xref: /dragonfly/sys/kern/kern_ntptime.c (revision 9ddb8543)
1 /***********************************************************************
2  *								       *
3  * Copyright (c) David L. Mills 1993-2001			       *
4  *								       *
5  * Permission to use, copy, modify, and distribute this software and   *
6  * its documentation for any purpose and without fee is hereby	       *
7  * granted, provided that the above copyright notice appears in all    *
8  * copies and that both the copyright notice and this permission       *
9  * notice appear in supporting documentation, and that the name	       *
10  * University of Delaware not be used in advertising or publicity      *
11  * pertaining to distribution of the software without specific,	       *
12  * written prior permission. The University of Delaware makes no       *
13  * representations about the suitability this software for any	       *
14  * purpose. It is provided "as is" without express or implied	       *
15  * warranty.							       *
16  *								       *
17  **********************************************************************/
18 
19 /*
20  * Adapted from the original sources for FreeBSD and timecounters by:
21  * Poul-Henning Kamp <phk@FreeBSD.org>.
22  *
23  * The 32bit version of the "LP" macros seems a bit past its "sell by"
24  * date so I have retained only the 64bit version and included it directly
25  * in this file.
26  *
27  * Only minor changes done to interface with the timecounters over in
28  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
29  * confusing and/or plain wrong in that context.
30  *
31  * $FreeBSD: src/sys/kern/kern_ntptime.c,v 1.32.2.2 2001/04/22 11:19:46 jhay Exp $
32  * $DragonFly: src/sys/kern/kern_ntptime.c,v 1.13 2007/04/30 07:18:53 dillon Exp $
33  */
34 
35 #include "opt_ntp.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/sysproto.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/priv.h>
43 #include <sys/time.h>
44 #include <sys/timex.h>
45 #include <sys/timepps.h>
46 #include <sys/sysctl.h>
47 #include <sys/thread2.h>
48 
49 /*
50  * Single-precision macros for 64-bit machines
51  */
52 typedef long long l_fp;
53 #define L_ADD(v, u)	((v) += (u))
54 #define L_SUB(v, u)	((v) -= (u))
55 #define L_ADDHI(v, a)	((v) += (long long)(a) << 32)
56 #define L_NEG(v)	((v) = -(v))
57 #define L_RSHIFT(v, n) \
58 	do { \
59 		if ((v) < 0) \
60 			(v) = -(-(v) >> (n)); \
61 		else \
62 			(v) = (v) >> (n); \
63 	} while (0)
64 #define L_MPY(v, a)	((v) *= (a))
65 #define L_CLR(v)	((v) = 0)
66 #define L_ISNEG(v)	((v) < 0)
67 #define L_LINT(v, a)	((v) = (long long)(a) << 32)
68 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
69 
70 /*
71  * Generic NTP kernel interface
72  *
73  * These routines constitute the Network Time Protocol (NTP) interfaces
74  * for user and daemon application programs. The ntp_gettime() routine
75  * provides the time, maximum error (synch distance) and estimated error
76  * (dispersion) to client user application programs. The ntp_adjtime()
77  * routine is used by the NTP daemon to adjust the system clock to an
78  * externally derived time. The time offset and related variables set by
79  * this routine are used by other routines in this module to adjust the
80  * phase and frequency of the clock discipline loop which controls the
81  * system clock.
82  *
83  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
84  * defined), the time at each tick interrupt is derived directly from
85  * the kernel time variable. When the kernel time is reckoned in
86  * microseconds, (NTP_NANO undefined), the time is derived from the
87  * kernel time variable together with a variable representing the
88  * leftover nanoseconds at the last tick interrupt. In either case, the
89  * current nanosecond time is reckoned from these values plus an
90  * interpolated value derived by the clock routines in another
91  * architecture-specific module. The interpolation can use either a
92  * dedicated counter or a processor cycle counter (PCC) implemented in
93  * some architectures.
94  *
95  * Note that all routines must run at priority splclock or higher.
96  */
97 /*
98  * Phase/frequency-lock loop (PLL/FLL) definitions
99  *
100  * The nanosecond clock discipline uses two variable types, time
101  * variables and frequency variables. Both types are represented as 64-
102  * bit fixed-point quantities with the decimal point between two 32-bit
103  * halves. On a 32-bit machine, each half is represented as a single
104  * word and mathematical operations are done using multiple-precision
105  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
106  * used.
107  *
108  * A time variable is a signed 64-bit fixed-point number in ns and
109  * fraction. It represents the remaining time offset to be amortized
110  * over succeeding tick interrupts. The maximum time offset is about
111  * 0.5 s and the resolution is about 2.3e-10 ns.
112  *
113  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
114  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
115  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
116  * |s s s|			 ns				   |
117  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
118  * |			    fraction				   |
119  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
120  *
121  * A frequency variable is a signed 64-bit fixed-point number in ns/s
122  * and fraction. It represents the ns and fraction to be added to the
123  * kernel time variable at each second. The maximum frequency offset is
124  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
125  *
126  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
127  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
128  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129  * |s s s s s s s s s s s s s|	          ns/s			   |
130  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131  * |			    fraction				   |
132  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
133  */
134 /*
135  * The following variables establish the state of the PLL/FLL and the
136  * residual time and frequency offset of the local clock.
137  */
138 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
139 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
140 
141 static int time_state = TIME_OK;	/* clock state */
142 static int time_status = STA_UNSYNC;	/* clock status bits */
143 static long time_tai;			/* TAI offset (s) */
144 static long time_monitor;		/* last time offset scaled (ns) */
145 static long time_constant;		/* poll interval (shift) (s) */
146 static long time_precision = 1;		/* clock precision (ns) */
147 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
148 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
149 static long time_reftime;		/* time at last adjustment (s) */
150 static long time_tick;			/* nanoseconds per tick (ns) */
151 static l_fp time_offset;		/* time offset (ns) */
152 static l_fp time_freq;			/* frequency offset (ns/s) */
153 static l_fp time_adj;			/* tick adjust (ns/s) */
154 
155 #ifdef PPS_SYNC
156 /*
157  * The following variables are used when a pulse-per-second (PPS) signal
158  * is available and connected via a modem control lead. They establish
159  * the engineering parameters of the clock discipline loop when
160  * controlled by the PPS signal.
161  */
162 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
163 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
164 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
165 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
166 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
167 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
168 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
169 
170 static struct timespec pps_tf[3];	/* phase median filter */
171 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
172 static long pps_fcount;			/* frequency accumulator */
173 static long pps_jitter;			/* nominal jitter (ns) */
174 static long pps_stabil;			/* nominal stability (scaled ns/s) */
175 static long pps_lastsec;		/* time at last calibration (s) */
176 static int pps_valid;			/* signal watchdog counter */
177 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
178 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
179 static int pps_intcnt;			/* wander counter */
180 
181 /*
182  * PPS signal quality monitors
183  */
184 static long pps_calcnt;			/* calibration intervals */
185 static long pps_jitcnt;			/* jitter limit exceeded */
186 static long pps_stbcnt;			/* stability limit exceeded */
187 static long pps_errcnt;			/* calibration errors */
188 #endif /* PPS_SYNC */
189 /*
190  * End of phase/frequency-lock loop (PLL/FLL) definitions
191  */
192 
193 static void ntp_init(void);
194 static void hardupdate(long offset);
195 
196 /*
197  * ntp_gettime() - NTP user application interface
198  *
199  * See the timex.h header file for synopsis and API description. Note
200  * that the TAI offset is returned in the ntvtimeval.tai structure
201  * member.
202  */
203 static int
204 ntp_sysctl(SYSCTL_HANDLER_ARGS)
205 {
206 	struct ntptimeval ntv;	/* temporary structure */
207 	struct timespec atv;	/* nanosecond time */
208 
209 	nanotime(&atv);
210 	ntv.time.tv_sec = atv.tv_sec;
211 	ntv.time.tv_nsec = atv.tv_nsec;
212 	ntv.maxerror = time_maxerror;
213 	ntv.esterror = time_esterror;
214 	ntv.tai = time_tai;
215 	ntv.time_state = time_state;
216 
217 	/*
218 	 * Status word error decode. If any of these conditions occur,
219 	 * an error is returned, instead of the status word. Most
220 	 * applications will care only about the fact the system clock
221 	 * may not be trusted, not about the details.
222 	 *
223 	 * Hardware or software error
224 	 */
225 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
226 
227 	/*
228 	 * PPS signal lost when either time or frequency synchronization
229 	 * requested
230 	 */
231 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
232 	    !(time_status & STA_PPSSIGNAL)) ||
233 
234 	/*
235 	 * PPS jitter exceeded when time synchronization requested
236 	 */
237 	    (time_status & STA_PPSTIME &&
238 	    time_status & STA_PPSJITTER) ||
239 
240 	/*
241 	 * PPS wander exceeded or calibration error when frequency
242 	 * synchronization requested
243 	 */
244 	    (time_status & STA_PPSFREQ &&
245 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
246 		ntv.time_state = TIME_ERROR;
247 	return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
248 }
249 
250 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
251 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
252 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
253 
254 #ifdef PPS_SYNC
255 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
256 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
257 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
258 
259 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
260 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
261 #endif
262 /*
263  * ntp_adjtime() - NTP daemon application interface
264  *
265  * See the timex.h header file for synopsis and API description. Note
266  * that the timex.constant structure member has a dual purpose to set
267  * the time constant and to set the TAI offset.
268  */
269 int
270 sys_ntp_adjtime(struct ntp_adjtime_args *uap)
271 {
272 	struct thread *td = curthread;
273 	struct timex ntv;	/* temporary structure */
274 	long freq;		/* frequency ns/s) */
275 	int modes;		/* mode bits from structure */
276 	int error;
277 
278 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
279 	if (error)
280 		return(error);
281 
282 	/*
283 	 * Update selected clock variables - only the superuser can
284 	 * change anything. Note that there is no error checking here on
285 	 * the assumption the superuser should know what it is doing.
286 	 * Note that either the time constant or TAI offset are loaded
287 	 * from the ntv.constant member, depending on the mode bits. If
288 	 * the STA_PLL bit in the status word is cleared, the state and
289 	 * status words are reset to the initial values at boot.
290 	 */
291 	modes = ntv.modes;
292 	if (modes)
293 		error = priv_check(td, PRIV_NTP_ADJTIME);
294 	if (error)
295 		return (error);
296 	crit_enter();
297 	if (modes & MOD_MAXERROR)
298 		time_maxerror = ntv.maxerror;
299 	if (modes & MOD_ESTERROR)
300 		time_esterror = ntv.esterror;
301 	if (modes & MOD_STATUS) {
302 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
303 			time_state = TIME_OK;
304 			time_status = STA_UNSYNC;
305 #ifdef PPS_SYNC
306 			pps_shift = PPS_FAVG;
307 #endif /* PPS_SYNC */
308 		}
309 		time_status &= STA_RONLY;
310 		time_status |= ntv.status & ~STA_RONLY;
311 	}
312 	if (modes & MOD_TIMECONST) {
313 		if (ntv.constant < 0)
314 			time_constant = 0;
315 		else if (ntv.constant > MAXTC)
316 			time_constant = MAXTC;
317 		else
318 			time_constant = ntv.constant;
319 	}
320 	if (modes & MOD_TAI) {
321 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
322 			time_tai = ntv.constant;
323 	}
324 #ifdef PPS_SYNC
325 	if (modes & MOD_PPSMAX) {
326 		if (ntv.shift < PPS_FAVG)
327 			pps_shiftmax = PPS_FAVG;
328 		else if (ntv.shift > PPS_FAVGMAX)
329 			pps_shiftmax = PPS_FAVGMAX;
330 		else
331 			pps_shiftmax = ntv.shift;
332 	}
333 #endif /* PPS_SYNC */
334 	if (modes & MOD_NANO)
335 		time_status |= STA_NANO;
336 	if (modes & MOD_MICRO)
337 		time_status &= ~STA_NANO;
338 	if (modes & MOD_CLKB)
339 		time_status |= STA_CLK;
340 	if (modes & MOD_CLKA)
341 		time_status &= ~STA_CLK;
342 	if (modes & MOD_OFFSET) {
343 		if (time_status & STA_NANO)
344 			hardupdate(ntv.offset);
345 		else
346 			hardupdate(ntv.offset * 1000);
347 	}
348 	/*
349 	 * Note: the userland specified frequency is in seconds per second
350 	 * times 65536e+6.  Multiply by a thousand and divide by 65336 to
351 	 * get nanoseconds.
352 	 */
353 	if (modes & MOD_FREQUENCY) {
354 		freq = (ntv.freq * 1000LL) >> 16;
355 		if (freq > MAXFREQ)
356 			L_LINT(time_freq, MAXFREQ);
357 		else if (freq < -MAXFREQ)
358 			L_LINT(time_freq, -MAXFREQ);
359 		else
360 			L_LINT(time_freq, freq);
361 #ifdef PPS_SYNC
362 		pps_freq = time_freq;
363 #endif /* PPS_SYNC */
364 	}
365 
366 	/*
367 	 * Retrieve all clock variables. Note that the TAI offset is
368 	 * returned only by ntp_gettime();
369 	 */
370 	if (time_status & STA_NANO)
371 		ntv.offset = time_monitor;
372 	else
373 		ntv.offset = time_monitor / 1000; /* XXX rounding ? */
374 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
375 	ntv.maxerror = time_maxerror;
376 	ntv.esterror = time_esterror;
377 	ntv.status = time_status;
378 	ntv.constant = time_constant;
379 	if (time_status & STA_NANO)
380 		ntv.precision = time_precision;
381 	else
382 		ntv.precision = time_precision / 1000;
383 	ntv.tolerance = MAXFREQ * SCALE_PPM;
384 #ifdef PPS_SYNC
385 	ntv.shift = pps_shift;
386 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
387 	if (time_status & STA_NANO)
388 		ntv.jitter = pps_jitter;
389 	else
390 		ntv.jitter = pps_jitter / 1000;
391 	ntv.stabil = pps_stabil;
392 	ntv.calcnt = pps_calcnt;
393 	ntv.errcnt = pps_errcnt;
394 	ntv.jitcnt = pps_jitcnt;
395 	ntv.stbcnt = pps_stbcnt;
396 #endif /* PPS_SYNC */
397 	crit_exit();
398 
399 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
400 	if (error)
401 		return (error);
402 
403 	/*
404 	 * Status word error decode. See comments in
405 	 * ntp_gettime() routine.
406 	 */
407 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
408 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
409 	    !(time_status & STA_PPSSIGNAL)) ||
410 	    (time_status & STA_PPSTIME &&
411 	    time_status & STA_PPSJITTER) ||
412 	    (time_status & STA_PPSFREQ &&
413 	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
414 		uap->sysmsg_result = TIME_ERROR;
415 	} else {
416 		uap->sysmsg_result = time_state;
417 	}
418 	return (error);
419 }
420 
421 /*
422  * second_overflow() - called after ntp_tick_adjust()
423  *
424  * This routine is ordinarily called from hardclock() whenever the seconds
425  * hand rolls over.  It returns leap seconds to add or drop, and sets nsec_adj
426  * to the total adjustment to make over the next second in (ns << 32).
427  *
428  * This routine is only called by cpu #0.
429  */
430 int
431 ntp_update_second(time_t newsec, int64_t *nsec_adj)
432 {
433 	l_fp ftemp;		/* 32/64-bit temporary */
434 	int  adjsec = 0;
435 
436 	/*
437 	 * On rollover of the second both the nanosecond and microsecond
438 	 * clocks are updated and the state machine cranked as
439 	 * necessary. The phase adjustment to be used for the next
440 	 * second is calculated and the maximum error is increased by
441 	 * the tolerance.
442 	 */
443 	time_maxerror += MAXFREQ / 1000;
444 
445 	/*
446 	 * Leap second processing. If in leap-insert state at
447 	 * the end of the day, the system clock is set back one
448 	 * second; if in leap-delete state, the system clock is
449 	 * set ahead one second. The nano_time() routine or
450 	 * external clock driver will insure that reported time
451 	 * is always monotonic.
452 	 */
453 	switch (time_state) {
454 
455 		/*
456 		 * No warning.
457 		 */
458 		case TIME_OK:
459 		if (time_status & STA_INS)
460 			time_state = TIME_INS;
461 		else if (time_status & STA_DEL)
462 			time_state = TIME_DEL;
463 		break;
464 
465 		/*
466 		 * Insert second 23:59:60 following second
467 		 * 23:59:59.
468 		 */
469 		case TIME_INS:
470 		if (!(time_status & STA_INS))
471 			time_state = TIME_OK;
472 		else if ((newsec) % 86400 == 0) {
473 			--adjsec;
474 			time_state = TIME_OOP;
475 		}
476 		break;
477 
478 		/*
479 		 * Delete second 23:59:59.
480 		 */
481 		case TIME_DEL:
482 		if (!(time_status & STA_DEL))
483 			time_state = TIME_OK;
484 		else if (((newsec) + 1) % 86400 == 0) {
485 			++adjsec;
486 			time_tai--;
487 			time_state = TIME_WAIT;
488 		}
489 		break;
490 
491 		/*
492 		 * Insert second in progress.
493 		 */
494 		case TIME_OOP:
495 			time_tai++;
496 			time_state = TIME_WAIT;
497 		break;
498 
499 		/*
500 		 * Wait for status bits to clear.
501 		 */
502 		case TIME_WAIT:
503 		if (!(time_status & (STA_INS | STA_DEL)))
504 			time_state = TIME_OK;
505 	}
506 
507 	/*
508 	 * time_offset represents the total time adjustment we wish to
509 	 * make (over no particular period of time).  time_freq represents
510 	 * the frequency compensation we wish to apply.
511 	 *
512 	 * time_adj represents the total adjustment we wish to make over
513 	 * one full second.  hardclock usually applies this adjustment in
514 	 * time_adj / hz jumps, hz times a second.
515 	 */
516 	ftemp = time_offset;
517 #ifdef PPS_SYNC
518 	/* XXX even if PPS signal dies we should finish adjustment ? */
519 	if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
520 		L_RSHIFT(ftemp, pps_shift);
521 	else
522 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
523 #else
524 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
525 #endif /* PPS_SYNC */
526 	time_adj = ftemp;		/* adjustment for part of the offset */
527 	L_SUB(time_offset, ftemp);
528 	L_ADD(time_adj, time_freq);	/* add frequency correction */
529 	*nsec_adj = time_adj;
530 #ifdef PPS_SYNC
531 	if (pps_valid > 0)
532 		pps_valid--;
533 	else
534 		time_status &= ~STA_PPSSIGNAL;
535 #endif /* PPS_SYNC */
536 	return(adjsec);
537 }
538 
539 /*
540  * ntp_init() - initialize variables and structures
541  *
542  * This routine must be called after the kernel variables hz and tick
543  * are set or changed and before the next tick interrupt. In this
544  * particular implementation, these values are assumed set elsewhere in
545  * the kernel. The design allows the clock frequency and tick interval
546  * to be changed while the system is running. So, this routine should
547  * probably be integrated with the code that does that.
548  */
549 static void
550 ntp_init(void)
551 {
552 
553 	/*
554 	 * The following variable must be initialized any time the
555 	 * kernel variable hz is changed.
556 	 */
557 	time_tick = NANOSECOND / hz;
558 
559 	/*
560 	 * The following variables are initialized only at startup. Only
561 	 * those structures not cleared by the compiler need to be
562 	 * initialized, and these only in the simulator. In the actual
563 	 * kernel, any nonzero values here will quickly evaporate.
564 	 */
565 	L_CLR(time_offset);
566 	L_CLR(time_freq);
567 #ifdef PPS_SYNC
568 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
569 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
570 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
571 	pps_fcount = 0;
572 	L_CLR(pps_freq);
573 #endif /* PPS_SYNC */
574 }
575 
576 SYSINIT(ntpclocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL)
577 
578 /*
579  * hardupdate() - local clock update
580  *
581  * This routine is called by ntp_adjtime() to update the local clock
582  * phase and frequency. The implementation is of an adaptive-parameter,
583  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
584  * time and frequency offset estimates for each call. If the kernel PPS
585  * discipline code is configured (PPS_SYNC), the PPS signal itself
586  * determines the new time offset, instead of the calling argument.
587  * Presumably, calls to ntp_adjtime() occur only when the caller
588  * believes the local clock is valid within some bound (+-128 ms with
589  * NTP). If the caller's time is far different than the PPS time, an
590  * argument will ensue, and it's not clear who will lose.
591  *
592  * For uncompensated quartz crystal oscillators and nominal update
593  * intervals less than 256 s, operation should be in phase-lock mode,
594  * where the loop is disciplined to phase. For update intervals greater
595  * than 1024 s, operation should be in frequency-lock mode, where the
596  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
597  * is selected by the STA_MODE status bit.
598  */
599 static void
600 hardupdate(long offset)
601 {
602 	long mtemp;
603 	l_fp ftemp;
604 	globaldata_t gd;
605 
606 	gd = mycpu;
607 
608 	/*
609 	 * Select how the phase is to be controlled and from which
610 	 * source. If the PPS signal is present and enabled to
611 	 * discipline the time, the PPS offset is used; otherwise, the
612 	 * argument offset is used.
613 	 */
614 	if (!(time_status & STA_PLL))
615 		return;
616 	if (!((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))) {
617 		if (offset > MAXPHASE)
618 			time_monitor = MAXPHASE;
619 		else if (offset < -MAXPHASE)
620 			time_monitor = -MAXPHASE;
621 		else
622 			time_monitor = offset;
623 		L_LINT(time_offset, time_monitor);
624 	}
625 
626 	/*
627 	 * Select how the frequency is to be controlled and in which
628 	 * mode (PLL or FLL). If the PPS signal is present and enabled
629 	 * to discipline the frequency, the PPS frequency is used;
630 	 * otherwise, the argument offset is used to compute it.
631 	 *
632 	 * gd_time_seconds is basically an uncompensated uptime.  We use
633 	 * this for consistency.
634 	 */
635 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
636 		time_reftime = time_second;
637 		return;
638 	}
639 	if (time_status & STA_FREQHOLD || time_reftime == 0)
640 		time_reftime = time_second;
641 	mtemp = time_second - time_reftime;
642 	L_LINT(ftemp, time_monitor);
643 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
644 	L_MPY(ftemp, mtemp);
645 	L_ADD(time_freq, ftemp);
646 	time_status &= ~STA_MODE;
647 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
648 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
649 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
650 		L_ADD(time_freq, ftemp);
651 		time_status |= STA_MODE;
652 	}
653 	time_reftime = time_second;
654 	if (L_GINT(time_freq) > MAXFREQ)
655 		L_LINT(time_freq, MAXFREQ);
656 	else if (L_GINT(time_freq) < -MAXFREQ)
657 		L_LINT(time_freq, -MAXFREQ);
658 }
659 
660 #ifdef PPS_SYNC
661 /*
662  * hardpps() - discipline CPU clock oscillator to external PPS signal
663  *
664  * This routine is called at each PPS interrupt in order to discipline
665  * the CPU clock oscillator to the PPS signal. There are two independent
666  * first-order feedback loops, one for the phase, the other for the
667  * frequency. The phase loop measures and grooms the PPS phase offset
668  * and leaves it in a handy spot for the seconds overflow routine. The
669  * frequency loop averages successive PPS phase differences and
670  * calculates the PPS frequency offset, which is also processed by the
671  * seconds overflow routine. The code requires the caller to capture the
672  * time and architecture-dependent hardware counter values in
673  * nanoseconds at the on-time PPS signal transition.
674  *
675  * Note that, on some Unix systems this routine runs at an interrupt
676  * priority level higher than the timer interrupt routine hardclock().
677  * Therefore, the variables used are distinct from the hardclock()
678  * variables, except for the actual time and frequency variables, which
679  * are determined by this routine and updated atomically.
680  */
681 void
682 hardpps(struct timespec *tsp, long nsec)
683 {
684 	long u_sec, u_nsec, v_nsec; /* temps */
685 	l_fp ftemp;
686 
687 	/*
688 	 * The signal is first processed by a range gate and frequency
689 	 * discriminator. The range gate rejects noise spikes outside
690 	 * the range +-500 us. The frequency discriminator rejects input
691 	 * signals with apparent frequency outside the range 1 +-500
692 	 * PPM. If two hits occur in the same second, we ignore the
693 	 * later hit; if not and a hit occurs outside the range gate,
694 	 * keep the later hit for later comparison, but do not process
695 	 * it.
696 	 */
697 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
698 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
699 	pps_valid = PPS_VALID;
700 	u_sec = tsp->tv_sec;
701 	u_nsec = tsp->tv_nsec;
702 	if (u_nsec >= (NANOSECOND >> 1)) {
703 		u_nsec -= NANOSECOND;
704 		u_sec++;
705 	}
706 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
707 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
708 	    MAXFREQ)
709 		return;
710 	pps_tf[2] = pps_tf[1];
711 	pps_tf[1] = pps_tf[0];
712 	pps_tf[0].tv_sec = u_sec;
713 	pps_tf[0].tv_nsec = u_nsec;
714 
715 	/*
716 	 * Compute the difference between the current and previous
717 	 * counter values. If the difference exceeds 0.5 s, assume it
718 	 * has wrapped around, so correct 1.0 s. If the result exceeds
719 	 * the tick interval, the sample point has crossed a tick
720 	 * boundary during the last second, so correct the tick. Very
721 	 * intricate.
722 	 */
723 	u_nsec = nsec;
724 	if (u_nsec > (NANOSECOND >> 1))
725 		u_nsec -= NANOSECOND;
726 	else if (u_nsec < -(NANOSECOND >> 1))
727 		u_nsec += NANOSECOND;
728 	pps_fcount += u_nsec;
729 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
730 		return;
731 	time_status &= ~STA_PPSJITTER;
732 
733 	/*
734 	 * A three-stage median filter is used to help denoise the PPS
735 	 * time. The median sample becomes the time offset estimate; the
736 	 * difference between the other two samples becomes the time
737 	 * dispersion (jitter) estimate.
738 	 */
739 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
740 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
741 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
742 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
743 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
744 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
745 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
746 		} else {
747 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
748 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
749 		}
750 	} else {
751 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
752 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
753 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
754 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
755 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
756 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
757 		} else {
758 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
759 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
760 		}
761 	}
762 
763 	/*
764 	 * Nominal jitter is due to PPS signal noise and interrupt
765 	 * latency. If it exceeds the popcorn threshold, the sample is
766 	 * discarded. otherwise, if so enabled, the time offset is
767 	 * updated. We can tolerate a modest loss of data here without
768 	 * much degrading time accuracy.
769 	 */
770 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
771 		time_status |= STA_PPSJITTER;
772 		pps_jitcnt++;
773 	} else if (time_status & STA_PPSTIME) {
774 		time_monitor = -v_nsec;
775 		L_LINT(time_offset, time_monitor);
776 	}
777 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
778 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
779 	if (u_sec < (1 << pps_shift))
780 		return;
781 
782 	/*
783 	 * At the end of the calibration interval the difference between
784 	 * the first and last counter values becomes the scaled
785 	 * frequency. It will later be divided by the length of the
786 	 * interval to determine the frequency update. If the frequency
787 	 * exceeds a sanity threshold, or if the actual calibration
788 	 * interval is not equal to the expected length, the data are
789 	 * discarded. We can tolerate a modest loss of data here without
790 	 * much degrading frequency accuracy.
791 	 */
792 	pps_calcnt++;
793 	v_nsec = -pps_fcount;
794 	pps_lastsec = pps_tf[0].tv_sec;
795 	pps_fcount = 0;
796 	u_nsec = MAXFREQ << pps_shift;
797 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
798 	    pps_shift)) {
799 		time_status |= STA_PPSERROR;
800 		pps_errcnt++;
801 		return;
802 	}
803 
804 	/*
805 	 * Here the raw frequency offset and wander (stability) is
806 	 * calculated. If the wander is less than the wander threshold
807 	 * for four consecutive averaging intervals, the interval is
808 	 * doubled; if it is greater than the threshold for four
809 	 * consecutive intervals, the interval is halved. The scaled
810 	 * frequency offset is converted to frequency offset. The
811 	 * stability metric is calculated as the average of recent
812 	 * frequency changes, but is used only for performance
813 	 * monitoring.
814 	 */
815 	L_LINT(ftemp, v_nsec);
816 	L_RSHIFT(ftemp, pps_shift);
817 	L_SUB(ftemp, pps_freq);
818 	u_nsec = L_GINT(ftemp);
819 	if (u_nsec > PPS_MAXWANDER) {
820 		L_LINT(ftemp, PPS_MAXWANDER);
821 		pps_intcnt--;
822 		time_status |= STA_PPSWANDER;
823 		pps_stbcnt++;
824 	} else if (u_nsec < -PPS_MAXWANDER) {
825 		L_LINT(ftemp, -PPS_MAXWANDER);
826 		pps_intcnt--;
827 		time_status |= STA_PPSWANDER;
828 		pps_stbcnt++;
829 	} else {
830 		pps_intcnt++;
831 	}
832 	if (pps_intcnt >= 4) {
833 		pps_intcnt = 4;
834 		if (pps_shift < pps_shiftmax) {
835 			pps_shift++;
836 			pps_intcnt = 0;
837 		}
838 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
839 		pps_intcnt = -4;
840 		if (pps_shift > PPS_FAVG) {
841 			pps_shift--;
842 			pps_intcnt = 0;
843 		}
844 	}
845 	if (u_nsec < 0)
846 		u_nsec = -u_nsec;
847 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
848 
849 	/*
850 	 * The PPS frequency is recalculated and clamped to the maximum
851 	 * MAXFREQ. If enabled, the system clock frequency is updated as
852 	 * well.
853 	 */
854 	L_ADD(pps_freq, ftemp);
855 	u_nsec = L_GINT(pps_freq);
856 	if (u_nsec > MAXFREQ)
857 		L_LINT(pps_freq, MAXFREQ);
858 	else if (u_nsec < -MAXFREQ)
859 		L_LINT(pps_freq, -MAXFREQ);
860 	if (time_status & STA_PPSFREQ)
861 		time_freq = pps_freq;
862 }
863 #endif /* PPS_SYNC */
864