xref: /dragonfly/sys/kern/kern_proc.c (revision 23b3ef78)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/sysctl.h>
34 #include <sys/malloc.h>
35 #include <sys/proc.h>
36 #include <sys/vnode.h>
37 #include <sys/jail.h>
38 #include <sys/filedesc.h>
39 #include <sys/tty.h>
40 #include <sys/dsched.h>
41 #include <sys/signalvar.h>
42 #include <sys/spinlock.h>
43 #include <sys/random.h>
44 #include <sys/vnode.h>
45 #include <vm/vm.h>
46 #include <sys/lock.h>
47 #include <vm/pmap.h>
48 #include <vm/vm_map.h>
49 #include <sys/user.h>
50 #include <machine/smp.h>
51 
52 #include <sys/refcount.h>
53 #include <sys/spinlock2.h>
54 #include <sys/mplock2.h>
55 
56 /*
57  * Hash table size must be a power of two and is not currently dynamically
58  * sized.  There is a trade-off between the linear scans which must iterate
59  * all HSIZE elements and the number of elements which might accumulate
60  * within each hash chain.
61  */
62 #define ALLPROC_HSIZE	256
63 #define ALLPROC_HMASK	(ALLPROC_HSIZE - 1)
64 #define ALLPROC_HASH(pid)	(pid & ALLPROC_HMASK)
65 #define PGRP_HASH(pid)	(pid & ALLPROC_HMASK)
66 #define SESS_HASH(pid)	(pid & ALLPROC_HMASK)
67 
68 /*
69  * pid_doms[] management, used to control how quickly a PID can be recycled.
70  * Must be a multiple of ALLPROC_HSIZE for the proc_makepid() inner loops.
71  *
72  * WARNING! PIDDOM_DELAY should not be defined > 20 or so unless you change
73  *	    the array from int8_t's to int16_t's.
74  */
75 #define PIDDOM_COUNT	10	/* 10 pids per domain - reduce array size */
76 #define PIDDOM_DELAY	10	/* min 10 seconds after exit before reuse */
77 #define PIDSEL_DOMAINS	(PID_MAX / PIDDOM_COUNT / ALLPROC_HSIZE * ALLPROC_HSIZE)
78 
79 /* Used by libkvm */
80 int allproc_hsize = ALLPROC_HSIZE;
81 
82 LIST_HEAD(pidhashhead, proc);
83 
84 static MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
85 MALLOC_DEFINE(M_SESSION, "session", "session header");
86 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
87 MALLOC_DEFINE(M_LWP, "lwp", "lwp structures");
88 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
89 
90 int ps_showallprocs = 1;
91 static int ps_showallthreads = 1;
92 SYSCTL_INT(_security, OID_AUTO, ps_showallprocs, CTLFLAG_RW,
93     &ps_showallprocs, 0,
94     "Unprivileged processes can see processes with different UID/GID");
95 SYSCTL_INT(_security, OID_AUTO, ps_showallthreads, CTLFLAG_RW,
96     &ps_showallthreads, 0,
97     "Unprivileged processes can see kernel threads");
98 static u_int pid_domain_skips;
99 SYSCTL_UINT(_kern, OID_AUTO, pid_domain_skips, CTLFLAG_RW,
100     &pid_domain_skips, 0,
101     "Number of pid_doms[] skipped");
102 static u_int pid_inner_skips;
103 SYSCTL_UINT(_kern, OID_AUTO, pid_inner_skips, CTLFLAG_RW,
104     &pid_inner_skips, 0,
105     "Number of pid_doms[] skipped");
106 
107 static void orphanpg(struct pgrp *pg);
108 static void proc_makepid(struct proc *p, int random_offset);
109 
110 /*
111  * Other process lists
112  */
113 static struct lwkt_token proc_tokens[ALLPROC_HSIZE];
114 static struct proclist allprocs[ALLPROC_HSIZE];	/* locked by proc_tokens */
115 static struct pgrplist allpgrps[ALLPROC_HSIZE];	/* locked by proc_tokens */
116 static struct sesslist allsessn[ALLPROC_HSIZE];	/* locked by proc_tokens */
117 
118 /*
119  * We try our best to avoid recycling a PID too quickly.  We do this by
120  * storing (uint8_t)time_second in the related pid domain on-reap and then
121  * using that to skip-over the domain on-allocate.
122  *
123  * This array has to be fairly large to support a high fork/exec rate.
124  * We want ~100,000 entries or so to support a 10-second reuse latency
125  * at 10,000 execs/second, worst case.  Best-case multiply by PIDDOM_COUNT
126  * (approximately 100,000 execs/second).
127  */
128 static uint8_t pid_doms[PIDSEL_DOMAINS];	/* ~100,000 entries */
129 
130 /*
131  * Random component to nextpid generation.  We mix in a random factor to make
132  * it a little harder to predict.  We sanity check the modulus value to avoid
133  * doing it in critical paths.  Don't let it be too small or we pointlessly
134  * waste randomness entropy, and don't let it be impossibly large.  Using a
135  * modulus that is too big causes a LOT more process table scans and slows
136  * down fork processing as the pidchecked caching is defeated.
137  */
138 static int randompid = 0;
139 
140 /*
141  * No requirements.
142  */
143 static int
144 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
145 {
146 	int error, pid;
147 
148 	pid = randompid;
149 	error = sysctl_handle_int(oidp, &pid, 0, req);
150 	if (error || !req->newptr)
151 		return (error);
152 	if (pid < 0 || pid > PID_MAX - 100)     /* out of range */
153 		pid = PID_MAX - 100;
154 	else if (pid < 2)                       /* NOP */
155 		pid = 0;
156 	else if (pid < 100)                     /* Make it reasonable */
157 		pid = 100;
158 	randompid = pid;
159 	return (error);
160 }
161 
162 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
163 	    0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
164 
165 /*
166  * Initialize global process hashing structures.
167  *
168  * These functions are ONLY called from the low level boot code and do
169  * not lock their operations.
170  */
171 void
172 procinit(void)
173 {
174 	u_long i;
175 
176 	/*
177 	 * Avoid unnecessary stalls due to pid_doms[] values all being
178 	 * the same.  Make sure that the allocation of pid 1 and pid 2
179 	 * succeeds.
180 	 */
181 	for (i = 0; i < PIDSEL_DOMAINS; ++i)
182 		pid_doms[i] = (int8_t)i - (int8_t)(PIDDOM_DELAY + 1);
183 
184 	/*
185 	 * Other misc init.
186 	 */
187 	for (i = 0; i < ALLPROC_HSIZE; ++i) {
188 		LIST_INIT(&allprocs[i]);
189 		LIST_INIT(&allsessn[i]);
190 		LIST_INIT(&allpgrps[i]);
191 		lwkt_token_init(&proc_tokens[i], "allproc");
192 	}
193 	uihashinit();
194 }
195 
196 void
197 procinsertinit(struct proc *p)
198 {
199 	LIST_INSERT_HEAD(&allprocs[ALLPROC_HASH(p->p_pid)], p, p_list);
200 }
201 
202 void
203 pgrpinsertinit(struct pgrp *pg)
204 {
205 	LIST_INSERT_HEAD(&allpgrps[ALLPROC_HASH(pg->pg_id)], pg, pg_list);
206 }
207 
208 void
209 sessinsertinit(struct session *sess)
210 {
211 	LIST_INSERT_HEAD(&allsessn[ALLPROC_HASH(sess->s_sid)], sess, s_list);
212 }
213 
214 /*
215  * Process hold/release support functions.  Called via the PHOLD(),
216  * PRELE(), and PSTALL() macros.
217  *
218  * p->p_lock is a simple hold count with a waiting interlock.  No wakeup()
219  * is issued unless someone is actually waiting for the process.
220  *
221  * Most holds are short-term, allowing a process scan or other similar
222  * operation to access a proc structure without it getting ripped out from
223  * under us.  procfs and process-list sysctl ops also use the hold function
224  * interlocked with various p_flags to keep the vmspace intact when reading
225  * or writing a user process's address space.
226  *
227  * There are two situations where a hold count can be longer.  Exiting lwps
228  * hold the process until the lwp is reaped, and the parent will hold the
229  * child during vfork()/exec() sequences while the child is marked P_PPWAIT.
230  *
231  * The kernel waits for the hold count to drop to 0 (or 1 in some cases) at
232  * various critical points in the fork/exec and exit paths before proceeding.
233  */
234 #define PLOCK_ZOMB	0x20000000
235 #define PLOCK_WAITING	0x40000000
236 #define PLOCK_MASK	0x1FFFFFFF
237 
238 void
239 pstall(struct proc *p, const char *wmesg, int count)
240 {
241 	int o;
242 	int n;
243 
244 	for (;;) {
245 		o = p->p_lock;
246 		cpu_ccfence();
247 		if ((o & PLOCK_MASK) <= count)
248 			break;
249 		n = o | PLOCK_WAITING;
250 		tsleep_interlock(&p->p_lock, 0);
251 
252 		/*
253 		 * If someone is trying to single-step the process during
254 		 * an exec or an exit they can deadlock us because procfs
255 		 * sleeps with the process held.
256 		 */
257 		if (p->p_stops) {
258 			if (p->p_flags & P_INEXEC) {
259 				wakeup(&p->p_stype);
260 			} else if (p->p_flags & P_POSTEXIT) {
261 				spin_lock(&p->p_spin);
262 				p->p_stops = 0;
263 				p->p_step = 0;
264 				spin_unlock(&p->p_spin);
265 				wakeup(&p->p_stype);
266 			}
267 		}
268 
269 		if (atomic_cmpset_int(&p->p_lock, o, n)) {
270 			tsleep(&p->p_lock, PINTERLOCKED, wmesg, 0);
271 		}
272 	}
273 }
274 
275 void
276 phold(struct proc *p)
277 {
278 	atomic_add_int(&p->p_lock, 1);
279 }
280 
281 /*
282  * WARNING!  On last release (p) can become instantly invalid due to
283  *	     MP races.
284  */
285 void
286 prele(struct proc *p)
287 {
288 	int o;
289 	int n;
290 
291 	/*
292 	 * Fast path
293 	 */
294 	if (atomic_cmpset_int(&p->p_lock, 1, 0))
295 		return;
296 
297 	/*
298 	 * Slow path
299 	 */
300 	for (;;) {
301 		o = p->p_lock;
302 		KKASSERT((o & PLOCK_MASK) > 0);
303 		cpu_ccfence();
304 		n = (o - 1) & ~PLOCK_WAITING;
305 		if (atomic_cmpset_int(&p->p_lock, o, n)) {
306 			if (o & PLOCK_WAITING)
307 				wakeup(&p->p_lock);
308 			break;
309 		}
310 	}
311 }
312 
313 /*
314  * Hold and flag serialized for zombie reaping purposes.
315  *
316  * This function will fail if it has to block, returning non-zero with
317  * neither the flag set or the hold count bumped.  Note that we must block
318  * without holding a ref, meaning that the caller must ensure that (p)
319  * remains valid through some other interlock (typically on its parent
320  * process's p_token).
321  *
322  * Zero is returned on success.  The hold count will be incremented and
323  * the serialization flag acquired.  Note that serialization is only against
324  * other pholdzomb() calls, not against phold() calls.
325  */
326 int
327 pholdzomb(struct proc *p)
328 {
329 	int o;
330 	int n;
331 
332 	/*
333 	 * Fast path
334 	 */
335 	if (atomic_cmpset_int(&p->p_lock, 0, PLOCK_ZOMB | 1))
336 		return(0);
337 
338 	/*
339 	 * Slow path
340 	 */
341 	for (;;) {
342 		o = p->p_lock;
343 		cpu_ccfence();
344 		if ((o & PLOCK_ZOMB) == 0) {
345 			n = (o + 1) | PLOCK_ZOMB;
346 			if (atomic_cmpset_int(&p->p_lock, o, n))
347 				return(0);
348 		} else {
349 			KKASSERT((o & PLOCK_MASK) > 0);
350 			n = o | PLOCK_WAITING;
351 			tsleep_interlock(&p->p_lock, 0);
352 			if (atomic_cmpset_int(&p->p_lock, o, n)) {
353 				tsleep(&p->p_lock, PINTERLOCKED, "phldz", 0);
354 				/* (p) can be ripped out at this point */
355 				return(1);
356 			}
357 		}
358 	}
359 }
360 
361 /*
362  * Release PLOCK_ZOMB and the hold count, waking up any waiters.
363  *
364  * WARNING!  On last release (p) can become instantly invalid due to
365  *	     MP races.
366  */
367 void
368 prelezomb(struct proc *p)
369 {
370 	int o;
371 	int n;
372 
373 	/*
374 	 * Fast path
375 	 */
376 	if (atomic_cmpset_int(&p->p_lock, PLOCK_ZOMB | 1, 0))
377 		return;
378 
379 	/*
380 	 * Slow path
381 	 */
382 	KKASSERT(p->p_lock & PLOCK_ZOMB);
383 	for (;;) {
384 		o = p->p_lock;
385 		KKASSERT((o & PLOCK_MASK) > 0);
386 		cpu_ccfence();
387 		n = (o - 1) & ~(PLOCK_ZOMB | PLOCK_WAITING);
388 		if (atomic_cmpset_int(&p->p_lock, o, n)) {
389 			if (o & PLOCK_WAITING)
390 				wakeup(&p->p_lock);
391 			break;
392 		}
393 	}
394 }
395 
396 /*
397  * Is p an inferior of the current process?
398  *
399  * No requirements.
400  */
401 int
402 inferior(struct proc *p)
403 {
404 	struct proc *p2;
405 
406 	PHOLD(p);
407 	lwkt_gettoken_shared(&p->p_token);
408 	while (p != curproc) {
409 		if (p->p_pid == 0) {
410 			lwkt_reltoken(&p->p_token);
411 			return (0);
412 		}
413 		p2 = p->p_pptr;
414 		PHOLD(p2);
415 		lwkt_reltoken(&p->p_token);
416 		PRELE(p);
417 		lwkt_gettoken_shared(&p2->p_token);
418 		p = p2;
419 	}
420 	lwkt_reltoken(&p->p_token);
421 	PRELE(p);
422 
423 	return (1);
424 }
425 
426 /*
427  * Locate a process by number.  The returned process will be referenced and
428  * must be released with PRELE().
429  *
430  * No requirements.
431  */
432 struct proc *
433 pfind(pid_t pid)
434 {
435 	struct proc *p = curproc;
436 	int n;
437 
438 	/*
439 	 * Shortcut the current process
440 	 */
441 	if (p && p->p_pid == pid) {
442 		PHOLD(p);
443 		return (p);
444 	}
445 
446 	/*
447 	 * Otherwise find it in the hash table.
448 	 */
449 	n = ALLPROC_HASH(pid);
450 
451 	lwkt_gettoken_shared(&proc_tokens[n]);
452 	LIST_FOREACH(p, &allprocs[n], p_list) {
453 		if (p->p_stat == SZOMB)
454 			continue;
455 		if (p->p_pid == pid) {
456 			PHOLD(p);
457 			lwkt_reltoken(&proc_tokens[n]);
458 			return (p);
459 		}
460 	}
461 	lwkt_reltoken(&proc_tokens[n]);
462 
463 	return (NULL);
464 }
465 
466 /*
467  * Locate a process by number.  The returned process is NOT referenced.
468  * The result will not be stable and is typically only used to validate
469  * against a process that the caller has in-hand.
470  *
471  * No requirements.
472  */
473 struct proc *
474 pfindn(pid_t pid)
475 {
476 	struct proc *p = curproc;
477 	int n;
478 
479 	/*
480 	 * Shortcut the current process
481 	 */
482 	if (p && p->p_pid == pid)
483 		return (p);
484 
485 	/*
486 	 * Otherwise find it in the hash table.
487 	 */
488 	n = ALLPROC_HASH(pid);
489 
490 	lwkt_gettoken_shared(&proc_tokens[n]);
491 	LIST_FOREACH(p, &allprocs[n], p_list) {
492 		if (p->p_stat == SZOMB)
493 			continue;
494 		if (p->p_pid == pid) {
495 			lwkt_reltoken(&proc_tokens[n]);
496 			return (p);
497 		}
498 	}
499 	lwkt_reltoken(&proc_tokens[n]);
500 
501 	return (NULL);
502 }
503 
504 /*
505  * Locate a process on the zombie list.  Return a process or NULL.
506  * The returned process will be referenced and the caller must release
507  * it with PRELE().
508  *
509  * No other requirements.
510  */
511 struct proc *
512 zpfind(pid_t pid)
513 {
514 	struct proc *p = curproc;
515 	int n;
516 
517 	/*
518 	 * Shortcut the current process
519 	 */
520 	if (p && p->p_pid == pid) {
521 		PHOLD(p);
522 		return (p);
523 	}
524 
525 	/*
526 	 * Otherwise find it in the hash table.
527 	 */
528 	n = ALLPROC_HASH(pid);
529 
530 	lwkt_gettoken_shared(&proc_tokens[n]);
531 	LIST_FOREACH(p, &allprocs[n], p_list) {
532 		if (p->p_stat != SZOMB)
533 			continue;
534 		if (p->p_pid == pid) {
535 			PHOLD(p);
536 			lwkt_reltoken(&proc_tokens[n]);
537 			return (p);
538 		}
539 	}
540 	lwkt_reltoken(&proc_tokens[n]);
541 
542 	return (NULL);
543 }
544 
545 
546 void
547 pgref(struct pgrp *pgrp)
548 {
549 	refcount_acquire(&pgrp->pg_refs);
550 }
551 
552 void
553 pgrel(struct pgrp *pgrp)
554 {
555 	int count;
556 	int n;
557 
558 	n = PGRP_HASH(pgrp->pg_id);
559 	for (;;) {
560 		count = pgrp->pg_refs;
561 		cpu_ccfence();
562 		KKASSERT(count > 0);
563 		if (count == 1) {
564 			lwkt_gettoken(&proc_tokens[n]);
565 			if (atomic_cmpset_int(&pgrp->pg_refs, 1, 0))
566 				break;
567 			lwkt_reltoken(&proc_tokens[n]);
568 			/* retry */
569 		} else {
570 			if (atomic_cmpset_int(&pgrp->pg_refs, count, count - 1))
571 				return;
572 			/* retry */
573 		}
574 	}
575 
576 	/*
577 	 * Successful 1->0 transition, pghash_spin is held.
578 	 */
579 	LIST_REMOVE(pgrp, pg_list);
580 	pid_doms[pgrp->pg_id % PIDSEL_DOMAINS] = (uint8_t)time_second;
581 
582 	/*
583 	 * Reset any sigio structures pointing to us as a result of
584 	 * F_SETOWN with our pgid.
585 	 */
586 	funsetownlst(&pgrp->pg_sigiolst);
587 
588 	if (pgrp->pg_session->s_ttyp != NULL &&
589 	    pgrp->pg_session->s_ttyp->t_pgrp == pgrp) {
590 		pgrp->pg_session->s_ttyp->t_pgrp = NULL;
591 	}
592 	lwkt_reltoken(&proc_tokens[n]);
593 
594 	sess_rele(pgrp->pg_session);
595 	kfree(pgrp, M_PGRP);
596 }
597 
598 /*
599  * Locate a process group by number.  The returned process group will be
600  * referenced w/pgref() and must be released with pgrel() (or assigned
601  * somewhere if you wish to keep the reference).
602  *
603  * No requirements.
604  */
605 struct pgrp *
606 pgfind(pid_t pgid)
607 {
608 	struct pgrp *pgrp;
609 	int n;
610 
611 	n = PGRP_HASH(pgid);
612 	lwkt_gettoken_shared(&proc_tokens[n]);
613 
614 	LIST_FOREACH(pgrp, &allpgrps[n], pg_list) {
615 		if (pgrp->pg_id == pgid) {
616 			refcount_acquire(&pgrp->pg_refs);
617 			lwkt_reltoken(&proc_tokens[n]);
618 			return (pgrp);
619 		}
620 	}
621 	lwkt_reltoken(&proc_tokens[n]);
622 	return (NULL);
623 }
624 
625 /*
626  * Move p to a new or existing process group (and session)
627  *
628  * No requirements.
629  */
630 int
631 enterpgrp(struct proc *p, pid_t pgid, int mksess)
632 {
633 	struct pgrp *pgrp;
634 	struct pgrp *opgrp;
635 	int error;
636 
637 	pgrp = pgfind(pgid);
638 
639 	KASSERT(pgrp == NULL || !mksess,
640 		("enterpgrp: setsid into non-empty pgrp"));
641 	KASSERT(!SESS_LEADER(p),
642 		("enterpgrp: session leader attempted setpgrp"));
643 
644 	if (pgrp == NULL) {
645 		pid_t savepid = p->p_pid;
646 		struct proc *np;
647 		int n;
648 
649 		/*
650 		 * new process group
651 		 */
652 		KASSERT(p->p_pid == pgid,
653 			("enterpgrp: new pgrp and pid != pgid"));
654 		pgrp = kmalloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
655 		pgrp->pg_id = pgid;
656 		LIST_INIT(&pgrp->pg_members);
657 		pgrp->pg_jobc = 0;
658 		SLIST_INIT(&pgrp->pg_sigiolst);
659 		lwkt_token_init(&pgrp->pg_token, "pgrp_token");
660 		refcount_init(&pgrp->pg_refs, 1);
661 		lockinit(&pgrp->pg_lock, "pgwt", 0, 0);
662 
663 		n = PGRP_HASH(pgid);
664 
665 		if ((np = pfindn(savepid)) == NULL || np != p) {
666 			lwkt_reltoken(&proc_tokens[n]);
667 			error = ESRCH;
668 			kfree(pgrp, M_PGRP);
669 			goto fatal;
670 		}
671 
672 		lwkt_gettoken(&proc_tokens[n]);
673 		if (mksess) {
674 			struct session *sess;
675 
676 			/*
677 			 * new session
678 			 */
679 			sess = kmalloc(sizeof(struct session), M_SESSION,
680 				       M_WAITOK | M_ZERO);
681 			lwkt_gettoken(&p->p_token);
682 			sess->s_leader = p;
683 			sess->s_sid = p->p_pid;
684 			sess->s_count = 1;
685 			sess->s_ttyvp = NULL;
686 			sess->s_ttyp = NULL;
687 			bcopy(p->p_session->s_login, sess->s_login,
688 			      sizeof(sess->s_login));
689 			pgrp->pg_session = sess;
690 			KASSERT(p == curproc,
691 				("enterpgrp: mksession and p != curproc"));
692 			p->p_flags &= ~P_CONTROLT;
693 			LIST_INSERT_HEAD(&allsessn[n], sess, s_list);
694 			lwkt_reltoken(&p->p_token);
695 		} else {
696 			lwkt_gettoken(&p->p_token);
697 			pgrp->pg_session = p->p_session;
698 			sess_hold(pgrp->pg_session);
699 			lwkt_reltoken(&p->p_token);
700 		}
701 		LIST_INSERT_HEAD(&allpgrps[n], pgrp, pg_list);
702 
703 		lwkt_reltoken(&proc_tokens[n]);
704 	} else if (pgrp == p->p_pgrp) {
705 		pgrel(pgrp);
706 		goto done;
707 	} /* else pgfind() referenced the pgrp */
708 
709 	lwkt_gettoken(&pgrp->pg_token);
710 	lwkt_gettoken(&p->p_token);
711 
712 	/*
713 	 * Replace p->p_pgrp, handling any races that occur.
714 	 */
715 	while ((opgrp = p->p_pgrp) != NULL) {
716 		pgref(opgrp);
717 		lwkt_gettoken(&opgrp->pg_token);
718 		if (opgrp != p->p_pgrp) {
719 			lwkt_reltoken(&opgrp->pg_token);
720 			pgrel(opgrp);
721 			continue;
722 		}
723 		LIST_REMOVE(p, p_pglist);
724 		break;
725 	}
726 	p->p_pgrp = pgrp;
727 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
728 
729 	/*
730 	 * Adjust eligibility of affected pgrps to participate in job control.
731 	 * Increment eligibility counts before decrementing, otherwise we
732 	 * could reach 0 spuriously during the first call.
733 	 */
734 	fixjobc(p, pgrp, 1);
735 	if (opgrp) {
736 		fixjobc(p, opgrp, 0);
737 		lwkt_reltoken(&opgrp->pg_token);
738 		pgrel(opgrp);	/* manual pgref */
739 		pgrel(opgrp);	/* p->p_pgrp ref */
740 	}
741 	lwkt_reltoken(&p->p_token);
742 	lwkt_reltoken(&pgrp->pg_token);
743 done:
744 	error = 0;
745 fatal:
746 	return (error);
747 }
748 
749 /*
750  * Remove process from process group
751  *
752  * No requirements.
753  */
754 int
755 leavepgrp(struct proc *p)
756 {
757 	struct pgrp *pg = p->p_pgrp;
758 
759 	lwkt_gettoken(&p->p_token);
760 	while ((pg = p->p_pgrp) != NULL) {
761 		pgref(pg);
762 		lwkt_gettoken(&pg->pg_token);
763 		if (p->p_pgrp != pg) {
764 			lwkt_reltoken(&pg->pg_token);
765 			pgrel(pg);
766 			continue;
767 		}
768 		p->p_pgrp = NULL;
769 		LIST_REMOVE(p, p_pglist);
770 		lwkt_reltoken(&pg->pg_token);
771 		pgrel(pg);	/* manual pgref */
772 		pgrel(pg);	/* p->p_pgrp ref */
773 		break;
774 	}
775 	lwkt_reltoken(&p->p_token);
776 
777 	return (0);
778 }
779 
780 /*
781  * Adjust the ref count on a session structure.  When the ref count falls to
782  * zero the tty is disassociated from the session and the session structure
783  * is freed.  Note that tty assocation is not itself ref-counted.
784  *
785  * No requirements.
786  */
787 void
788 sess_hold(struct session *sp)
789 {
790 	atomic_add_int(&sp->s_count, 1);
791 }
792 
793 /*
794  * No requirements.
795  */
796 void
797 sess_rele(struct session *sess)
798 {
799 	struct tty *tp;
800 	int count;
801 	int n;
802 
803 	n = SESS_HASH(sess->s_sid);
804 	for (;;) {
805 		count = sess->s_count;
806 		cpu_ccfence();
807 		KKASSERT(count > 0);
808 		if (count == 1) {
809 			lwkt_gettoken(&tty_token);
810 			lwkt_gettoken(&proc_tokens[n]);
811 			if (atomic_cmpset_int(&sess->s_count, 1, 0))
812 				break;
813 			lwkt_reltoken(&proc_tokens[n]);
814 			lwkt_reltoken(&tty_token);
815 			/* retry */
816 		} else {
817 			if (atomic_cmpset_int(&sess->s_count, count, count - 1))
818 				return;
819 			/* retry */
820 		}
821 	}
822 
823 	/*
824 	 * Successful 1->0 transition and tty_token is held.
825 	 */
826 	LIST_REMOVE(sess, s_list);
827 	pid_doms[sess->s_sid % PIDSEL_DOMAINS] = (uint8_t)time_second;
828 
829 	if (sess->s_ttyp && sess->s_ttyp->t_session) {
830 #ifdef TTY_DO_FULL_CLOSE
831 		/* FULL CLOSE, see ttyclearsession() */
832 		KKASSERT(sess->s_ttyp->t_session == sess);
833 		sess->s_ttyp->t_session = NULL;
834 #else
835 		/* HALF CLOSE, see ttyclearsession() */
836 		if (sess->s_ttyp->t_session == sess)
837 			sess->s_ttyp->t_session = NULL;
838 #endif
839 	}
840 	if ((tp = sess->s_ttyp) != NULL) {
841 		sess->s_ttyp = NULL;
842 		ttyunhold(tp);
843 	}
844 	lwkt_reltoken(&proc_tokens[n]);
845 	lwkt_reltoken(&tty_token);
846 
847 	kfree(sess, M_SESSION);
848 }
849 
850 /*
851  * Adjust pgrp jobc counters when specified process changes process group.
852  * We count the number of processes in each process group that "qualify"
853  * the group for terminal job control (those with a parent in a different
854  * process group of the same session).  If that count reaches zero, the
855  * process group becomes orphaned.  Check both the specified process'
856  * process group and that of its children.
857  * entering == 0 => p is leaving specified group.
858  * entering == 1 => p is entering specified group.
859  *
860  * No requirements.
861  */
862 void
863 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
864 {
865 	struct pgrp *hispgrp;
866 	struct session *mysession;
867 	struct proc *np;
868 
869 	/*
870 	 * Check p's parent to see whether p qualifies its own process
871 	 * group; if so, adjust count for p's process group.
872 	 */
873 	lwkt_gettoken(&p->p_token);	/* p_children scan */
874 	lwkt_gettoken(&pgrp->pg_token);
875 
876 	mysession = pgrp->pg_session;
877 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
878 	    hispgrp->pg_session == mysession) {
879 		if (entering)
880 			pgrp->pg_jobc++;
881 		else if (--pgrp->pg_jobc == 0)
882 			orphanpg(pgrp);
883 	}
884 
885 	/*
886 	 * Check this process' children to see whether they qualify
887 	 * their process groups; if so, adjust counts for children's
888 	 * process groups.
889 	 */
890 	LIST_FOREACH(np, &p->p_children, p_sibling) {
891 		PHOLD(np);
892 		lwkt_gettoken(&np->p_token);
893 		if ((hispgrp = np->p_pgrp) != pgrp &&
894 		    hispgrp->pg_session == mysession &&
895 		    np->p_stat != SZOMB) {
896 			pgref(hispgrp);
897 			lwkt_gettoken(&hispgrp->pg_token);
898 			if (entering)
899 				hispgrp->pg_jobc++;
900 			else if (--hispgrp->pg_jobc == 0)
901 				orphanpg(hispgrp);
902 			lwkt_reltoken(&hispgrp->pg_token);
903 			pgrel(hispgrp);
904 		}
905 		lwkt_reltoken(&np->p_token);
906 		PRELE(np);
907 	}
908 	KKASSERT(pgrp->pg_refs > 0);
909 	lwkt_reltoken(&pgrp->pg_token);
910 	lwkt_reltoken(&p->p_token);
911 }
912 
913 /*
914  * A process group has become orphaned;
915  * if there are any stopped processes in the group,
916  * hang-up all process in that group.
917  *
918  * The caller must hold pg_token.
919  */
920 static void
921 orphanpg(struct pgrp *pg)
922 {
923 	struct proc *p;
924 
925 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
926 		if (p->p_stat == SSTOP) {
927 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
928 				ksignal(p, SIGHUP);
929 				ksignal(p, SIGCONT);
930 			}
931 			return;
932 		}
933 	}
934 }
935 
936 /*
937  * Add a new process to the allproc list and the PID hash.  This
938  * also assigns a pid to the new process.
939  *
940  * No requirements.
941  */
942 void
943 proc_add_allproc(struct proc *p)
944 {
945 	int random_offset;
946 
947 	if ((random_offset = randompid) != 0) {
948 		read_random(&random_offset, sizeof(random_offset));
949 		random_offset = (random_offset & 0x7FFFFFFF) % randompid;
950 	}
951 	proc_makepid(p, random_offset);
952 }
953 
954 /*
955  * Calculate a new process pid.  This function is integrated into
956  * proc_add_allproc() to guarentee that the new pid is not reused before
957  * the new process can be added to the allproc list.
958  *
959  * p_pid is assigned and the process is added to the allproc hash table
960  *
961  * WARNING! We need to allocate PIDs sequentially during early boot.
962  *	    In particular, init needs to have a pid of 1.
963  */
964 static
965 void
966 proc_makepid(struct proc *p, int random_offset)
967 {
968 	static pid_t nextpid = 1;	/* heuristic, allowed to race */
969 	struct pgrp *pg;
970 	struct proc *ps;
971 	struct session *sess;
972 	pid_t base;
973 	int8_t delta8;
974 	int retries;
975 	int n;
976 
977 	/*
978 	 * Select the next pid base candidate.
979 	 *
980 	 * Check cyclement, do not allow a pid < 100.
981 	 */
982 	retries = 0;
983 retry:
984 	base = atomic_fetchadd_int(&nextpid, 1) + random_offset;
985 	if (base <= 0 || base >= PID_MAX) {
986 		base = base % PID_MAX;
987 		if (base < 0)
988 			base = 100;
989 		if (base < 100)
990 			base += 100;
991 		nextpid = base;		/* reset (SMP race ok) */
992 	}
993 
994 	/*
995 	 * Do not allow a base pid to be selected from a domain that has
996 	 * recently seen a pid/pgid/sessid reap.  Sleep a little if we looped
997 	 * through all available domains.
998 	 *
999 	 * WARNING: We want the early pids to be allocated linearly,
1000 	 *	    particularly pid 1 and pid 2.
1001 	 */
1002 	if (++retries >= PIDSEL_DOMAINS)
1003 		tsleep(&nextpid, 0, "makepid", 1);
1004 	if (base >= 100) {
1005 		delta8 = (int8_t)time_second -
1006 			 (int8_t)pid_doms[base % PIDSEL_DOMAINS];
1007 		if (delta8 >= 0 && delta8 <= PIDDOM_DELAY) {
1008 			++pid_domain_skips;
1009 			goto retry;
1010 		}
1011 	}
1012 
1013 	/*
1014 	 * Calculate a hash index and find an unused process id within
1015 	 * the table, looping if we cannot find one.
1016 	 *
1017 	 * The inner loop increments by ALLPROC_HSIZE which keeps the
1018 	 * PID at the same pid_doms[] index as well as the same hash index.
1019 	 */
1020 	n = ALLPROC_HASH(base);
1021 	lwkt_gettoken(&proc_tokens[n]);
1022 
1023 restart1:
1024 	LIST_FOREACH(ps, &allprocs[n], p_list) {
1025 		if (ps->p_pid == base) {
1026 			base += ALLPROC_HSIZE;
1027 			if (base >= PID_MAX) {
1028 				lwkt_reltoken(&proc_tokens[n]);
1029 				goto retry;
1030 			}
1031 			++pid_inner_skips;
1032 			goto restart1;
1033 		}
1034 	}
1035 	LIST_FOREACH(pg, &allpgrps[n], pg_list) {
1036 		if (pg->pg_id == base) {
1037 			base += ALLPROC_HSIZE;
1038 			if (base >= PID_MAX) {
1039 				lwkt_reltoken(&proc_tokens[n]);
1040 				goto retry;
1041 			}
1042 			++pid_inner_skips;
1043 			goto restart1;
1044 		}
1045 	}
1046 	LIST_FOREACH(sess, &allsessn[n], s_list) {
1047 		if (sess->s_sid == base) {
1048 			base += ALLPROC_HSIZE;
1049 			if (base >= PID_MAX) {
1050 				lwkt_reltoken(&proc_tokens[n]);
1051 				goto retry;
1052 			}
1053 			++pid_inner_skips;
1054 			goto restart1;
1055 		}
1056 	}
1057 
1058 	/*
1059 	 * Assign the pid and insert the process.
1060 	 */
1061 	p->p_pid = base;
1062 	LIST_INSERT_HEAD(&allprocs[n], p, p_list);
1063 	lwkt_reltoken(&proc_tokens[n]);
1064 }
1065 
1066 /*
1067  * Called from exit1 to place the process into a zombie state.
1068  * The process is removed from the pid hash and p_stat is set
1069  * to SZOMB.  Normal pfind[n]() calls will not find it any more.
1070  *
1071  * Caller must hold p->p_token.  We are required to wait until p_lock
1072  * becomes zero before we can manipulate the list, allowing allproc
1073  * scans to guarantee consistency during a list scan.
1074  */
1075 void
1076 proc_move_allproc_zombie(struct proc *p)
1077 {
1078 	int n;
1079 
1080 	n = ALLPROC_HASH(p->p_pid);
1081 	PSTALL(p, "reap1", 0);
1082 	lwkt_gettoken(&proc_tokens[n]);
1083 
1084 	PSTALL(p, "reap1a", 0);
1085 	p->p_stat = SZOMB;
1086 
1087 	lwkt_reltoken(&proc_tokens[n]);
1088 	dsched_exit_proc(p);
1089 }
1090 
1091 /*
1092  * This routine is called from kern_wait() and will remove the process
1093  * from the zombie list and the sibling list.  This routine will block
1094  * if someone has a lock on the proces (p_lock).
1095  *
1096  * Caller must hold p->p_token.  We are required to wait until p_lock
1097  * becomes zero before we can manipulate the list, allowing allproc
1098  * scans to guarantee consistency during a list scan.
1099  */
1100 void
1101 proc_remove_zombie(struct proc *p)
1102 {
1103 	int n;
1104 
1105 	n = ALLPROC_HASH(p->p_pid);
1106 
1107 	PSTALL(p, "reap2", 0);
1108 	lwkt_gettoken(&proc_tokens[n]);
1109 	PSTALL(p, "reap2a", 0);
1110 	LIST_REMOVE(p, p_list);		/* from remove master list */
1111 	LIST_REMOVE(p, p_sibling);	/* and from sibling list */
1112 	p->p_pptr = NULL;
1113 	pid_doms[p->p_pid % PIDSEL_DOMAINS] = (uint8_t)time_second;
1114 	lwkt_reltoken(&proc_tokens[n]);
1115 }
1116 
1117 /*
1118  * Handle various requirements prior to returning to usermode.  Called from
1119  * platform trap and system call code.
1120  */
1121 void
1122 lwpuserret(struct lwp *lp)
1123 {
1124 	struct proc *p = lp->lwp_proc;
1125 
1126 	if (lp->lwp_mpflags & LWP_MP_VNLRU) {
1127 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_VNLRU);
1128 		allocvnode_gc();
1129 	}
1130 	if (lp->lwp_mpflags & LWP_MP_WEXIT) {
1131 		lwkt_gettoken(&p->p_token);
1132 		lwp_exit(0, NULL);
1133 		lwkt_reltoken(&p->p_token);     /* NOT REACHED */
1134 	}
1135 }
1136 
1137 /*
1138  * Kernel threads run from user processes can also accumulate deferred
1139  * actions which need to be acted upon.  Callers include:
1140  *
1141  * nfsd		- Can allocate lots of vnodes
1142  */
1143 void
1144 lwpkthreaddeferred(void)
1145 {
1146 	struct lwp *lp = curthread->td_lwp;
1147 
1148 	if (lp) {
1149 		if (lp->lwp_mpflags & LWP_MP_VNLRU) {
1150 			atomic_clear_int(&lp->lwp_mpflags, LWP_MP_VNLRU);
1151 			allocvnode_gc();
1152 		}
1153 	}
1154 }
1155 
1156 void
1157 proc_usermap(struct proc *p, int invfork)
1158 {
1159 	struct sys_upmap *upmap;
1160 
1161 	lwkt_gettoken(&p->p_token);
1162 	upmap = kmalloc(roundup2(sizeof(*upmap), PAGE_SIZE), M_PROC,
1163 			M_WAITOK | M_ZERO);
1164 	if (p->p_upmap == NULL) {
1165 		upmap->header[0].type = UKPTYPE_VERSION;
1166 		upmap->header[0].offset = offsetof(struct sys_upmap, version);
1167 		upmap->header[1].type = UPTYPE_RUNTICKS;
1168 		upmap->header[1].offset = offsetof(struct sys_upmap, runticks);
1169 		upmap->header[2].type = UPTYPE_FORKID;
1170 		upmap->header[2].offset = offsetof(struct sys_upmap, forkid);
1171 		upmap->header[3].type = UPTYPE_PID;
1172 		upmap->header[3].offset = offsetof(struct sys_upmap, pid);
1173 		upmap->header[4].type = UPTYPE_PROC_TITLE;
1174 		upmap->header[4].offset = offsetof(struct sys_upmap,proc_title);
1175 		upmap->header[5].type = UPTYPE_INVFORK;
1176 		upmap->header[5].offset = offsetof(struct sys_upmap, invfork);
1177 
1178 		upmap->version = UPMAP_VERSION;
1179 		upmap->pid = p->p_pid;
1180 		upmap->forkid = p->p_forkid;
1181 		upmap->invfork = invfork;
1182 		p->p_upmap = upmap;
1183 	} else {
1184 		kfree(upmap, M_PROC);
1185 	}
1186 	lwkt_reltoken(&p->p_token);
1187 }
1188 
1189 void
1190 proc_userunmap(struct proc *p)
1191 {
1192 	struct sys_upmap *upmap;
1193 
1194 	lwkt_gettoken(&p->p_token);
1195 	if ((upmap = p->p_upmap) != NULL) {
1196 		p->p_upmap = NULL;
1197 		kfree(upmap, M_PROC);
1198 	}
1199 	lwkt_reltoken(&p->p_token);
1200 }
1201 
1202 /*
1203  * Scan all processes on the allproc list.  The process is automatically
1204  * held for the callback.  A return value of -1 terminates the loop.
1205  * Zombie procs are skipped.
1206  *
1207  * The callback is made with the process held and proc_token held.
1208  *
1209  * We limit the scan to the number of processes as-of the start of
1210  * the scan so as not to get caught up in an endless loop if new processes
1211  * are created more quickly than we can scan the old ones.  Add a little
1212  * slop to try to catch edge cases since nprocs can race.
1213  *
1214  * No requirements.
1215  */
1216 void
1217 allproc_scan(int (*callback)(struct proc *, void *), void *data)
1218 {
1219 	int limit = nprocs + ncpus;
1220 	struct proc *p;
1221 	int r;
1222 	int n;
1223 
1224 	/*
1225 	 * proc_tokens[n] protects the allproc list and PHOLD() prevents the
1226 	 * process from being removed from the allproc list or the zombproc
1227 	 * list.
1228 	 */
1229 	for (n = 0; n < ALLPROC_HSIZE; ++n) {
1230 		if (LIST_FIRST(&allprocs[n]) == NULL)
1231 			continue;
1232 		lwkt_gettoken(&proc_tokens[n]);
1233 		LIST_FOREACH(p, &allprocs[n], p_list) {
1234 			if (p->p_stat == SZOMB)
1235 				continue;
1236 			PHOLD(p);
1237 			r = callback(p, data);
1238 			PRELE(p);
1239 			if (r < 0)
1240 				break;
1241 			if (--limit < 0)
1242 				break;
1243 		}
1244 		lwkt_reltoken(&proc_tokens[n]);
1245 
1246 		/*
1247 		 * Check if asked to stop early
1248 		 */
1249 		if (p)
1250 			break;
1251 	}
1252 }
1253 
1254 /*
1255  * Scan all lwps of processes on the allproc list.  The lwp is automatically
1256  * held for the callback.  A return value of -1 terminates the loop.
1257  *
1258  * The callback is made with the proces and lwp both held, and proc_token held.
1259  *
1260  * No requirements.
1261  */
1262 void
1263 alllwp_scan(int (*callback)(struct lwp *, void *), void *data)
1264 {
1265 	struct proc *p;
1266 	struct lwp *lp;
1267 	int r = 0;
1268 	int n;
1269 
1270 	for (n = 0; n < ALLPROC_HSIZE; ++n) {
1271 		if (LIST_FIRST(&allprocs[n]) == NULL)
1272 			continue;
1273 		lwkt_gettoken(&proc_tokens[n]);
1274 		LIST_FOREACH(p, &allprocs[n], p_list) {
1275 			if (p->p_stat == SZOMB)
1276 				continue;
1277 			PHOLD(p);
1278 			lwkt_gettoken(&p->p_token);
1279 			FOREACH_LWP_IN_PROC(lp, p) {
1280 				LWPHOLD(lp);
1281 				r = callback(lp, data);
1282 				LWPRELE(lp);
1283 			}
1284 			lwkt_reltoken(&p->p_token);
1285 			PRELE(p);
1286 			if (r < 0)
1287 				break;
1288 		}
1289 		lwkt_reltoken(&proc_tokens[n]);
1290 
1291 		/*
1292 		 * Asked to exit early
1293 		 */
1294 		if (p)
1295 			break;
1296 	}
1297 }
1298 
1299 /*
1300  * Scan all processes on the zombproc list.  The process is automatically
1301  * held for the callback.  A return value of -1 terminates the loop.
1302  *
1303  * No requirements.
1304  * The callback is made with the proces held and proc_token held.
1305  */
1306 void
1307 zombproc_scan(int (*callback)(struct proc *, void *), void *data)
1308 {
1309 	struct proc *p;
1310 	int r;
1311 	int n;
1312 
1313 	/*
1314 	 * proc_tokens[n] protects the allproc list and PHOLD() prevents the
1315 	 * process from being removed from the allproc list or the zombproc
1316 	 * list.
1317 	 */
1318 	for (n = 0; n < ALLPROC_HSIZE; ++n) {
1319 		if (LIST_FIRST(&allprocs[n]) == NULL)
1320 			continue;
1321 		lwkt_gettoken(&proc_tokens[n]);
1322 		LIST_FOREACH(p, &allprocs[n], p_list) {
1323 			if (p->p_stat != SZOMB)
1324 				continue;
1325 			PHOLD(p);
1326 			r = callback(p, data);
1327 			PRELE(p);
1328 			if (r < 0)
1329 				break;
1330 		}
1331 		lwkt_reltoken(&proc_tokens[n]);
1332 
1333 		/*
1334 		 * Check if asked to stop early
1335 		 */
1336 		if (p)
1337 			break;
1338 	}
1339 }
1340 
1341 #include "opt_ddb.h"
1342 #ifdef DDB
1343 #include <ddb/ddb.h>
1344 
1345 /*
1346  * Debugging only
1347  */
1348 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
1349 {
1350 	struct pgrp *pgrp;
1351 	struct proc *p;
1352 	int i;
1353 
1354 	for (i = 0; i < ALLPROC_HSIZE; ++i) {
1355 		if (LIST_EMPTY(&allpgrps[i]))
1356 			continue;
1357 		kprintf("\tindx %d\n", i);
1358 		LIST_FOREACH(pgrp, &allpgrps[i], pg_list) {
1359 			kprintf("\tpgrp %p, pgid %ld, sess %p, "
1360 				"sesscnt %d, mem %p\n",
1361 				(void *)pgrp, (long)pgrp->pg_id,
1362 				(void *)pgrp->pg_session,
1363 				pgrp->pg_session->s_count,
1364 				(void *)LIST_FIRST(&pgrp->pg_members));
1365 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1366 				kprintf("\t\tpid %ld addr %p pgrp %p\n",
1367 					(long)p->p_pid, (void *)p,
1368 					(void *)p->p_pgrp);
1369 			}
1370 		}
1371 	}
1372 }
1373 #endif /* DDB */
1374 
1375 /*
1376  * The caller must hold proc_token.
1377  */
1378 static int
1379 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1380 {
1381 	struct kinfo_proc ki;
1382 	struct lwp *lp;
1383 	int skp = 0, had_output = 0;
1384 	int error;
1385 
1386 	bzero(&ki, sizeof(ki));
1387 	lwkt_gettoken_shared(&p->p_token);
1388 	fill_kinfo_proc(p, &ki);
1389 	if ((flags & KERN_PROC_FLAG_LWP) == 0)
1390 		skp = 1;
1391 	error = 0;
1392 	FOREACH_LWP_IN_PROC(lp, p) {
1393 		LWPHOLD(lp);
1394 		fill_kinfo_lwp(lp, &ki.kp_lwp);
1395 		had_output = 1;
1396 		error = SYSCTL_OUT(req, &ki, sizeof(ki));
1397 		LWPRELE(lp);
1398 		if (error)
1399 			break;
1400 		if (skp)
1401 			break;
1402 	}
1403 	lwkt_reltoken(&p->p_token);
1404 	/* We need to output at least the proc, even if there is no lwp. */
1405 	if (had_output == 0) {
1406 		error = SYSCTL_OUT(req, &ki, sizeof(ki));
1407 	}
1408 	return (error);
1409 }
1410 
1411 /*
1412  * The caller must hold proc_token.
1413  */
1414 static int
1415 sysctl_out_proc_kthread(struct thread *td, struct sysctl_req *req)
1416 {
1417 	struct kinfo_proc ki;
1418 	int error;
1419 
1420 	fill_kinfo_proc_kthread(td, &ki);
1421 	error = SYSCTL_OUT(req, &ki, sizeof(ki));
1422 	if (error)
1423 		return error;
1424 	return(0);
1425 }
1426 
1427 /*
1428  * No requirements.
1429  */
1430 static int
1431 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1432 {
1433 	int *name = (int *)arg1;
1434 	int oid = oidp->oid_number;
1435 	u_int namelen = arg2;
1436 	struct proc *p;
1437 	struct thread *td;
1438 	struct thread *marker;
1439 	int flags = 0;
1440 	int error = 0;
1441 	int n;
1442 	int origcpu;
1443 	struct ucred *cr1 = curproc->p_ucred;
1444 
1445 	flags = oid & KERN_PROC_FLAGMASK;
1446 	oid &= ~KERN_PROC_FLAGMASK;
1447 
1448 	if ((oid == KERN_PROC_ALL && namelen != 0) ||
1449 	    (oid != KERN_PROC_ALL && namelen != 1)) {
1450 		return (EINVAL);
1451 	}
1452 
1453 	/*
1454 	 * proc_token protects the allproc list and PHOLD() prevents the
1455 	 * process from being removed from the allproc list or the zombproc
1456 	 * list.
1457 	 */
1458 	if (oid == KERN_PROC_PID) {
1459 		p = pfind((pid_t)name[0]);
1460 		if (p) {
1461 			if (PRISON_CHECK(cr1, p->p_ucred))
1462 				error = sysctl_out_proc(p, req, flags);
1463 			PRELE(p);
1464 		}
1465 		goto post_threads;
1466 	}
1467 	p = NULL;
1468 
1469 	if (!req->oldptr) {
1470 		/* overestimate by 5 procs */
1471 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1472 		if (error)
1473 			goto post_threads;
1474 	}
1475 
1476 	for (n = 0; n < ALLPROC_HSIZE; ++n) {
1477 		if (LIST_EMPTY(&allprocs[n]))
1478 			continue;
1479 		lwkt_gettoken_shared(&proc_tokens[n]);
1480 		LIST_FOREACH(p, &allprocs[n], p_list) {
1481 			/*
1482 			 * Show a user only their processes.
1483 			 */
1484 			if ((!ps_showallprocs) &&
1485 				(p->p_ucred == NULL || p_trespass(cr1, p->p_ucred))) {
1486 				continue;
1487 			}
1488 			/*
1489 			 * Skip embryonic processes.
1490 			 */
1491 			if (p->p_stat == SIDL)
1492 				continue;
1493 			/*
1494 			 * TODO - make more efficient (see notes below).
1495 			 * do by session.
1496 			 */
1497 			switch (oid) {
1498 			case KERN_PROC_PGRP:
1499 				/* could do this by traversing pgrp */
1500 				if (p->p_pgrp == NULL ||
1501 				    p->p_pgrp->pg_id != (pid_t)name[0])
1502 					continue;
1503 				break;
1504 
1505 			case KERN_PROC_TTY:
1506 				if ((p->p_flags & P_CONTROLT) == 0 ||
1507 				    p->p_session == NULL ||
1508 				    p->p_session->s_ttyp == NULL ||
1509 				    dev2udev(p->p_session->s_ttyp->t_dev) !=
1510 					(udev_t)name[0])
1511 					continue;
1512 				break;
1513 
1514 			case KERN_PROC_UID:
1515 				if (p->p_ucred == NULL ||
1516 				    p->p_ucred->cr_uid != (uid_t)name[0])
1517 					continue;
1518 				break;
1519 
1520 			case KERN_PROC_RUID:
1521 				if (p->p_ucred == NULL ||
1522 				    p->p_ucred->cr_ruid != (uid_t)name[0])
1523 					continue;
1524 				break;
1525 			}
1526 
1527 			if (!PRISON_CHECK(cr1, p->p_ucred))
1528 				continue;
1529 			PHOLD(p);
1530 			error = sysctl_out_proc(p, req, flags);
1531 			PRELE(p);
1532 			if (error) {
1533 				lwkt_reltoken(&proc_tokens[n]);
1534 				goto post_threads;
1535 			}
1536 		}
1537 		lwkt_reltoken(&proc_tokens[n]);
1538 	}
1539 
1540 	/*
1541 	 * Iterate over all active cpus and scan their thread list.  Start
1542 	 * with the next logical cpu and end with our original cpu.  We
1543 	 * migrate our own thread to each target cpu in order to safely scan
1544 	 * its thread list.  In the last loop we migrate back to our original
1545 	 * cpu.
1546 	 */
1547 	origcpu = mycpu->gd_cpuid;
1548 	if (!ps_showallthreads || jailed(cr1))
1549 		goto post_threads;
1550 
1551 	marker = kmalloc(sizeof(struct thread), M_TEMP, M_WAITOK|M_ZERO);
1552 	marker->td_flags = TDF_MARKER;
1553 	error = 0;
1554 
1555 	for (n = 1; n <= ncpus; ++n) {
1556 		globaldata_t rgd;
1557 		int nid;
1558 
1559 		nid = (origcpu + n) % ncpus;
1560 		if (CPUMASK_TESTBIT(smp_active_mask, nid) == 0)
1561 			continue;
1562 		rgd = globaldata_find(nid);
1563 		lwkt_setcpu_self(rgd);
1564 
1565 		crit_enter();
1566 		TAILQ_INSERT_TAIL(&rgd->gd_tdallq, marker, td_allq);
1567 
1568 		while ((td = TAILQ_PREV(marker, lwkt_queue, td_allq)) != NULL) {
1569 			TAILQ_REMOVE(&rgd->gd_tdallq, marker, td_allq);
1570 			TAILQ_INSERT_BEFORE(td, marker, td_allq);
1571 			if (td->td_flags & TDF_MARKER)
1572 				continue;
1573 			if (td->td_proc)
1574 				continue;
1575 
1576 			lwkt_hold(td);
1577 			crit_exit();
1578 
1579 			switch (oid) {
1580 			case KERN_PROC_PGRP:
1581 			case KERN_PROC_TTY:
1582 			case KERN_PROC_UID:
1583 			case KERN_PROC_RUID:
1584 				break;
1585 			default:
1586 				error = sysctl_out_proc_kthread(td, req);
1587 				break;
1588 			}
1589 			lwkt_rele(td);
1590 			crit_enter();
1591 			if (error)
1592 				break;
1593 		}
1594 		TAILQ_REMOVE(&rgd->gd_tdallq, marker, td_allq);
1595 		crit_exit();
1596 
1597 		if (error)
1598 			break;
1599 	}
1600 
1601 	/*
1602 	 * Userland scheduler expects us to return on the same cpu we
1603 	 * started on.
1604 	 */
1605 	if (mycpu->gd_cpuid != origcpu)
1606 		lwkt_setcpu_self(globaldata_find(origcpu));
1607 
1608 	kfree(marker, M_TEMP);
1609 
1610 post_threads:
1611 	return (error);
1612 }
1613 
1614 /*
1615  * This sysctl allows a process to retrieve the argument list or process
1616  * title for another process without groping around in the address space
1617  * of the other process.  It also allow a process to set its own "process
1618  * title to a string of its own choice.
1619  *
1620  * No requirements.
1621  */
1622 static int
1623 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1624 {
1625 	int *name = (int*) arg1;
1626 	u_int namelen = arg2;
1627 	struct proc *p;
1628 	struct pargs *opa;
1629 	struct pargs *pa;
1630 	int error = 0;
1631 	struct ucred *cr1 = curproc->p_ucred;
1632 
1633 	if (namelen != 1)
1634 		return (EINVAL);
1635 
1636 	p = pfind((pid_t)name[0]);
1637 	if (p == NULL)
1638 		goto done;
1639 	lwkt_gettoken(&p->p_token);
1640 
1641 	if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred))
1642 		goto done;
1643 
1644 	if (req->newptr && curproc != p) {
1645 		error = EPERM;
1646 		goto done;
1647 	}
1648 	if (req->oldptr) {
1649 		if (p->p_upmap != NULL && p->p_upmap->proc_title[0]) {
1650 			/*
1651 			 * Args set via writable user process mmap.
1652 			 * We must calculate the string length manually
1653 			 * because the user data can change at any time.
1654 			 */
1655 			size_t n;
1656 			char *base;
1657 
1658 			base = p->p_upmap->proc_title;
1659 			for (n = 0; n < UPMAP_MAXPROCTITLE - 1; ++n) {
1660 				if (base[n] == 0)
1661 					break;
1662 			}
1663 			error = SYSCTL_OUT(req, base, n);
1664 			if (error == 0)
1665 				error = SYSCTL_OUT(req, "", 1);
1666 		} else if ((pa = p->p_args) != NULL) {
1667 			/*
1668 			 * Args set by setproctitle() sysctl.
1669 			 */
1670 			refcount_acquire(&pa->ar_ref);
1671 			error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1672 			if (refcount_release(&pa->ar_ref))
1673 				kfree(pa, M_PARGS);
1674 		}
1675 	}
1676 	if (req->newptr == NULL)
1677 		goto done;
1678 
1679 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) {
1680 		goto done;
1681 	}
1682 
1683 	pa = kmalloc(sizeof(struct pargs) + req->newlen, M_PARGS, M_WAITOK);
1684 	refcount_init(&pa->ar_ref, 1);
1685 	pa->ar_length = req->newlen;
1686 	error = SYSCTL_IN(req, pa->ar_args, req->newlen);
1687 	if (error) {
1688 		kfree(pa, M_PARGS);
1689 		goto done;
1690 	}
1691 
1692 
1693 	/*
1694 	 * Replace p_args with the new pa.  p_args may have previously
1695 	 * been NULL.
1696 	 */
1697 	opa = p->p_args;
1698 	p->p_args = pa;
1699 
1700 	if (opa) {
1701 		KKASSERT(opa->ar_ref > 0);
1702 		if (refcount_release(&opa->ar_ref)) {
1703 			kfree(opa, M_PARGS);
1704 			/* opa = NULL; */
1705 		}
1706 	}
1707 done:
1708 	if (p) {
1709 		lwkt_reltoken(&p->p_token);
1710 		PRELE(p);
1711 	}
1712 	return (error);
1713 }
1714 
1715 static int
1716 sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)
1717 {
1718 	int *name = (int*) arg1;
1719 	u_int namelen = arg2;
1720 	struct proc *p;
1721 	int error = 0;
1722 	char *fullpath, *freepath;
1723 	struct ucred *cr1 = curproc->p_ucred;
1724 
1725 	if (namelen != 1)
1726 		return (EINVAL);
1727 
1728 	p = pfind((pid_t)name[0]);
1729 	if (p == NULL)
1730 		goto done;
1731 	lwkt_gettoken_shared(&p->p_token);
1732 
1733 	/*
1734 	 * If we are not allowed to see other args, we certainly shouldn't
1735 	 * get the cwd either. Also check the usual trespassing.
1736 	 */
1737 	if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred))
1738 		goto done;
1739 
1740 	if (req->oldptr && p->p_fd != NULL && p->p_fd->fd_ncdir.ncp) {
1741 		struct nchandle nch;
1742 
1743 		cache_copy(&p->p_fd->fd_ncdir, &nch);
1744 		error = cache_fullpath(p, &nch, NULL,
1745 				       &fullpath, &freepath, 0);
1746 		cache_drop(&nch);
1747 		if (error)
1748 			goto done;
1749 		error = SYSCTL_OUT(req, fullpath, strlen(fullpath) + 1);
1750 		kfree(freepath, M_TEMP);
1751 	}
1752 
1753 done:
1754 	if (p) {
1755 		lwkt_reltoken(&p->p_token);
1756 		PRELE(p);
1757 	}
1758 	return (error);
1759 }
1760 
1761 /*
1762  * This sysctl allows a process to retrieve the path of the executable for
1763  * itself or another process.
1764  */
1765 static int
1766 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1767 {
1768 	pid_t *pidp = (pid_t *)arg1;
1769 	unsigned int arglen = arg2;
1770 	struct proc *p;
1771 	struct vnode *vp;
1772 	char *retbuf, *freebuf;
1773 	int error = 0;
1774 
1775 	if (arglen != 1)
1776 		return (EINVAL);
1777 	if (*pidp == -1) {	/* -1 means this process */
1778 		p = curproc;
1779 	} else {
1780 		p = pfind(*pidp);
1781 		if (p == NULL)
1782 			return (ESRCH);
1783 	}
1784 
1785 	vp = p->p_textvp;
1786 	if (vp == NULL)
1787 		goto done;
1788 
1789 	vref(vp);
1790 	error = vn_fullpath(p, vp, &retbuf, &freebuf, 0);
1791 	vrele(vp);
1792 	if (error)
1793 		goto done;
1794 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1795 	kfree(freebuf, M_TEMP);
1796 done:
1797 	if(*pidp != -1)
1798 		PRELE(p);
1799 
1800 	return (error);
1801 }
1802 
1803 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1804 
1805 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT,
1806 	0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
1807 
1808 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD,
1809 	sysctl_kern_proc, "Process table");
1810 
1811 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD,
1812 	sysctl_kern_proc, "Process table");
1813 
1814 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD,
1815 	sysctl_kern_proc, "Process table");
1816 
1817 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD,
1818 	sysctl_kern_proc, "Process table");
1819 
1820 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD,
1821 	sysctl_kern_proc, "Process table");
1822 
1823 SYSCTL_NODE(_kern_proc, (KERN_PROC_ALL | KERN_PROC_FLAG_LWP), all_lwp, CTLFLAG_RD,
1824 	sysctl_kern_proc, "Process table");
1825 
1826 SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_FLAG_LWP), pgrp_lwp, CTLFLAG_RD,
1827 	sysctl_kern_proc, "Process table");
1828 
1829 SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_FLAG_LWP), tty_lwp, CTLFLAG_RD,
1830 	sysctl_kern_proc, "Process table");
1831 
1832 SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_FLAG_LWP), uid_lwp, CTLFLAG_RD,
1833 	sysctl_kern_proc, "Process table");
1834 
1835 SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_FLAG_LWP), ruid_lwp, CTLFLAG_RD,
1836 	sysctl_kern_proc, "Process table");
1837 
1838 SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_FLAG_LWP), pid_lwp, CTLFLAG_RD,
1839 	sysctl_kern_proc, "Process table");
1840 
1841 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY,
1842 	sysctl_kern_proc_args, "Process argument list");
1843 
1844 SYSCTL_NODE(_kern_proc, KERN_PROC_CWD, cwd, CTLFLAG_RD | CTLFLAG_ANYBODY,
1845 	sysctl_kern_proc_cwd, "Process argument list");
1846 
1847 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD,
1848 	sysctl_kern_proc_pathname, "Process executable path");
1849