xref: /dragonfly/sys/kern/kern_nrandom.c (revision f7df6c8e)
1 /*
2  * Copyright (c) 2004-2014 The DragonFly Project. All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * by Alex Hornung <alex@alexhornung.com>
7  * by Robin J Carey
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions, and the following disclaimer,
14  *    without modification, immediately at the beginning of the file.
15  * 2. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
22  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 /*			   --- NOTES ---
31  *
32  * Note: The word "entropy" is often incorrectly used to describe
33  * random data. The word "entropy" originates from the science of
34  * Physics. The correct descriptive definition would be something
35  * along the lines of "seed", "unpredictable numbers" or
36  * "unpredictable data".
37  *
38  * Note: Some /dev/[u]random implementations save "seed" between
39  * boots which represents a security hazard since an adversary
40  * could acquire this data (since it is stored in a file). If
41  * the unpredictable data used in the above routines is only
42  * generated during Kernel operation, then an adversary can only
43  * acquire that data through a Kernel security compromise and/or
44  * a cryptographic algorithm failure/cryptanalysis.
45  *
46  * Note: On FreeBSD-4.11, interrupts have to be manually enabled
47  * using the rndcontrol(8) command.
48  *
49  *		--- DESIGN (FreeBSD-4.11 based) ---
50  *
51  *   The rnddev module automatically initializes itself the first time
52  * it is used (client calls any public rnddev_*() interface routine).
53  * Both CSPRNGs are initially seeded from the precise nano[up]time() routines.
54  * Tests show this method produces good enough results, suitable for intended
55  * use. It is necessary for both CSPRNGs to be completely seeded, initially.
56  *
57  *   After initialization and during Kernel operation the only suitable
58  * unpredictable data available is:
59  *
60  *	(1) Keyboard scan-codes.
61  *	(2) Nanouptime acquired by a Keyboard/Read-Event.
62  *	(3) Suitable interrupt source; hard-disk/ATA-device.
63  *
64  *      (X) Mouse-event (xyz-data unsuitable); NOT IMPLEMENTED.
65  *
66  *   This data is added to both CSPRNGs in real-time as it happens/
67  * becomes-available. Additionally, unpredictable (?) data may be
68  * acquired from a true-random number generator if such a device is
69  * available to the system (not advisable !).
70  *   Nanouptime() acquired by a Read-Event is a very important aspect of
71  * this design, since it ensures that unpredictable data is added to
72  * the CSPRNGs even if there are no other sources.
73  *   The nanouptime() Kernel routine is used since time relative to
74  * boot is less adversary-known than time itself.
75  *
76  *   This design has been thoroughly tested with debug logging
77  * and the output from both /dev/random and /dev/urandom has
78  * been tested with the DIEHARD test-suite; both pass.
79  *
80  * MODIFICATIONS MADE TO ORIGINAL "kern_random.c":
81  *
82  * 6th July 2005:
83  *
84  * o Changed ReadSeed() function to schedule future read-seed-events
85  *   by at least one second. Previous implementation used a randomised
86  *   scheduling { 0, 1, 2, 3 seconds }.
87  * o Changed SEED_NANOUP() function to use a "previous" accumulator
88  *   algorithm similar to ReadSeed(). This ensures that there is no
89  *   way that an adversary can tell what number is being added to the
90  *   CSPRNGs, since the number added to the CSPRNGs at Event-Time is
91  *   the sum of nanouptime()@Event and an unknown/secret number.
92  * o Changed rnddev_add_interrupt() function to schedule future
93  *   interrupt-events by at least one second. Previous implementation
94  *   had no scheduling algorithm which allowed an "interrupt storm"
95  *   to occur resulting in skewed data entering into the CSPRNGs.
96  *
97  *
98  * 9th July 2005:
99  *
100  * o Some small cleanups and change all internal functions to be
101  *   static/private.
102  * o Removed ReadSeed() since its functionality is already performed
103  *   by another function { rnddev_add_interrupt_OR_read() } and remove
104  *   the silly rndByte accumulator/feedback-thing (since multipying by
105  *   rndByte could yield a value of 0).
106  * o Made IBAA/L14 public interface become static/private;
107  *   Local to this file (not changed to that in the original C modules).
108  *
109  * 16th July 2005:
110  *
111  * o SEED_NANOUP() -> NANOUP_EVENT() function rename.
112  * o Make NANOUP_EVENT() handle the time-buffering directly so that all
113  *   time-stamp-events use this single time-buffer (including keyboard).
114  *   This removes dependancy on "time_second" Kernel variable.
115  * o Removed second-time-buffer code in rnddev_add_interrupt_OR_read (void).
116  * o Rewrote the time-buffering algorithm in NANOUP_EVENT() to use a
117  *   randomised time-delay range.
118  *
119  * 12th Dec 2005:
120  *
121  * o Updated to (hopefully final) L15 algorithm.
122  *
123  * 12th June 2006:
124  *
125  * o Added missing (u_char *) cast in RnddevRead() function.
126  * o Changed copyright to 3-clause BSD license and cleaned up the layout
127  *   of this file.
128  *
129  * For a proper changelog, refer to the version control history of this
130  * file.
131  */
132 
133 #include <sys/types.h>
134 #include <sys/kernel.h>
135 #include <sys/systm.h>
136 #include <sys/poll.h>
137 #include <sys/event.h>
138 #include <sys/random.h>
139 #include <sys/systimer.h>
140 #include <sys/time.h>
141 #include <sys/proc.h>
142 #include <sys/lock.h>
143 #include <sys/sysctl.h>
144 #include <sys/spinlock.h>
145 #include <sys/csprng.h>
146 #include <machine/atomic.h>
147 #include <machine/clock.h>
148 
149 #include <sys/thread2.h>
150 #include <sys/spinlock2.h>
151 #include <sys/mplock2.h>
152 
153 
154 struct csprng_state csprng_state;
155 
156 /*
157  * Portability note: The u_char/unsigned char type is used where
158  * uint8_t from <stdint.h> or u_int8_t from <sys/types.h> should really
159  * be being used. On FreeBSD, it is safe to make the assumption that these
160  * different types are equivalent (on all architectures).
161  * The FreeBSD <sys/crypto/rc4> module also makes this assumption.
162  */
163 
164 /*------------------------------ IBAA ----------------------------------*/
165 
166 /*-------------------------- IBAA CSPRNG -------------------------------*/
167 
168 /*
169  * NOTE: The original source code from which this source code (IBAA)
170  *       was taken has no copyright/license. The algorithm has no patent
171  *       and is freely/publicly available from:
172  *
173  *           http://www.burtleburtle.net/bob/rand/isaac.html
174  */
175 
176 /*
177  * ^ means XOR, & means bitwise AND, a<<b means shift a by b.
178  * barrel(a) shifts a 19 bits to the left, and bits wrap around
179  * ind(x) is (x AND 255), or (x mod 256)
180  */
181 typedef	u_int32_t	u4;   /* unsigned four bytes, 32 bits */
182 
183 #define	ALPHA		(8)
184 #define	SIZE		(1 << ALPHA)
185 #define MASK		(SIZE - 1)
186 #define	ind(x)		((x) & (SIZE - 1))
187 #define	barrel(a)	(((a) << 20) ^ ((a) >> 12))  /* beta=32,shift=20 */
188 
189 static void IBAA
190 (
191 	u4 *m,		/* Memory: array of SIZE ALPHA-bit terms */
192 	u4 *r,		/* Results: the sequence, same size as m */
193 	u4 *aa,		/* Accumulator: a single value */
194 	u4 *bb,		/* the previous result */
195 	u4 *counter	/* counter */
196 )
197 {
198 	u4 a, b, x, y, i;
199 
200 	a = *aa;
201 	b = *bb + *counter;
202 	++*counter;
203 	for (i = 0; i < SIZE; ++i) {
204 		x = m[i];
205 		a = barrel(a) + m[ind(i + (SIZE / 2))];	/* set a */
206 		m[i] = y = m[ind(x)] + a + b;		/* set m */
207 		r[i] = b = m[ind(y >> ALPHA)] + x;	/* set r */
208 	}
209 	*bb = b; *aa = a;
210 }
211 
212 /*-------------------------- IBAA CSPRNG -------------------------------*/
213 
214 
215 static u4	IBAA_memory[SIZE];
216 static u4	IBAA_results[SIZE];
217 static u4	IBAA_aa;
218 static u4	IBAA_bb;
219 static u4	IBAA_counter;
220 
221 static volatile int IBAA_byte_index;
222 
223 
224 static void	IBAA_Init(void);
225 static void	IBAA_Call(void);
226 static void	IBAA_Seed(const u_int32_t val);
227 static u_char	IBAA_Byte(void);
228 
229 /*
230  * Initialize IBAA.
231  */
232 static void
233 IBAA_Init(void)
234 {
235 	size_t	i;
236 
237 	for (i = 0; i < SIZE; ++i) {
238 		IBAA_memory[i] = i;
239 	}
240 	IBAA_aa = IBAA_bb = 0;
241 	IBAA_counter = 0;
242 	IBAA_byte_index = sizeof(IBAA_results);	/* force IBAA_Call() */
243 }
244 
245 /*
246  * PRIVATE: Call IBAA to produce 256 32-bit u4 results.
247  */
248 static void
249 IBAA_Call (void)
250 {
251 	IBAA(IBAA_memory, IBAA_results, &IBAA_aa, &IBAA_bb, &IBAA_counter);
252 	IBAA_byte_index = 0;
253 }
254 
255 /*
256  * Add a 32-bit u4 seed value into IBAAs memory.  Mix the low 4 bits
257  * with 4 bits of PNG data to reduce the possibility of a seeding-based
258  * attack.
259  */
260 static void
261 IBAA_Seed (const u_int32_t val)
262 {
263 	static int memIndex;
264 	u4 *iptr;
265 
266 	iptr = &IBAA_memory[memIndex & MASK];
267 	*iptr = ((*iptr << 3) | (*iptr >> 29)) + (val ^ (IBAA_Byte() & 15));
268 	++memIndex;
269 }
270 
271 static void
272 IBAA_Vector (const char *buf, int bytes)
273 {
274 	int i;
275 
276 	while (bytes >= sizeof(int)) {
277 		IBAA_Seed(*(const int *)buf);
278 		buf += sizeof(int);
279 		bytes -= sizeof(int);
280 	}
281 
282 	/*
283 	 * Warm up the generator to get rid of weak initial states.
284 	 */
285 	for (i = 0; i < 10; ++i)
286 		IBAA_Call();
287 }
288 
289 /*
290  * Extract a byte from IBAAs 256 32-bit u4 results array.
291  *
292  * NOTE: This code is designed to prevent MP races from taking
293  * IBAA_byte_index out of bounds.
294  */
295 static u_char
296 IBAA_Byte(void)
297 {
298 	u_char result;
299 	int index;
300 
301 	index = IBAA_byte_index;
302 	if (index == sizeof(IBAA_results)) {
303 		IBAA_Call();
304 		index = 0;
305 	}
306 	result = ((u_char *)IBAA_results)[index];
307 	IBAA_byte_index = index + 1;
308 	return result;
309 }
310 
311 /*------------------------------ IBAA ----------------------------------*/
312 
313 
314 /*------------------------------- L15 ----------------------------------*/
315 
316 /*
317  * IMPORTANT NOTE: LByteType must be exactly 8-bits in size or this software
318  * will not function correctly.
319  */
320 typedef unsigned char	LByteType;
321 
322 #define	L15_STATE_SIZE	256
323 
324 static LByteType	L15_x, L15_y;
325 static LByteType	L15_start_x;
326 static LByteType	L15_state[L15_STATE_SIZE];
327 
328 /*
329  * PRIVATE FUNCS:
330  */
331 
332 static void		L15_Swap(const LByteType pos1, const LByteType pos2);
333 static void		L15_InitState(void);
334 static void		L15_KSA(const LByteType * const key,
335 				const size_t keyLen);
336 static void		L15_Discard(const LByteType numCalls);
337 
338 /*
339  * PUBLIC INTERFACE:
340  */
341 static void		L15(const LByteType * const key, const size_t keyLen);
342 static LByteType	L15_Byte(void);
343 static void		L15_Vector(const LByteType * const key,
344 				const size_t keyLen);
345 
346 static __inline void
347 L15_Swap(const LByteType pos1, const LByteType pos2)
348 {
349 	const LByteType	save1 = L15_state[pos1];
350 
351 	L15_state[pos1] = L15_state[pos2];
352 	L15_state[pos2] = save1;
353 }
354 
355 static void
356 L15_InitState (void)
357 {
358 	size_t i;
359 	for (i = 0; i < L15_STATE_SIZE; ++i)
360 		L15_state[i] = i;
361 }
362 
363 #define  L_SCHEDULE(xx)						\
364 								\
365 for (i = 0; i < L15_STATE_SIZE; ++i) {				\
366     L15_Swap(i, (stateIndex += (L15_state[i] + (xx))));		\
367 }
368 
369 static void
370 L15_KSA (const LByteType * const key, const size_t keyLen)
371 {
372 	size_t	i, keyIndex;
373 	static LByteType stateIndex = 0;
374 
375 	for (keyIndex = 0; keyIndex < keyLen; ++keyIndex) {
376 		L_SCHEDULE(key[keyIndex]);
377 	}
378 	L_SCHEDULE(keyLen);
379 }
380 
381 static void
382 L15_Discard(const LByteType numCalls)
383 {
384 	LByteType i;
385 	for (i = 0; i < numCalls; ++i) {
386 		(void)L15_Byte();
387 	}
388 }
389 
390 
391 /*
392  * PUBLIC INTERFACE:
393  */
394 static void
395 L15(const LByteType * const key, const size_t keyLen)
396 {
397 	L15_x = L15_start_x = 0;
398 	L15_y = L15_STATE_SIZE - 1;
399 	L15_InitState();
400 	L15_KSA(key, keyLen);
401 	L15_Discard(L15_Byte());
402 }
403 
404 static LByteType
405 L15_Byte(void)
406 {
407 	LByteType z;
408 
409 	L15_Swap(L15_state[L15_x], L15_y);
410 	z = (L15_state [L15_x++] + L15_state[L15_y--]);
411 	if (L15_x == L15_start_x) {
412 		--L15_y;
413 	}
414 	return (L15_state[z]);
415 }
416 
417 static void
418 L15_Vector (const LByteType * const key, const size_t keyLen)
419 {
420 	L15_KSA(key, keyLen);
421 }
422 
423 /*------------------------------- L15 ----------------------------------*/
424 
425 /************************************************************************
426  *				KERNEL INTERFACE			*
427  ************************************************************************
428  *
429  * By Robin J Carey, Matthew Dillon and Alex Hornung.
430  */
431 
432 static int rand_thread_signal = 1;
433 static void NANOUP_EVENT(void);
434 static thread_t rand_td;
435 static struct spinlock rand_spin;
436 
437 static int sysctl_kern_random(SYSCTL_HANDLER_ARGS);
438 
439 static int nrandevents;
440 static int rand_mode = 2;
441 
442 static int sysctl_kern_rand_mode(SYSCTL_HANDLER_ARGS);
443 
444 SYSCTL_INT(_kern, OID_AUTO, nrandevents, CTLFLAG_RD, &nrandevents, 0, "");
445 SYSCTL_PROC(_kern, OID_AUTO, random, CTLFLAG_RD | CTLFLAG_ANYBODY, 0, 0,
446 		sysctl_kern_random, "I", "Acquire random data");
447 SYSCTL_PROC(_kern, OID_AUTO, rand_mode, CTLTYPE_STRING | CTLFLAG_RW, NULL, 0,
448     sysctl_kern_rand_mode, "A", "RNG mode (csprng, ibaa or mixed)");
449 
450 
451 /*
452  * Called from early boot
453  */
454 void
455 rand_initialize(void)
456 {
457 	struct timespec	now;
458 	int i;
459 
460 	csprng_init(&csprng_state);
461 #if 0
462 	/*
463 	 * XXX: we do the reseeding when someone uses the RNG instead
464 	 * of regularly using init_reseed (which initializes a callout)
465 	 * to avoid unnecessary and regular reseeding.
466 	 */
467 	csprng_init_reseed(&csprng_state);
468 #endif
469 
470 
471 	spin_init(&rand_spin, "randinit");
472 
473 	/* Initialize IBAA. */
474 	IBAA_Init();
475 
476 	/* Initialize L15. */
477 	nanouptime(&now);
478 	L15((const LByteType *)&now.tv_nsec, sizeof(now.tv_nsec));
479 	for (i = 0; i < (SIZE / 2); ++i) {
480 		nanotime(&now);
481 		add_buffer_randomness_src((const uint8_t *)&now.tv_nsec,
482 		    sizeof(now.tv_nsec), RAND_SRC_TIMING);
483 		nanouptime(&now);
484 		add_buffer_randomness_src((const uint8_t *)&now.tv_nsec,
485 		    sizeof(now.tv_nsec), RAND_SRC_TIMING);
486 	}
487 
488 	/*
489 	 * Warm up the generator to get rid of weak initial states.
490 	 */
491 	for (i = 0; i < 10; ++i)
492 		IBAA_Call();
493 }
494 
495 /*
496  * Keyboard events
497  */
498 void
499 add_keyboard_randomness(u_char scancode)
500 {
501 	spin_lock(&rand_spin);
502 	L15_Vector((const LByteType *) &scancode, sizeof (scancode));
503 	spin_unlock(&rand_spin);
504 	add_interrupt_randomness(0);
505 }
506 
507 /*
508  * Interrupt events.  This is SMP safe and allowed to race.
509  */
510 void
511 add_interrupt_randomness(int intr)
512 {
513 	if (rand_thread_signal == 0) {
514 		rand_thread_signal = 1;
515 		lwkt_schedule(rand_td);
516 	}
517 }
518 
519 /*
520  * True random number source
521  */
522 int
523 add_buffer_randomness(const char *buf, int bytes)
524 {
525 	spin_lock(&rand_spin);
526 	L15_Vector((const LByteType *)buf, bytes);
527 	IBAA_Vector(buf, bytes);
528 	spin_unlock(&rand_spin);
529 
530 	atomic_add_int(&nrandevents, 1);
531 
532 	csprng_add_entropy(&csprng_state, RAND_SRC_UNKNOWN,
533 	    (const uint8_t *)buf, bytes, 0);
534 
535 	return 0;
536 }
537 
538 
539 int
540 add_buffer_randomness_src(const char *buf, int bytes, int srcid)
541 {
542 	spin_lock(&rand_spin);
543 	L15_Vector((const LByteType *)buf, bytes);
544 	IBAA_Vector(buf, bytes);
545 	spin_unlock(&rand_spin);
546 
547 	atomic_add_int(&nrandevents, 1);
548 
549 	csprng_add_entropy(&csprng_state, srcid & 0xff,
550 	    (const uint8_t *)buf, bytes, 0);
551 
552 	return 0;
553 }
554 
555 
556 /*
557  * Kqueue filter (always succeeds)
558  */
559 int
560 random_filter_read(struct knote *kn, long hint)
561 {
562 	return (1);
563 }
564 
565 /*
566  * Heavy weight random number generator.  May return less then the
567  * requested number of bytes.
568  *
569  * Instead of stopping early,
570  */
571 u_int
572 read_random(void *buf, u_int nbytes)
573 {
574 	int i, j;
575 
576 	if (rand_mode == 0) {
577 		/* Only use CSPRNG */
578 		i = csprng_get_random(&csprng_state, buf, nbytes, 0);
579 	} else if (rand_mode == 1) {
580 		/* Only use IBAA */
581 		spin_lock(&rand_spin);
582 		for (i = 0; i < nbytes; i++)
583 			((u_char *)buf)[i] = IBAA_Byte();
584 		spin_unlock(&rand_spin);
585 	} else {
586 		/* Mix both CSPRNG and IBAA */
587 		i = csprng_get_random(&csprng_state, buf, nbytes, 0);
588 		spin_lock(&rand_spin);
589 		for (j = 0; j < i; j++)
590 			((u_char *)buf)[j] ^= IBAA_Byte();
591 		spin_unlock(&rand_spin);
592 	}
593 
594 	add_interrupt_randomness(0);
595 	return (i > 0) ? i : 0;
596 }
597 
598 /*
599  * Heavy weight random number generator.  Must return the requested
600  * number of bytes.
601  */
602 u_int
603 read_random_unlimited(void *buf, u_int nbytes)
604 {
605 	u_int i;
606 
607 	spin_lock(&rand_spin);
608 	for (i = 0; i < nbytes; ++i)
609 		((u_char *)buf)[i] = IBAA_Byte();
610 	spin_unlock(&rand_spin);
611 	add_interrupt_randomness(0);
612 	return (i);
613 }
614 
615 /*
616  * Read random data via sysctl().
617  */
618 static
619 int
620 sysctl_kern_random(SYSCTL_HANDLER_ARGS)
621 {
622 	char buf[64];
623 	size_t n;
624 	size_t r;
625 	int error = 0;
626 
627 	n = req->oldlen;
628 	if (n > 1024 * 1024)
629 		n = 1024 * 1024;
630 	while (n > 0) {
631 		if ((r = n) > sizeof(buf))
632 			r = sizeof(buf);
633 		read_random_unlimited(buf, r);
634 		error = SYSCTL_OUT(req, buf, r);
635 		if (error)
636 			break;
637 		n -= r;
638 	}
639 	return(error);
640 }
641 
642 /*
643  * Change the random mode via sysctl().
644  */
645 static
646 const char *
647 rand_mode_to_str(int mode)
648 {
649 	switch (mode) {
650 	case 0:
651 		return "csprng";
652 	case 1:
653 		return "ibaa";
654 	case 2:
655 		return "mixed";
656 	default:
657 		return "unknown";
658 	}
659 }
660 
661 static
662 int
663 sysctl_kern_rand_mode(SYSCTL_HANDLER_ARGS)
664 {
665 	char mode[32];
666 	int error;
667 
668 	strncpy(mode, rand_mode_to_str(rand_mode), sizeof(mode)-1);
669 	error = sysctl_handle_string(oidp, mode, sizeof(mode), req);
670 	if (error || req->newptr == NULL)
671 	    return error;
672 
673 	if ((strncmp(mode, "csprng", sizeof(mode))) == 0)
674 		rand_mode = 0;
675 	else if ((strncmp(mode, "ibaa", sizeof(mode))) == 0)
676 		rand_mode = 1;
677 	else if ((strncmp(mode, "mixed", sizeof(mode))) == 0)
678 		rand_mode = 2;
679 	else
680 		error = EINVAL;
681 
682 	return error;
683 }
684 
685 /*
686  * Random number generator helper thread.  This limits code overhead from
687  * high frequency events by delaying the clearing of rand_thread_signal.
688  *
689  * MPSAFE thread
690  */
691 static
692 void
693 rand_thread_loop(void *dummy)
694 {
695 	int count;
696 
697 	for (;;) {
698 		NANOUP_EVENT ();
699 		spin_lock(&rand_spin);
700 		count = (int)(L15_Byte() * hz / (256 * 10) + hz / 10 + 1);
701 		spin_unlock(&rand_spin);
702 		tsleep(rand_td, 0, "rwait", count);
703 		crit_enter();
704 		lwkt_deschedule_self(rand_td);
705 		cpu_sfence();
706 		rand_thread_signal = 0;
707 		crit_exit();
708 		lwkt_switch();
709 	}
710 }
711 
712 static
713 void
714 rand_thread_init(void)
715 {
716 	lwkt_create(rand_thread_loop, NULL, &rand_td, NULL, 0, 0, "random");
717 }
718 
719 SYSINIT(rand, SI_SUB_HELPER_THREADS, SI_ORDER_ANY, rand_thread_init, 0);
720 
721 /*
722  * Time-buffered event time-stamping. This is necessary to cutoff higher
723  * event frequencies, e.g. an interrupt occuring at 25Hz. In such cases
724  * the CPU is being chewed and the timestamps are skewed (minimal variation).
725  * Use a nano-second time-delay to limit how many times an Event can occur
726  * in one second; <= 5Hz. Note that this doesn't prevent time-stamp skewing.
727  * This implementation randmoises the time-delay between events, which adds
728  * a layer of security/unpredictability with regard to read-events (a user
729  * controlled input).
730  *
731  * Note: now.tv_nsec should range [ 0 - 1000,000,000 ].
732  * Note: "ACCUM" is a security measure (result = capped-unknown + unknown),
733  *       and also produces an uncapped (>=32-bit) value.
734  */
735 static void
736 NANOUP_EVENT(void)
737 {
738 	static struct timespec	ACCUM = { 0, 0 };
739 	static struct timespec	NEXT  = { 0, 0 };
740 	struct timespec		now;
741 
742 	nanouptime(&now);
743 	spin_lock(&rand_spin);
744 	if ((now.tv_nsec > NEXT.tv_nsec) || (now.tv_sec != NEXT.tv_sec)) {
745 		/*
746 		 * Randomised time-delay: 200e6 - 350e6 ns; 5 - 2.86 Hz.
747 		 */
748 		unsigned long one_mil;
749 		unsigned long timeDelay;
750 
751 		one_mil = 1000000UL;	/* 0.001 s */
752 		timeDelay = (one_mil * 200) +
753 			    (((unsigned long)ACCUM.tv_nsec % 151) * one_mil);
754 		NEXT.tv_nsec = now.tv_nsec + timeDelay;
755 		NEXT.tv_sec = now.tv_sec;
756 		ACCUM.tv_nsec += now.tv_nsec;
757 
758 		/*
759 		 * The TSC, if present, generally has an even higher
760 		 * resolution.  Integrate a portion of it into our seed.
761 		 */
762 		if (tsc_present)
763 			ACCUM.tv_nsec ^= rdtsc() & 255;
764 
765 		spin_unlock(&rand_spin);
766 		add_buffer_randomness_src((const uint8_t *)&ACCUM.tv_nsec,
767 		    sizeof(ACCUM.tv_nsec), RAND_SRC_INTR);
768 		spin_lock(&rand_spin);
769 	}
770 	spin_unlock(&rand_spin);
771 }
772 
773