType	L15_state[L15_STATE_SIZE];
327 
328 /*
329  * PRIVATE FUNCS:
330  */
331 
332 static void		L15_Swap(const LByteType pos1, const LByteType pos2);
333 static void		L15_InitState(void);
334 static void		L15_KSA(const LByteType * const key,
335 				const size_t keyLen);
336 static void		L15_Discard(const LByteType numCalls);
337 
338 /*
339  * PUBLIC INTERFACE:
340  */
341 static void		L15(const LByteType * const key, const size_t keyLen);
342 static LByteType	L15_Byte(void);
343 static void		L15_Vector(const LByteType * const key,
344 				const size_t keyLen);
345 
346 static __inline void
347 L15_Swap(const LByteType pos1, const LByteType pos2)
348 {
349 	const LByteType	save1 = L15_state[pos1];
350 
351 	L15_state[pos1] = L15_state[pos2];
352 	L15_state[pos2] = save1;
353 }
354 
355 static void
356 L15_InitState (void)
357 {
358 	size_t i;
359 	for (i = 0; i < L15_STATE_SIZE; ++i)
360 		L15_state[i] = i;
361 }
362 
363 #define  L_SCHEDULE(xx)						\
364 								\
365 for (i = 0; i < L15_STATE_SIZE; ++i) {				\
366     L15_Swap(i, (stateIndex += (L15_state[i] + (xx))));		\
367 }
368 
369 static void
370 L15_KSA (const LByteType * const key, const size_t keyLen)
371 {
372 	size_t	i, keyIndex;
373 	static LByteType stateIndex = 0;
374 
375 	for (keyIndex = 0; keyIndex < keyLen; ++keyIndex) {
376 		L_SCHEDULE(key[keyIndex]);
377 	}
378 	L_SCHEDULE(keyLen);
379 }
380 
381 static void
382 L15_Discard(const LByteType numCalls)
383 {
384 	LByteType i;
385 	for (i = 0; i < numCalls; ++i) {
386 		(void)L15_Byte();
387 	}
388 }
389 
390 
391 /*
392  * PUBLIC INTERFACE:
393  */
394 static void
395 L15(const LByteType * const key, const size_t keyLen)
396 {
397 	L15_x = L15_start_x = 0;
398 	L15_y = L15_STATE_SIZE - 1;
399 	L15_InitState();
400 	L15_KSA(key, keyLen);
401 	L15_Discard(L15_Byte());
402 }
403 
404 static LByteType
405 L15_Byte(void)
406 {
407 	LByteType z;
408 
409 	L15_Swap(L15_state[L15_x], L15_y);
410 	z = (L15_state [L15_x++] + L15_state[L15_y--]);
411 	if (L15_x == L15_start_x) {
412 		--L15_y;
413 	}
414 	return (L15_state[z]);
415 }
416 
417 static void
418 L15_Vector (const LByteType * const key, const size_t keyLen)
419 {
420 	L15_KSA(key, keyLen);
421 }
422 
423 /*------------------------------- L15 ----------------------------------*/
424 
425 /************************************************************************
426  *				KERNEL INTERFACE			*
427  ************************************************************************
428  *
429  * By Robin J Carey, Matthew Dillon and Alex Hornung.
430  */
431 
432 static int rand_thread_value;
433 static void NANOUP_EVENT(void);
434 static thread_t rand_td;
435 static struct spinlock rand_spin;
436 
437 static int sysctl_kern_random(SYSCTL_HANDLER_ARGS);
438 
439 static int nrandevents;
440 static int rand_mode = 2;
441 static struct systimer systimer_rand;
442 
443 static int sysctl_kern_rand_mode(SYSCTL_HANDLER_ARGS);
444 
445 SYSCTL_INT(_kern, OID_AUTO, nrandevents, CTLFLAG_RD, &nrandevents, 0, "");
446 SYSCTL_PROC(_kern, OID_AUTO, random, CTLFLAG_RD | CTLFLAG_ANYBODY, 0, 0,
447 		sysctl_kern_random, "I", "Acquire random data");
448 SYSCTL_PROC(_kern, OID_AUTO, rand_mode, CTLTYPE_STRING | CTLFLAG_RW, NULL, 0,
449     sysctl_kern_rand_mode, "A", "RNG mode (csprng, ibaa or mixed)");
450 
451 
452 /*
453  * Called from early boot
454  */
455 void
456 rand_initialize(void)
457 {
458 	struct timespec	now;
459 	int i;
460 
461 	csprng_init(&csprng_state);
462 #if 0
463 	/*
464 	 * XXX: we do the reseeding when someone uses the RNG instead
465 	 * of regularly using init_reseed (which initializes a callout)
466 	 * to avoid unnecessary and regular reseeding.
467 	 */
468 	csprng_init_reseed(&csprng_state);
469 #endif
470 
471 
472 	spin_init(&rand_spin, "randinit");
473 
474 	/* Initialize IBAA. */
475 	IBAA_Init();
476 
477 	/* Initialize L15. */
478 	nanouptime(&now);
479 	L15((const LByteType *)&now.tv_nsec, sizeof(now.tv_nsec));
480 	for (i = 0; i < (SIZE / 2); ++i) {
481 		nanotime(&now);
482 		add_buffer_randomness_src((const uint8_t *)&now.tv_nsec,
483 		    sizeof(now.tv_nsec), RAND_SRC_TIMING);
484 		nanouptime(&now);
485 		add_buffer_randomness_src((const uint8_t *)&now.tv_nsec,
486 		    sizeof(now.tv_nsec), RAND_SRC_TIMING);
487 	}
488 
489 	/*
490 	 * Warm up the generator to get rid of weak initial states.
491 	 */
492 	for (i = 0; i < 10; ++i)
493 		IBAA_Call();
494 }
495 
496 /*
497  * Keyboard events
498  */
499 void
500 add_keyboard_randomness(u_char scancode)
501 {
502 	spin_lock(&rand_spin);
503 	L15_Vector((const LByteType *) &scancode, sizeof (scancode));
504 	spin_unlock(&rand_spin);
505 	add_interrupt_randomness(0);
506 }
507 
508 /*
509  * Interrupt events.  This is SMP safe and allowed to race.
510  *
511  * This adjusts rand_thread_value which will be incorporated into the next
512  * time-buffered seed.  It does not effect the seeding period per-say.
513  */
514 void
515 add_interrupt_randomness(int intr)
516 {
517 	if (tsc_present) {
518 		rand_thread_value = (rand_thread_value << 4) ^ 1 ^
519 		((int)rdtsc() % 151);
520 	}
521 	++rand_thread_value;				/* ~1 bit */
522 }
523 
524 /*
525  * True random number source
526  */
527 int
528 add_buffer_randomness(const char *buf, int bytes)
529 {
530 	spin_lock(&rand_spin);
531 	L15_Vector((const LByteType *)buf, bytes);
532 	IBAA_Vector(buf, bytes);
533 	spin_unlock(&rand_spin);
534 
535 	atomic_add_int(&nrandevents, 1);
536 
537 	csprng_add_entropy(&csprng_state, RAND_SRC_UNKNOWN,
538 	    (const uint8_t *)buf, bytes, 0);
539 
540 	return 0;
541 }
542 
543 
544 int
545 add_buffer_randomness_src(const char *buf, int bytes, int srcid)
546 {
547 	spin_lock(&rand_spin);
548 	L15_Vector((const LByteType *)buf, bytes);
549 	IBAA_Vector(buf, bytes);
550 	spin_unlock(&rand_spin);
551 
552 	atomic_add_int(&nrandevents, 1);
553 
554 	csprng_add_entropy(&csprng_state, srcid & 0xff,
555 	    (const uint8_t *)buf, bytes, 0);
556 
557 	return 0;
558 }
559 
560 
561 /*
562  * Kqueue filter (always succeeds)
563  */
564 int
565 random_filter_read(struct knote *kn, long hint)
566 {
567 	return (1);
568 }
569 
570 /*
571  * Heavy weight random number generator.  May return less then the
572  * requested number of bytes.
573  *
574  * Instead of stopping early,
575  */
576 u_int
577 read_random(void *buf, u_int nbytes)
578 {
579 	int i, j;
580 
581 	if (rand_mode == 0) {
582 		/* Only use CSPRNG */
583 		i = csprng_get_random(&csprng_state, buf, nbytes, 0);
584 	} else if (rand_mode == 1) {
585 		/* Only use IBAA */
586 		spin_lock(&rand_spin);
587 		for (i = 0; i < nbytes; i++)
588 			((u_char *)buf)[i] = IBAA_Byte();
589 		spin_unlock(&rand_spin);
590 	} else {
591 		/* Mix both CSPRNG and IBAA */
592 		i = csprng_get_random(&csprng_state, buf, nbytes, 0);
593 		spin_lock(&rand_spin);
594 		for (j = 0; j < i; j++)
595 			((u_char *)buf)[j] ^= IBAA_Byte();
596 		spin_unlock(&rand_spin);
597 	}
598 
599 	add_interrupt_randomness(0);
600 	return (i > 0) ? i : 0;
601 }
602 
603 /*
604  * Heavy weight random number generator.  Must return the requested
605  * number of bytes.
606  */
607 u_int
608 read_random_unlimited(void *buf, u_int nbytes)
609 {
610 	u_int i;
611 
612 	spin_lock(&rand_spin);
613 	for (i = 0; i < nbytes; ++i)
614 		((u_char *)buf)[i] = IBAA_Byte();
615 	spin_unlock(&rand_spin);
616 	add_interrupt_randomness(0);
617 	return (i);
618 }
619 
620 /*
621  * Read random data via sysctl().
622  */
623 static
624 int
625 sysctl_kern_random(SYSCTL_HANDLER_ARGS)
626 {
627 	char buf[64];
628 	size_t n;
629 	size_t r;
630 	int error = 0;
631 
632 	n = req->oldlen;
633 	if (n > 1024 * 1024)
634 		n = 1024 * 1024;
635 	while (n > 0) {
636 		if ((r = n) > sizeof(buf))
637 			r = sizeof(buf);
638 		read_random_unlimited(buf, r);
639 		error = SYSCTL_OUT(req, buf, r);
640 		if (error)
641 			break;
642 		n -= r;
643 	}
644 	return(error);
645 }
646 
647 /*
648  * Change the random mode via sysctl().
649  */
650 static
651 const char *
652 rand_mode_to_str(int mode)
653 {
654 	switch (mode) {
655 	case 0:
656 		return "csprng";
657 	case 1:
658 		return "ibaa";
659 	case 2:
660 		return "mixed";
661 	default:
662 		return "unknown";
663 	}
664 }
665 
666 static
667 int
668 sysctl_kern_rand_mode(SYSCTL_HANDLER_ARGS)
669 {
670 	char mode[32];
671 	int error;
672 
673 	strncpy(mode, rand_mode_to_str(rand_mode), sizeof(mode)-1);
674 	error = sysctl_handle_string(oidp, mode, sizeof(mode), req);
675 	if (error || req->newptr == NULL)
676 	    return error;
677 
678 	if ((strncmp(mode, "csprng", sizeof(mode))) == 0)
679 		rand_mode = 0;
680 	else if ((strncmp(mode, "ibaa", sizeof(mode))) == 0)
681 		rand_mode = 1;
682 	else if ((strncmp(mode, "mixed", sizeof(mode))) == 0)
683 		rand_mode = 2;
684 	else
685 		error = EINVAL;
686 
687 	return error;
688 }
689 
690 /*
691  * Random number generator helper thread.  This limits code overhead from
692  * high frequency events by delaying the clearing of rand_thread_value.
693  *
694  * This is a time-buffered loop, with a randomizing delay.  Note that interrupt
695  * entropy does not cause the thread to wakeup any faster, but does improve the
696  * quality of the entropy produced.
697  */
698 static
699 void
700 rand_thread_loop(void *dummy)
701 {
702 	int64_t count;
703 
704 	for (;;) {
705 		/*
706 		 * Generate entropy.
707 		 */
708 		NANOUP_EVENT();
709 		spin_lock(&rand_spin);
710 		count = (uint8_t)L15_Byte();
711 		spin_unlock(&rand_spin);
712 
713 		/*
714 		 * Calculate 1/10 of a second to 2/10 of a second, fine-grained
715 		 * using a L15_Byte() feedback.
716 		 *
717 		 * Go faster in the first 1200 seconds after boot.  This effects
718 		 * the time-after-next interrupt (pipeline delay).
719 		 */
720 		count = sys_cputimer->freq * (count + 256) / (256 * 10);
721 		if (time_uptime < 120)
722 			count = count / 10 + 1;
723 		systimer_rand.periodic = count;
724 
725 		tsleep(rand_td, 0, "rwait", 0);
726 	}
727 }
728 
729 /*
730  * Systimer trigger - fine-grained random trigger
731  */
732 static
733 void
734 rand_thread_wakeup(struct systimer *timer, int in_ipi, struct intrframe *frame)
735 {
736 	wakeup(rand_td);
737 }
738 
739 static
740 void
741 rand_thread_init(void)
742 {
743 	systimer_init_periodic_nq(&systimer_rand, rand_thread_wakeup, NULL, 25);
744 	lwkt_create(rand_thread_loop, NULL, &rand_td, NULL, 0, 0, "random");
745 }
746 
747 SYSINIT(rand, SI_SUB_HELPER_THREADS, SI_ORDER_ANY, rand_thread_init, 0);
748 
749 /*
750  * Caller is time-buffered.  Incorporate any accumulated interrupt randomness
751  * as well as the high frequency bits of the TSC.
752  *
753  * A delta nanoseconds value is used to remove absolute time from the generated
754  * entropy.  Even though we are pushing 32 bits, this entropy is probably only
755  * good for one or two bits without any interrupt sources, and possibly 8 bits with.
756  */
757 static void
758 NANOUP_EVENT(void)
759 {
760 	static struct timespec	last;
761 	struct timespec		now;
762 	int			nsec;
763 
764 	/*
765 	 * Delta nanoseconds since last event
766 	 */
767 	nanouptime(&now);
768 	nsec = now.tv_nsec - last.tv_nsec;
769 	last = now;
770 
771 	/*
772 	 * Interrupt randomness.
773 	 */
774 	nsec ^= rand_thread_value;
775 
776 	/*
777 	 * The TSC, if present, generally has an even higher
778 	 * resolution.  Integrate a portion of it into our seed.
779 	 */
780 	if (tsc_present)
781 		nsec ^= (rdtsc() & 255) << 8;
782 
783 	/*
784 	 * Ok.
785 	 */
786 
787 	add_buffer_randomness_src((const uint8_t *)&nsec, sizeof(nsec), RAND_SRC_INTR);
788 }
789 
790