xref: /dragonfly/sys/kern/kern_ntptime.c (revision 9c600e7d)
1 /***********************************************************************
2  *								       *
3  * Copyright (c) David L. Mills 1993-2001			       *
4  *								       *
5  * Permission to use, copy, modify, and distribute this software and   *
6  * its documentation for any purpose and without fee is hereby	       *
7  * granted, provided that the above copyright notice appears in all    *
8  * copies and that both the copyright notice and this permission       *
9  * notice appear in supporting documentation, and that the name	       *
10  * University of Delaware not be used in advertising or publicity      *
11  * pertaining to distribution of the software without specific,	       *
12  * written prior permission. The University of Delaware makes no       *
13  * representations about the suitability this software for any	       *
14  * purpose. It is provided "as is" without express or implied	       *
15  * warranty.							       *
16  *								       *
17  **********************************************************************/
18 
19 /*
20  * Adapted from the original sources for FreeBSD and timecounters by:
21  * Poul-Henning Kamp <phk@FreeBSD.org>.
22  *
23  * The 32bit version of the "LP" macros seems a bit past its "sell by"
24  * date so I have retained only the 64bit version and included it directly
25  * in this file.
26  *
27  * Only minor changes done to interface with the timecounters over in
28  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
29  * confusing and/or plain wrong in that context.
30  *
31  * $FreeBSD: src/sys/kern/kern_ntptime.c,v 1.32.2.2 2001/04/22 11:19:46 jhay Exp $
32  * $DragonFly: src/sys/kern/kern_ntptime.c,v 1.5 2003/07/24 01:41:25 dillon Exp $
33  */
34 
35 #include "opt_ntp.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/sysproto.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/time.h>
43 #include <sys/timex.h>
44 #include <sys/timepps.h>
45 #include <sys/sysctl.h>
46 
47 /*
48  * Single-precision macros for 64-bit machines
49  */
50 typedef long long l_fp;
51 #define L_ADD(v, u)	((v) += (u))
52 #define L_SUB(v, u)	((v) -= (u))
53 #define L_ADDHI(v, a)	((v) += (long long)(a) << 32)
54 #define L_NEG(v)	((v) = -(v))
55 #define L_RSHIFT(v, n) \
56 	do { \
57 		if ((v) < 0) \
58 			(v) = -(-(v) >> (n)); \
59 		else \
60 			(v) = (v) >> (n); \
61 	} while (0)
62 #define L_MPY(v, a)	((v) *= (a))
63 #define L_CLR(v)	((v) = 0)
64 #define L_ISNEG(v)	((v) < 0)
65 #define L_LINT(v, a)	((v) = (long long)(a) << 32)
66 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
67 
68 /*
69  * Generic NTP kernel interface
70  *
71  * These routines constitute the Network Time Protocol (NTP) interfaces
72  * for user and daemon application programs. The ntp_gettime() routine
73  * provides the time, maximum error (synch distance) and estimated error
74  * (dispersion) to client user application programs. The ntp_adjtime()
75  * routine is used by the NTP daemon to adjust the system clock to an
76  * externally derived time. The time offset and related variables set by
77  * this routine are used by other routines in this module to adjust the
78  * phase and frequency of the clock discipline loop which controls the
79  * system clock.
80  *
81  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
82  * defined), the time at each tick interrupt is derived directly from
83  * the kernel time variable. When the kernel time is reckoned in
84  * microseconds, (NTP_NANO undefined), the time is derived from the
85  * kernel time variable together with a variable representing the
86  * leftover nanoseconds at the last tick interrupt. In either case, the
87  * current nanosecond time is reckoned from these values plus an
88  * interpolated value derived by the clock routines in another
89  * architecture-specific module. The interpolation can use either a
90  * dedicated counter or a processor cycle counter (PCC) implemented in
91  * some architectures.
92  *
93  * Note that all routines must run at priority splclock or higher.
94  */
95 /*
96  * Phase/frequency-lock loop (PLL/FLL) definitions
97  *
98  * The nanosecond clock discipline uses two variable types, time
99  * variables and frequency variables. Both types are represented as 64-
100  * bit fixed-point quantities with the decimal point between two 32-bit
101  * halves. On a 32-bit machine, each half is represented as a single
102  * word and mathematical operations are done using multiple-precision
103  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
104  * used.
105  *
106  * A time variable is a signed 64-bit fixed-point number in ns and
107  * fraction. It represents the remaining time offset to be amortized
108  * over succeeding tick interrupts. The maximum time offset is about
109  * 0.5 s and the resolution is about 2.3e-10 ns.
110  *
111  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
112  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
113  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
114  * |s s s|			 ns				   |
115  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
116  * |			    fraction				   |
117  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
118  *
119  * A frequency variable is a signed 64-bit fixed-point number in ns/s
120  * and fraction. It represents the ns and fraction to be added to the
121  * kernel time variable at each second. The maximum frequency offset is
122  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
123  *
124  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
125  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
126  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127  * |s s s s s s s s s s s s s|	          ns/s			   |
128  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129  * |			    fraction				   |
130  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131  */
132 /*
133  * The following variables establish the state of the PLL/FLL and the
134  * residual time and frequency offset of the local clock.
135  */
136 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
137 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
138 
139 static int time_state = TIME_OK;	/* clock state */
140 static int time_status = STA_UNSYNC;	/* clock status bits */
141 static long time_tai;			/* TAI offset (s) */
142 static long time_monitor;		/* last time offset scaled (ns) */
143 static long time_constant;		/* poll interval (shift) (s) */
144 static long time_precision = 1;		/* clock precision (ns) */
145 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
146 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
147 static long time_reftime;		/* time at last adjustment (s) */
148 static long time_tick;			/* nanoseconds per tick (ns) */
149 static l_fp time_offset;		/* time offset (ns) */
150 static l_fp time_freq;			/* frequency offset (ns/s) */
151 static l_fp time_adj;			/* tick adjust (ns/s) */
152 
153 #ifdef PPS_SYNC
154 /*
155  * The following variables are used when a pulse-per-second (PPS) signal
156  * is available and connected via a modem control lead. They establish
157  * the engineering parameters of the clock discipline loop when
158  * controlled by the PPS signal.
159  */
160 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
161 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
162 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
163 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
164 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
165 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
166 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
167 
168 static struct timespec pps_tf[3];	/* phase median filter */
169 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
170 static long pps_fcount;			/* frequency accumulator */
171 static long pps_jitter;			/* nominal jitter (ns) */
172 static long pps_stabil;			/* nominal stability (scaled ns/s) */
173 static long pps_lastsec;		/* time at last calibration (s) */
174 static int pps_valid;			/* signal watchdog counter */
175 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
176 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
177 static int pps_intcnt;			/* wander counter */
178 
179 /*
180  * PPS signal quality monitors
181  */
182 static long pps_calcnt;			/* calibration intervals */
183 static long pps_jitcnt;			/* jitter limit exceeded */
184 static long pps_stbcnt;			/* stability limit exceeded */
185 static long pps_errcnt;			/* calibration errors */
186 #endif /* PPS_SYNC */
187 /*
188  * End of phase/frequency-lock loop (PLL/FLL) definitions
189  */
190 
191 static void ntp_init(void);
192 static void hardupdate(long offset);
193 
194 /*
195  * ntp_gettime() - NTP user application interface
196  *
197  * See the timex.h header file for synopsis and API description. Note
198  * that the TAI offset is returned in the ntvtimeval.tai structure
199  * member.
200  */
201 static int
202 ntp_sysctl(SYSCTL_HANDLER_ARGS)
203 {
204 	struct ntptimeval ntv;	/* temporary structure */
205 	struct timespec atv;	/* nanosecond time */
206 
207 	nanotime(&atv);
208 	ntv.time.tv_sec = atv.tv_sec;
209 	ntv.time.tv_nsec = atv.tv_nsec;
210 	ntv.maxerror = time_maxerror;
211 	ntv.esterror = time_esterror;
212 	ntv.tai = time_tai;
213 	ntv.time_state = time_state;
214 
215 	/*
216 	 * Status word error decode. If any of these conditions occur,
217 	 * an error is returned, instead of the status word. Most
218 	 * applications will care only about the fact the system clock
219 	 * may not be trusted, not about the details.
220 	 *
221 	 * Hardware or software error
222 	 */
223 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
224 
225 	/*
226 	 * PPS signal lost when either time or frequency synchronization
227 	 * requested
228 	 */
229 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
230 	    !(time_status & STA_PPSSIGNAL)) ||
231 
232 	/*
233 	 * PPS jitter exceeded when time synchronization requested
234 	 */
235 	    (time_status & STA_PPSTIME &&
236 	    time_status & STA_PPSJITTER) ||
237 
238 	/*
239 	 * PPS wander exceeded or calibration error when frequency
240 	 * synchronization requested
241 	 */
242 	    (time_status & STA_PPSFREQ &&
243 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
244 		ntv.time_state = TIME_ERROR;
245 	return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
246 }
247 
248 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
249 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
250 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
251 
252 #ifdef PPS_SYNC
253 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
254 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
255 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
256 
257 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
258 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
259 #endif
260 /*
261  * ntp_adjtime() - NTP daemon application interface
262  *
263  * See the timex.h header file for synopsis and API description. Note
264  * that the timex.constant structure member has a dual purpose to set
265  * the time constant and to set the TAI offset.
266  */
267 int
268 ntp_adjtime(struct ntp_adjtime_args *uap)
269 {
270 	struct thread *td = curthread;
271 	struct timex ntv;	/* temporary structure */
272 	long freq;		/* frequency ns/s) */
273 	int modes;		/* mode bits from structure */
274 	int s;			/* caller priority */
275 	int error;
276 
277 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
278 	if (error)
279 		return(error);
280 
281 	/*
282 	 * Update selected clock variables - only the superuser can
283 	 * change anything. Note that there is no error checking here on
284 	 * the assumption the superuser should know what it is doing.
285 	 * Note that either the time constant or TAI offset are loaded
286 	 * from the ntv.constant member, depending on the mode bits. If
287 	 * the STA_PLL bit in the status word is cleared, the state and
288 	 * status words are reset to the initial values at boot.
289 	 */
290 	modes = ntv.modes;
291 	if (modes)
292 		error = suser(td);
293 	if (error)
294 		return (error);
295 	s = splclock();
296 	if (modes & MOD_MAXERROR)
297 		time_maxerror = ntv.maxerror;
298 	if (modes & MOD_ESTERROR)
299 		time_esterror = ntv.esterror;
300 	if (modes & MOD_STATUS) {
301 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
302 			time_state = TIME_OK;
303 			time_status = STA_UNSYNC;
304 #ifdef PPS_SYNC
305 			pps_shift = PPS_FAVG;
306 #endif /* PPS_SYNC */
307 		}
308 		time_status &= STA_RONLY;
309 		time_status |= ntv.status & ~STA_RONLY;
310 	}
311 	if (modes & MOD_TIMECONST) {
312 		if (ntv.constant < 0)
313 			time_constant = 0;
314 		else if (ntv.constant > MAXTC)
315 			time_constant = MAXTC;
316 		else
317 			time_constant = ntv.constant;
318 	}
319 	if (modes & MOD_TAI) {
320 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
321 			time_tai = ntv.constant;
322 	}
323 #ifdef PPS_SYNC
324 	if (modes & MOD_PPSMAX) {
325 		if (ntv.shift < PPS_FAVG)
326 			pps_shiftmax = PPS_FAVG;
327 		else if (ntv.shift > PPS_FAVGMAX)
328 			pps_shiftmax = PPS_FAVGMAX;
329 		else
330 			pps_shiftmax = ntv.shift;
331 	}
332 #endif /* PPS_SYNC */
333 	if (modes & MOD_NANO)
334 		time_status |= STA_NANO;
335 	if (modes & MOD_MICRO)
336 		time_status &= ~STA_NANO;
337 	if (modes & MOD_CLKB)
338 		time_status |= STA_CLK;
339 	if (modes & MOD_CLKA)
340 		time_status &= ~STA_CLK;
341 	if (modes & MOD_OFFSET) {
342 		if (time_status & STA_NANO)
343 			hardupdate(ntv.offset);
344 		else
345 			hardupdate(ntv.offset * 1000);
346 	}
347 	if (modes & MOD_FREQUENCY) {
348 		freq = (ntv.freq * 1000LL) >> 16;
349 		if (freq > MAXFREQ)
350 			L_LINT(time_freq, MAXFREQ);
351 		else if (freq < -MAXFREQ)
352 			L_LINT(time_freq, -MAXFREQ);
353 		else
354 			L_LINT(time_freq, freq);
355 #ifdef PPS_SYNC
356 		pps_freq = time_freq;
357 #endif /* PPS_SYNC */
358 	}
359 
360 	/*
361 	 * Retrieve all clock variables. Note that the TAI offset is
362 	 * returned only by ntp_gettime();
363 	 */
364 	if (time_status & STA_NANO)
365 		ntv.offset = time_monitor;
366 	else
367 		ntv.offset = time_monitor / 1000; /* XXX rounding ? */
368 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
369 	ntv.maxerror = time_maxerror;
370 	ntv.esterror = time_esterror;
371 	ntv.status = time_status;
372 	ntv.constant = time_constant;
373 	if (time_status & STA_NANO)
374 		ntv.precision = time_precision;
375 	else
376 		ntv.precision = time_precision / 1000;
377 	ntv.tolerance = MAXFREQ * SCALE_PPM;
378 #ifdef PPS_SYNC
379 	ntv.shift = pps_shift;
380 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
381 	if (time_status & STA_NANO)
382 		ntv.jitter = pps_jitter;
383 	else
384 		ntv.jitter = pps_jitter / 1000;
385 	ntv.stabil = pps_stabil;
386 	ntv.calcnt = pps_calcnt;
387 	ntv.errcnt = pps_errcnt;
388 	ntv.jitcnt = pps_jitcnt;
389 	ntv.stbcnt = pps_stbcnt;
390 #endif /* PPS_SYNC */
391 	splx(s);
392 
393 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
394 	if (error)
395 		return (error);
396 
397 	/*
398 	 * Status word error decode. See comments in
399 	 * ntp_gettime() routine.
400 	 */
401 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
402 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
403 	    !(time_status & STA_PPSSIGNAL)) ||
404 	    (time_status & STA_PPSTIME &&
405 	    time_status & STA_PPSJITTER) ||
406 	    (time_status & STA_PPSFREQ &&
407 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
408 		curproc->p_retval[0] = TIME_ERROR;
409 	else
410 		curproc->p_retval[0] = time_state;
411 	return (error);
412 }
413 
414 /*
415  * second_overflow() - called after ntp_tick_adjust()
416  *
417  * This routine is ordinarily called immediately following the above
418  * routine ntp_tick_adjust(). While these two routines are normally
419  * combined, they are separated here only for the purposes of
420  * simulation.
421  */
422 void
423 ntp_update_second(struct timecounter *tcp)
424 {
425 	u_int32_t *newsec;
426 	l_fp ftemp;		/* 32/64-bit temporary */
427 
428 	newsec = &tcp->tc_offset_sec;
429 	/*
430 	 * On rollover of the second both the nanosecond and microsecond
431 	 * clocks are updated and the state machine cranked as
432 	 * necessary. The phase adjustment to be used for the next
433 	 * second is calculated and the maximum error is increased by
434 	 * the tolerance.
435 	 */
436 	time_maxerror += MAXFREQ / 1000;
437 
438 	/*
439 	 * Leap second processing. If in leap-insert state at
440 	 * the end of the day, the system clock is set back one
441 	 * second; if in leap-delete state, the system clock is
442 	 * set ahead one second. The nano_time() routine or
443 	 * external clock driver will insure that reported time
444 	 * is always monotonic.
445 	 */
446 	switch (time_state) {
447 
448 		/*
449 		 * No warning.
450 		 */
451 		case TIME_OK:
452 		if (time_status & STA_INS)
453 			time_state = TIME_INS;
454 		else if (time_status & STA_DEL)
455 			time_state = TIME_DEL;
456 		break;
457 
458 		/*
459 		 * Insert second 23:59:60 following second
460 		 * 23:59:59.
461 		 */
462 		case TIME_INS:
463 		if (!(time_status & STA_INS))
464 			time_state = TIME_OK;
465 		else if ((*newsec) % 86400 == 0) {
466 			(*newsec)--;
467 			time_state = TIME_OOP;
468 		}
469 		break;
470 
471 		/*
472 		 * Delete second 23:59:59.
473 		 */
474 		case TIME_DEL:
475 		if (!(time_status & STA_DEL))
476 			time_state = TIME_OK;
477 		else if (((*newsec) + 1) % 86400 == 0) {
478 			(*newsec)++;
479 			time_tai--;
480 			time_state = TIME_WAIT;
481 		}
482 		break;
483 
484 		/*
485 		 * Insert second in progress.
486 		 */
487 		case TIME_OOP:
488 			time_tai++;
489 			time_state = TIME_WAIT;
490 		break;
491 
492 		/*
493 		 * Wait for status bits to clear.
494 		 */
495 		case TIME_WAIT:
496 		if (!(time_status & (STA_INS | STA_DEL)))
497 			time_state = TIME_OK;
498 	}
499 
500 	/*
501 	 * Compute the total time adjustment for the next second
502 	 * in ns. The offset is reduced by a factor depending on
503 	 * whether the PPS signal is operating. Note that the
504 	 * value is in effect scaled by the clock frequency,
505 	 * since the adjustment is added at each tick interrupt.
506 	 */
507 	ftemp = time_offset;
508 #ifdef PPS_SYNC
509 	/* XXX even if PPS signal dies we should finish adjustment ? */
510 	if (time_status & STA_PPSTIME && time_status &
511 	    STA_PPSSIGNAL)
512 		L_RSHIFT(ftemp, pps_shift);
513 	else
514 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
515 #else
516 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
517 #endif /* PPS_SYNC */
518 	time_adj = ftemp;
519 	L_SUB(time_offset, ftemp);
520 	L_ADD(time_adj, time_freq);
521 	tcp->tc_adjustment = time_adj;
522 #ifdef PPS_SYNC
523 	if (pps_valid > 0)
524 		pps_valid--;
525 	else
526 		time_status &= ~STA_PPSSIGNAL;
527 #endif /* PPS_SYNC */
528 }
529 
530 /*
531  * ntp_init() - initialize variables and structures
532  *
533  * This routine must be called after the kernel variables hz and tick
534  * are set or changed and before the next tick interrupt. In this
535  * particular implementation, these values are assumed set elsewhere in
536  * the kernel. The design allows the clock frequency and tick interval
537  * to be changed while the system is running. So, this routine should
538  * probably be integrated with the code that does that.
539  */
540 static void
541 ntp_init()
542 {
543 
544 	/*
545 	 * The following variable must be initialized any time the
546 	 * kernel variable hz is changed.
547 	 */
548 	time_tick = NANOSECOND / hz;
549 
550 	/*
551 	 * The following variables are initialized only at startup. Only
552 	 * those structures not cleared by the compiler need to be
553 	 * initialized, and these only in the simulator. In the actual
554 	 * kernel, any nonzero values here will quickly evaporate.
555 	 */
556 	L_CLR(time_offset);
557 	L_CLR(time_freq);
558 #ifdef PPS_SYNC
559 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
560 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
561 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
562 	pps_fcount = 0;
563 	L_CLR(pps_freq);
564 #endif /* PPS_SYNC */
565 }
566 
567 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL)
568 
569 /*
570  * hardupdate() - local clock update
571  *
572  * This routine is called by ntp_adjtime() to update the local clock
573  * phase and frequency. The implementation is of an adaptive-parameter,
574  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
575  * time and frequency offset estimates for each call. If the kernel PPS
576  * discipline code is configured (PPS_SYNC), the PPS signal itself
577  * determines the new time offset, instead of the calling argument.
578  * Presumably, calls to ntp_adjtime() occur only when the caller
579  * believes the local clock is valid within some bound (+-128 ms with
580  * NTP). If the caller's time is far different than the PPS time, an
581  * argument will ensue, and it's not clear who will lose.
582  *
583  * For uncompensated quartz crystal oscillators and nominal update
584  * intervals less than 256 s, operation should be in phase-lock mode,
585  * where the loop is disciplined to phase. For update intervals greater
586  * than 1024 s, operation should be in frequency-lock mode, where the
587  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
588  * is selected by the STA_MODE status bit.
589  */
590 static void
591 hardupdate(offset)
592 	long offset;		/* clock offset (ns) */
593 {
594 	long mtemp;
595 	l_fp ftemp;
596 
597 	/*
598 	 * Select how the phase is to be controlled and from which
599 	 * source. If the PPS signal is present and enabled to
600 	 * discipline the time, the PPS offset is used; otherwise, the
601 	 * argument offset is used.
602 	 */
603 	if (!(time_status & STA_PLL))
604 		return;
605 	if (!(time_status & STA_PPSTIME && time_status &
606 	    STA_PPSSIGNAL)) {
607 		if (offset > MAXPHASE)
608 			time_monitor = MAXPHASE;
609 		else if (offset < -MAXPHASE)
610 			time_monitor = -MAXPHASE;
611 		else
612 			time_monitor = offset;
613 		L_LINT(time_offset, time_monitor);
614 	}
615 
616 	/*
617 	 * Select how the frequency is to be controlled and in which
618 	 * mode (PLL or FLL). If the PPS signal is present and enabled
619 	 * to discipline the frequency, the PPS frequency is used;
620 	 * otherwise, the argument offset is used to compute it.
621 	 */
622 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
623 		time_reftime = time_second;
624 		return;
625 	}
626 	if (time_status & STA_FREQHOLD || time_reftime == 0)
627 		time_reftime = time_second;
628 	mtemp = time_second - time_reftime;
629 	L_LINT(ftemp, time_monitor);
630 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
631 	L_MPY(ftemp, mtemp);
632 	L_ADD(time_freq, ftemp);
633 	time_status &= ~STA_MODE;
634 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
635 	    MAXSEC)) {
636 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
637 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
638 		L_ADD(time_freq, ftemp);
639 		time_status |= STA_MODE;
640 	}
641 	time_reftime = time_second;
642 	if (L_GINT(time_freq) > MAXFREQ)
643 		L_LINT(time_freq, MAXFREQ);
644 	else if (L_GINT(time_freq) < -MAXFREQ)
645 		L_LINT(time_freq, -MAXFREQ);
646 }
647 
648 #ifdef PPS_SYNC
649 /*
650  * hardpps() - discipline CPU clock oscillator to external PPS signal
651  *
652  * This routine is called at each PPS interrupt in order to discipline
653  * the CPU clock oscillator to the PPS signal. There are two independent
654  * first-order feedback loops, one for the phase, the other for the
655  * frequency. The phase loop measures and grooms the PPS phase offset
656  * and leaves it in a handy spot for the seconds overflow routine. The
657  * frequency loop averages successive PPS phase differences and
658  * calculates the PPS frequency offset, which is also processed by the
659  * seconds overflow routine. The code requires the caller to capture the
660  * time and architecture-dependent hardware counter values in
661  * nanoseconds at the on-time PPS signal transition.
662  *
663  * Note that, on some Unix systems this routine runs at an interrupt
664  * priority level higher than the timer interrupt routine hardclock().
665  * Therefore, the variables used are distinct from the hardclock()
666  * variables, except for the actual time and frequency variables, which
667  * are determined by this routine and updated atomically.
668  */
669 void
670 hardpps(tsp, nsec)
671 	struct timespec *tsp;	/* time at PPS */
672 	long nsec;		/* hardware counter at PPS */
673 {
674 	long u_sec, u_nsec, v_nsec; /* temps */
675 	l_fp ftemp;
676 
677 	/*
678 	 * The signal is first processed by a range gate and frequency
679 	 * discriminator. The range gate rejects noise spikes outside
680 	 * the range +-500 us. The frequency discriminator rejects input
681 	 * signals with apparent frequency outside the range 1 +-500
682 	 * PPM. If two hits occur in the same second, we ignore the
683 	 * later hit; if not and a hit occurs outside the range gate,
684 	 * keep the later hit for later comparison, but do not process
685 	 * it.
686 	 */
687 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
688 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
689 	pps_valid = PPS_VALID;
690 	u_sec = tsp->tv_sec;
691 	u_nsec = tsp->tv_nsec;
692 	if (u_nsec >= (NANOSECOND >> 1)) {
693 		u_nsec -= NANOSECOND;
694 		u_sec++;
695 	}
696 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
697 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
698 	    MAXFREQ)
699 		return;
700 	pps_tf[2] = pps_tf[1];
701 	pps_tf[1] = pps_tf[0];
702 	pps_tf[0].tv_sec = u_sec;
703 	pps_tf[0].tv_nsec = u_nsec;
704 
705 	/*
706 	 * Compute the difference between the current and previous
707 	 * counter values. If the difference exceeds 0.5 s, assume it
708 	 * has wrapped around, so correct 1.0 s. If the result exceeds
709 	 * the tick interval, the sample point has crossed a tick
710 	 * boundary during the last second, so correct the tick. Very
711 	 * intricate.
712 	 */
713 	u_nsec = nsec;
714 	if (u_nsec > (NANOSECOND >> 1))
715 		u_nsec -= NANOSECOND;
716 	else if (u_nsec < -(NANOSECOND >> 1))
717 		u_nsec += NANOSECOND;
718 	pps_fcount += u_nsec;
719 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
720 		return;
721 	time_status &= ~STA_PPSJITTER;
722 
723 	/*
724 	 * A three-stage median filter is used to help denoise the PPS
725 	 * time. The median sample becomes the time offset estimate; the
726 	 * difference between the other two samples becomes the time
727 	 * dispersion (jitter) estimate.
728 	 */
729 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
730 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
731 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
732 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
733 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
734 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
735 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
736 		} else {
737 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
738 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
739 		}
740 	} else {
741 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
742 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
743 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
744 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
745 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
746 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
747 		} else {
748 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
749 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
750 		}
751 	}
752 
753 	/*
754 	 * Nominal jitter is due to PPS signal noise and interrupt
755 	 * latency. If it exceeds the popcorn threshold, the sample is
756 	 * discarded. otherwise, if so enabled, the time offset is
757 	 * updated. We can tolerate a modest loss of data here without
758 	 * much degrading time accuracy.
759 	 */
760 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
761 		time_status |= STA_PPSJITTER;
762 		pps_jitcnt++;
763 	} else if (time_status & STA_PPSTIME) {
764 		time_monitor = -v_nsec;
765 		L_LINT(time_offset, time_monitor);
766 	}
767 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
768 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
769 	if (u_sec < (1 << pps_shift))
770 		return;
771 
772 	/*
773 	 * At the end of the calibration interval the difference between
774 	 * the first and last counter values becomes the scaled
775 	 * frequency. It will later be divided by the length of the
776 	 * interval to determine the frequency update. If the frequency
777 	 * exceeds a sanity threshold, or if the actual calibration
778 	 * interval is not equal to the expected length, the data are
779 	 * discarded. We can tolerate a modest loss of data here without
780 	 * much degrading frequency accuracy.
781 	 */
782 	pps_calcnt++;
783 	v_nsec = -pps_fcount;
784 	pps_lastsec = pps_tf[0].tv_sec;
785 	pps_fcount = 0;
786 	u_nsec = MAXFREQ << pps_shift;
787 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
788 	    pps_shift)) {
789 		time_status |= STA_PPSERROR;
790 		pps_errcnt++;
791 		return;
792 	}
793 
794 	/*
795 	 * Here the raw frequency offset and wander (stability) is
796 	 * calculated. If the wander is less than the wander threshold
797 	 * for four consecutive averaging intervals, the interval is
798 	 * doubled; if it is greater than the threshold for four
799 	 * consecutive intervals, the interval is halved. The scaled
800 	 * frequency offset is converted to frequency offset. The
801 	 * stability metric is calculated as the average of recent
802 	 * frequency changes, but is used only for performance
803 	 * monitoring.
804 	 */
805 	L_LINT(ftemp, v_nsec);
806 	L_RSHIFT(ftemp, pps_shift);
807 	L_SUB(ftemp, pps_freq);
808 	u_nsec = L_GINT(ftemp);
809 	if (u_nsec > PPS_MAXWANDER) {
810 		L_LINT(ftemp, PPS_MAXWANDER);
811 		pps_intcnt--;
812 		time_status |= STA_PPSWANDER;
813 		pps_stbcnt++;
814 	} else if (u_nsec < -PPS_MAXWANDER) {
815 		L_LINT(ftemp, -PPS_MAXWANDER);
816 		pps_intcnt--;
817 		time_status |= STA_PPSWANDER;
818 		pps_stbcnt++;
819 	} else {
820 		pps_intcnt++;
821 	}
822 	if (pps_intcnt >= 4) {
823 		pps_intcnt = 4;
824 		if (pps_shift < pps_shiftmax) {
825 			pps_shift++;
826 			pps_intcnt = 0;
827 		}
828 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
829 		pps_intcnt = -4;
830 		if (pps_shift > PPS_FAVG) {
831 			pps_shift--;
832 			pps_intcnt = 0;
833 		}
834 	}
835 	if (u_nsec < 0)
836 		u_nsec = -u_nsec;
837 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
838 
839 	/*
840 	 * The PPS frequency is recalculated and clamped to the maximum
841 	 * MAXFREQ. If enabled, the system clock frequency is updated as
842 	 * well.
843 	 */
844 	L_ADD(pps_freq, ftemp);
845 	u_nsec = L_GINT(pps_freq);
846 	if (u_nsec > MAXFREQ)
847 		L_LINT(pps_freq, MAXFREQ);
848 	else if (u_nsec < -MAXFREQ)
849 		L_LINT(pps_freq, -MAXFREQ);
850 	if (time_status & STA_PPSFREQ)
851 		time_freq = pps_freq;
852 }
853 #endif /* PPS_SYNC */
854