xref: /dragonfly/sys/kern/kern_nrandom.c (revision 9a92bb4c)
1 /*
2  * Copyright (c) 2004, 2005, 2006 Robin J Carey. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions, and the following disclaimer,
9  *    without modification, immediately at the beginning of the file.
10  * 2. The name of the author may not be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
17  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $DragonFly: src/sys/kern/kern_nrandom.c,v 1.7 2008/08/01 04:42:30 dillon Exp $
26  */
27 /*			   --- NOTES ---
28  *
29  * Note: The word "entropy" is often incorrectly used to describe
30  * random data. The word "entropy" originates from the science of
31  * Physics. The correct descriptive definition would be something
32  * along the lines of "seed", "unpredictable numbers" or
33  * "unpredictable data".
34  *
35  * Note: Some /dev/[u]random implementations save "seed" between
36  * boots which represents a security hazard since an adversary
37  * could acquire this data (since it is stored in a file). If
38  * the unpredictable data used in the above routines is only
39  * generated during Kernel operation, then an adversary can only
40  * acquire that data through a Kernel security compromise and/or
41  * a cryptographic algorithm failure/cryptanalysis.
42  *
43  * Note: On FreeBSD-4.11, interrupts have to be manually enabled
44  * using the rndcontrol(8) command.
45  *
46  *		--- DESIGN (FreeBSD-4.11 based) ---
47  *
48  *   The rnddev module automatically initializes itself the first time
49  * it is used (client calls any public rnddev_*() interface routine).
50  * Both CSPRNGs are initially seeded from the precise nano[up]time() routines.
51  * Tests show this method produces good enough results, suitable for intended
52  * use. It is necessary for both CSPRNGs to be completely seeded, initially.
53  *
54  *   After initialization and during Kernel operation the only suitable
55  * unpredictable data available is:
56  *
57  *	(1) Keyboard scan-codes.
58  *	(2) Nanouptime acquired by a Keyboard/Read-Event.
59  *	(3) Suitable interrupt source; hard-disk/ATA-device.
60  *
61  *      (X) Mouse-event (xyz-data unsuitable); NOT IMPLEMENTED.
62  *
63  *   This data is added to both CSPRNGs in real-time as it happens/
64  * becomes-available. Additionally, unpredictable (?) data may be
65  * acquired from a true-random number generator if such a device is
66  * available to the system (not advisable !).
67  *   Nanouptime() acquired by a Read-Event is a very important aspect of
68  * this design, since it ensures that unpredictable data is added to
69  * the CSPRNGs even if there are no other sources.
70  *   The nanouptime() Kernel routine is used since time relative to
71  * boot is less adversary-known than time itself.
72  *
73  *   This design has been thoroughly tested with debug logging
74  * and the output from both /dev/random and /dev/urandom has
75  * been tested with the DIEHARD test-suite; both pass.
76  *
77  * MODIFICATIONS MADE TO ORIGINAL "kern_random.c":
78  *
79  * 6th July 2005:
80  *
81  * o Changed ReadSeed() function to schedule future read-seed-events
82  *   by at least one second. Previous implementation used a randomised
83  *   scheduling { 0, 1, 2, 3 seconds }.
84  * o Changed SEED_NANOUP() function to use a "previous" accumulator
85  *   algorithm similar to ReadSeed(). This ensures that there is no
86  *   way that an adversary can tell what number is being added to the
87  *   CSPRNGs, since the number added to the CSPRNGs at Event-Time is
88  *   the sum of nanouptime()@Event and an unknown/secret number.
89  * o Changed rnddev_add_interrupt() function to schedule future
90  *   interrupt-events by at least one second. Previous implementation
91  *   had no scheduling algorithm which allowed an "interrupt storm"
92  *   to occur resulting in skewed data entering into the CSPRNGs.
93  *
94  *
95  * 9th July 2005:
96  *
97  * o Some small cleanups and change all internal functions to be
98  *   static/private.
99  * o Removed ReadSeed() since its functionality is already performed
100  *   by another function { rnddev_add_interrupt_OR_read() } and remove
101  *   the silly rndByte accumulator/feedback-thing (since multipying by
102  *   rndByte could yield a value of 0).
103  * o Made IBAA/L14 public interface become static/private;
104  *   Local to this file (not changed to that in the original C modules).
105  *
106  * 16th July 2005:
107  *
108  * o SEED_NANOUP() -> NANOUP_EVENT() function rename.
109  * o Make NANOUP_EVENT() handle the time-buffering directly so that all
110  *   time-stamp-events use this single time-buffer (including keyboard).
111  *   This removes dependancy on "time_second" Kernel variable.
112  * o Removed second-time-buffer code in rnddev_add_interrupt_OR_read (void).
113  * o Rewrote the time-buffering algorithm in NANOUP_EVENT() to use a
114  *   randomised time-delay range.
115  *
116  * 12th Dec 2005:
117  *
118  * o Updated to (hopefully final) L15 algorithm.
119  *
120  * 12th June 2006:
121  *
122  * o Added missing (u_char *) cast in RnddevRead() function.
123  * o Changed copyright to 3-clause BSD license and cleaned up the layout
124  *   of this file.
125  */
126 
127 #include <sys/types.h>
128 #include <sys/kernel.h>
129 #include <sys/systm.h>
130 #include <sys/poll.h>
131 #include <sys/random.h>
132 #include <sys/systimer.h>
133 #include <sys/time.h>
134 #include <sys/proc.h>
135 #include <sys/lock.h>
136 #include <sys/sysctl.h>
137 #include <sys/spinlock.h>
138 #include <machine/clock.h>
139 
140 #include <sys/thread2.h>
141 #include <sys/spinlock2.h>
142 
143 /*
144  * Portability note: The u_char/unsigned char type is used where
145  * uint8_t from <stdint.h> or u_int8_t from <sys/types.h> should really
146  * be being used. On FreeBSD, it is safe to make the assumption that these
147  * different types are equivalent (on all architectures).
148  * The FreeBSD <sys/crypto/rc4> module also makes this assumption.
149  */
150 
151 /*------------------------------ IBAA ----------------------------------*/
152 
153 /*-------------------------- IBAA CSPRNG -------------------------------*/
154 
155 /*
156  * NOTE: The original source code from which this source code (IBAA)
157  *       was taken has no copyright/license. The algorithm has no patent
158  *       and is freely/publicly available from:
159  *
160  *           http://www.burtleburtle.net/bob/rand/isaac.html
161  */
162 
163 /*
164  * ^ means XOR, & means bitwise AND, a<<b means shift a by b.
165  * barrel(a) shifts a 19 bits to the left, and bits wrap around
166  * ind(x) is (x AND 255), or (x mod 256)
167  */
168 typedef	u_int32_t	u4;   /* unsigned four bytes, 32 bits */
169 
170 #define	ALPHA		(8)
171 #define	SIZE		(1 << ALPHA)
172 #define MASK		(SIZE - 1)
173 #define	ind(x)		((x) & (SIZE - 1))
174 #define	barrel(a)	(((a) << 19) ^ ((a) >> 13))  /* beta=32,shift=19 */
175 
176 static void IBAA
177 (
178 	u4 *m,		/* Memory: array of SIZE ALPHA-bit terms */
179 	u4 *r,		/* Results: the sequence, same size as m */
180 	u4 *aa,		/* Accumulator: a single value */
181 	u4 *bb		/* the previous result */
182 )
183 {
184 	u4 a, b, x, y, i;
185 
186 	a = *aa; b = *bb;
187 	for (i = 0; i < SIZE; ++i) {
188 		x = m[i];
189 		a = barrel(a) + m[ind(i + (SIZE / 2))];	/* set a */
190 		m[i] = y = m[ind(x)] + a + b;		/* set m */
191 		r[i] = b = m[ind(y >> ALPHA)] + x;	/* set r */
192 	}
193 	*bb = b; *aa = a;
194 }
195 
196 /*-------------------------- IBAA CSPRNG -------------------------------*/
197 
198 
199 static u4	IBAA_memory[SIZE];
200 static u4	IBAA_results[SIZE];
201 static u4	IBAA_aa;
202 static u4	IBAA_bb;
203 
204 static volatile int IBAA_byte_index;
205 
206 
207 static void	IBAA_Init(void);
208 static void	IBAA_Call(void);
209 static void	IBAA_Seed(const u_int32_t val);
210 static u_char	IBAA_Byte(void);
211 
212 /*
213  * Initialize IBAA.
214  */
215 static void
216 IBAA_Init(void)
217 {
218 	size_t	i;
219 
220 	for (i = 0; i < SIZE; ++i) {
221 		IBAA_memory[i] = i;
222 	}
223 	IBAA_aa = IBAA_bb = 0;
224 	IBAA_byte_index = sizeof(IBAA_results);	/* force IBAA_Call() */
225 }
226 
227 /*
228  * PRIVATE: Call IBAA to produce 256 32-bit u4 results.
229  */
230 static void
231 IBAA_Call (void)
232 {
233 	IBAA(IBAA_memory, IBAA_results, &IBAA_aa, &IBAA_bb);
234 	IBAA_byte_index = 0;
235 }
236 
237 /*
238  * Add a 32-bit u4 seed value into IBAAs memory.  Mix the low 4 bits
239  * with 4 bits of PNG data to reduce the possibility of a seeding-based
240  * attack.
241  */
242 static void
243 IBAA_Seed (const u_int32_t val)
244 {
245 	static int memIndex;
246 	u4 *iptr;
247 
248 	iptr = &IBAA_memory[memIndex & MASK];
249 	*iptr = ((*iptr << 3) | (*iptr >> 29)) + (val ^ (IBAA_Byte() & 15));
250 	++memIndex;
251 }
252 
253 /*
254  * Extract a byte from IBAAs 256 32-bit u4 results array.
255  *
256  * NOTE: This code is designed to prevent MP races from taking
257  * IBAA_byte_index out of bounds.
258  */
259 static u_char
260 IBAA_Byte(void)
261 {
262 	u_char result;
263 	int index;
264 
265 	index = IBAA_byte_index;
266 	if (index == sizeof(IBAA_results)) {
267 		IBAA_Call();
268 		index = 0;
269 	}
270 	result = ((u_char *)IBAA_results)[index];
271 	IBAA_byte_index = index + 1;
272 	return result;
273 }
274 
275 /*------------------------------ IBAA ----------------------------------*/
276 
277 
278 /*------------------------------- L15 ----------------------------------*/
279 
280 /*
281  * IMPORTANT NOTE: LByteType must be exactly 8-bits in size or this software
282  * will not function correctly.
283  */
284 typedef unsigned char	LByteType;
285 
286 #define	L15_STATE_SIZE	256
287 
288 static LByteType	L15_x, L15_y;
289 static LByteType	L15_start_x;
290 static LByteType	L15_state[L15_STATE_SIZE];
291 
292 /*
293  * PRIVATE FUNCS:
294  */
295 
296 static void		L15_Swap(const LByteType pos1, const LByteType pos2);
297 static void		L15_InitState(void);
298 static void		L15_KSA(const LByteType * const key,
299 				const size_t keyLen);
300 static void		L15_Discard(const LByteType numCalls);
301 
302 /*
303  * PUBLIC INTERFACE:
304  */
305 static void		L15(const LByteType * const key, const size_t keyLen);
306 static LByteType	L15_Byte(void);
307 static void		L15_Vector(const LByteType * const key,
308 				const size_t keyLen);
309 
310 static __inline void
311 L15_Swap(const LByteType pos1, const LByteType pos2)
312 {
313 	const LByteType	save1 = L15_state[pos1];
314 
315 	L15_state[pos1] = L15_state[pos2];
316 	L15_state[pos2] = save1;
317 }
318 
319 static void
320 L15_InitState (void)
321 {
322 	size_t i;
323 	for (i = 0; i < L15_STATE_SIZE; ++i)
324 		L15_state[i] = i;
325 }
326 
327 #define  L_SCHEDULE(xx)						\
328 								\
329 for (i = 0; i < L15_STATE_SIZE; ++i) {				\
330     L15_Swap(i, (stateIndex += (L15_state[i] + (xx))));		\
331 }
332 
333 static void
334 L15_KSA (const LByteType * const key, const size_t keyLen)
335 {
336 	size_t	i, keyIndex;
337 	LByteType stateIndex = 0;
338 
339 	L_SCHEDULE(keyLen);
340 	for (keyIndex = 0; keyIndex < keyLen; ++keyIndex) {
341 		L_SCHEDULE(key[keyIndex]);
342 	}
343 }
344 
345 static void
346 L15_Discard(const LByteType numCalls)
347 {
348 	LByteType i;
349 	for (i = 0; i < numCalls; ++i) {
350 		(void)L15_Byte();
351 	}
352 }
353 
354 
355 /*
356  * PUBLIC INTERFACE:
357  */
358 static void
359 L15(const LByteType * const key, const size_t keyLen)
360 {
361 	L15_x = L15_start_x = 0;
362 	L15_y = L15_STATE_SIZE - 1;
363 	L15_InitState();
364 	L15_KSA(key, keyLen);
365 	L15_Discard(L15_Byte());
366 }
367 
368 static LByteType
369 L15_Byte(void)
370 {
371 	LByteType z;
372 
373 	L15_Swap(L15_state[L15_x], L15_y);
374 	z = (L15_state [L15_x++] + L15_state[L15_y--]);
375 	if (L15_x == L15_start_x) {
376 		--L15_y;
377 	}
378 	return (L15_state[z]);
379 }
380 
381 static void
382 L15_Vector (const LByteType * const key, const size_t keyLen)
383 {
384 	L15_KSA(key, keyLen);
385 }
386 
387 /*------------------------------- L15 ----------------------------------*/
388 
389 /************************************************************************
390  *				KERNEL INTERFACE			*
391  ************************************************************************
392  *
393  * By Robin J Carey and Matthew Dillon.
394  */
395 
396 static int rand_thread_signal = 1;
397 static void NANOUP_EVENT(void);
398 static thread_t rand_td;
399 static struct spinlock rand_spin;
400 
401 static int nrandevents;
402 SYSCTL_INT(_kern, OID_AUTO, nrandevents, CTLFLAG_RD, &nrandevents, 0, "");
403 static int seedenable;
404 SYSCTL_INT(_kern, OID_AUTO, seedenable, CTLFLAG_RW, &seedenable, 0, "");
405 
406 /*
407  * Called from early boot
408  */
409 void
410 rand_initialize(void)
411 {
412 	struct timespec	now;
413 	int i;
414 
415 	spin_init(&rand_spin);
416 
417 	/* Initialize IBAA. */
418 	IBAA_Init();
419 
420 	/* Initialize L15. */
421 	nanouptime(&now);
422 	L15((const LByteType *)&now.tv_nsec, sizeof(now.tv_nsec));
423 	for (i = 0; i < (SIZE / 2); ++i) {
424 		nanotime(&now);
425 		IBAA_Seed(now.tv_nsec);
426 		L15_Vector((const LByteType *)&now.tv_nsec,
427 			   sizeof(now.tv_nsec));
428 		nanouptime(&now);
429 		IBAA_Seed(now.tv_nsec);
430 		L15_Vector((const LByteType *)&now.tv_nsec,
431 			   sizeof(now.tv_nsec));
432 	}
433 
434 	/*
435 	 * Warm up the generator to get rid of weak initial states.
436 	 */
437 	for (i = 0; i < 10; ++i)
438 		IBAA_Call();
439 }
440 
441 /*
442  * Keyboard events
443  */
444 void
445 add_keyboard_randomness(u_char scancode)
446 {
447 	spin_lock_wr(&rand_spin);
448 	L15_Vector((const LByteType *) &scancode, sizeof (scancode));
449 	spin_unlock_wr(&rand_spin);
450 	add_interrupt_randomness(0);
451 }
452 
453 /*
454  * Interrupt events.  This is SMP safe and allowed to race.
455  */
456 void
457 add_interrupt_randomness(int intr)
458 {
459 	if (rand_thread_signal == 0) {
460 		rand_thread_signal = 1;
461 		lwkt_schedule(rand_td);
462 	}
463 }
464 
465 /*
466  * True random number source
467  */
468 void
469 add_true_randomness(int val)
470 {
471 	spin_lock_wr(&rand_spin);
472 	IBAA_Seed(val);
473 	L15_Vector((const LByteType *) &val, sizeof (val));
474 	++nrandevents;
475 	spin_unlock_wr(&rand_spin);
476 }
477 
478 int
479 add_buffer_randomness(const char *buf, int bytes)
480 {
481 	int error;
482 	int i;
483 
484 	if (seedenable && securelevel <= 0) {
485 		while (bytes >= sizeof(int)) {
486 			add_true_randomness(*(const int *)buf);
487 			buf += sizeof(int);
488 			bytes -= sizeof(int);
489 		}
490 		error = 0;
491 
492 		/*
493 		 * Warm up the generator to get rid of weak initial states.
494 		 */
495 		for (i = 0; i < 10; ++i)
496 			IBAA_Call();
497 	} else {
498 		error = EPERM;
499 	}
500 	return (error);
501 }
502 
503 /*
504  * Poll (always succeeds)
505  */
506 int
507 random_poll(cdev_t dev, int events)
508 {
509 	int revents = 0;
510 
511 	if (events & (POLLIN | POLLRDNORM))
512 		revents |= events & (POLLIN | POLLRDNORM);
513 	if (events & (POLLOUT | POLLWRNORM))
514 		revents |= events & (POLLOUT | POLLWRNORM);
515 
516 	return (revents);
517 }
518 
519 /*
520  * Heavy weight random number generator.  May return less then the
521  * requested number of bytes.
522  */
523 u_int
524 read_random(void *buf, u_int nbytes)
525 {
526 	u_int i;
527 
528 	spin_lock_wr(&rand_spin);
529 	for (i = 0; i < nbytes; ++i)
530 		((u_char *)buf)[i] = IBAA_Byte();
531 	spin_unlock_wr(&rand_spin);
532 	add_interrupt_randomness(0);
533 	return(i);
534 }
535 
536 /*
537  * Lightweight random number generator.  Must return requested number of
538  * bytes.
539  */
540 u_int
541 read_random_unlimited(void *buf, u_int nbytes)
542 {
543 	u_int i;
544 
545 	spin_lock_wr(&rand_spin);
546 	for (i = 0; i < nbytes; ++i)
547 		((u_char *)buf)[i] = L15_Byte();
548 	spin_unlock_wr(&rand_spin);
549 	add_interrupt_randomness(0);
550 	return (i);
551 }
552 
553 /*
554  * Random number generator helper thread.  This limits code overhead from
555  * high frequency events by delaying the clearing of rand_thread_signal.
556  */
557 static
558 void
559 rand_thread_loop(void *dummy)
560 {
561 	int count;
562 
563 	for (;;) {
564 		NANOUP_EVENT ();
565 		spin_lock_wr(&rand_spin);
566 		count = (int)(L15_Byte() * hz / (256 * 10) + hz / 10);
567 		spin_unlock_wr(&rand_spin);
568 		tsleep(rand_td, 0, "rwait", count);
569 		crit_enter();
570 		lwkt_deschedule_self(rand_td);
571 		cpu_sfence();
572 		rand_thread_signal = 0;
573 		crit_exit();
574 		lwkt_switch();
575 	}
576 }
577 
578 static
579 void
580 rand_thread_init(void)
581 {
582 	lwkt_create(rand_thread_loop, NULL, &rand_td, NULL, 0, 0, "random");
583 }
584 
585 SYSINIT(rand, SI_SUB_HELPER_THREADS, SI_ORDER_ANY, rand_thread_init, 0);
586 
587 /*
588  * Time-buffered event time-stamping. This is necessary to cutoff higher
589  * event frequencies, e.g. an interrupt occuring at 25Hz. In such cases
590  * the CPU is being chewed and the timestamps are skewed (minimal variation).
591  * Use a nano-second time-delay to limit how many times an Event can occur
592  * in one second; <= 5Hz. Note that this doesn't prevent time-stamp skewing.
593  * This implementation randmoises the time-delay between events, which adds
594  * a layer of security/unpredictability with regard to read-events (a user
595  * controlled input).
596  *
597  * Note: now.tv_nsec should range [ 0 - 1000,000,000 ].
598  * Note: "ACCUM" is a security measure (result = capped-unknown + unknown),
599  *       and also produces an uncapped (>=32-bit) value.
600  */
601 static void
602 NANOUP_EVENT(void)
603 {
604 	static struct timespec	ACCUM = { 0, 0 };
605 	static struct timespec	NEXT  = { 0, 0 };
606 	struct timespec		now;
607 
608 	nanouptime(&now);
609 	spin_lock_wr(&rand_spin);
610 	if ((now.tv_nsec > NEXT.tv_nsec) || (now.tv_sec != NEXT.tv_sec)) {
611 		/*
612 		 * Randomised time-delay: 200e6 - 350e6 ns; 5 - 2.86 Hz.
613 		 */
614 		unsigned long one_mil;
615 		unsigned long timeDelay;
616 
617 		one_mil = 1000000UL;	/* 0.001 s */
618 		timeDelay = (one_mil * 200) +
619 			    (((unsigned long)ACCUM.tv_nsec % 151) * one_mil);
620 		NEXT.tv_nsec = now.tv_nsec + timeDelay;
621 		NEXT.tv_sec = now.tv_sec;
622 		ACCUM.tv_nsec += now.tv_nsec;
623 
624 		/*
625 		 * The TSC, if present, generally has an even higher
626 		 * resolution.  Integrate a portion of it into our seed.
627 		 */
628 		if (tsc_present)
629 			ACCUM.tv_nsec ^= rdtsc() & 255;
630 
631 		IBAA_Seed(ACCUM.tv_nsec);
632 		L15_Vector((const LByteType *)&ACCUM.tv_nsec,
633 			   sizeof(ACCUM.tv_nsec));
634 		++nrandevents;
635 	}
636 	spin_unlock_wr(&rand_spin);
637 }
638 
639