xref: /dragonfly/sys/kern/kern_proc.c (revision 282f3194)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/sysctl.h>
34 #include <sys/malloc.h>
35 #include <sys/proc.h>
36 #include <sys/vnode.h>
37 #include <sys/jail.h>
38 #include <sys/filedesc.h>
39 #include <sys/tty.h>
40 #include <sys/dsched.h>
41 #include <sys/signalvar.h>
42 #include <sys/spinlock.h>
43 #include <sys/random.h>
44 #include <sys/vnode.h>
45 #include <vm/vm.h>
46 #include <sys/lock.h>
47 #include <vm/pmap.h>
48 #include <vm/vm_map.h>
49 #include <sys/user.h>
50 #include <machine/smp.h>
51 
52 #include <sys/refcount.h>
53 #include <sys/spinlock2.h>
54 
55 /*
56  * Hash table size must be a power of two and is not currently dynamically
57  * sized.  There is a trade-off between the linear scans which must iterate
58  * all HSIZE elements and the number of elements which might accumulate
59  * within each hash chain.
60  */
61 #define ALLPROC_HSIZE	256
62 #define ALLPROC_HMASK	(ALLPROC_HSIZE - 1)
63 #define ALLPROC_HASH(pid)	(pid & ALLPROC_HMASK)
64 #define PGRP_HASH(pid)	(pid & ALLPROC_HMASK)
65 #define SESS_HASH(pid)	(pid & ALLPROC_HMASK)
66 
67 /*
68  * pid_doms[] management, used to control how quickly a PID can be recycled.
69  * Must be a multiple of ALLPROC_HSIZE for the proc_makepid() inner loops.
70  *
71  * WARNING! PIDDOM_DELAY should not be defined > 20 or so unless you change
72  *	    the array from int8_t's to int16_t's.
73  */
74 #define PIDDOM_COUNT	10	/* 10 pids per domain - reduce array size */
75 #define PIDDOM_DELAY	10	/* min 10 seconds after exit before reuse */
76 #define PIDDOM_SCALE	10	/* (10,000*SCALE)/sec performance guarantee */
77 #define PIDSEL_DOMAINS	(PID_MAX * PIDDOM_SCALE / PIDDOM_COUNT /	\
78 			 ALLPROC_HSIZE * ALLPROC_HSIZE)
79 
80 /* Used by libkvm */
81 int allproc_hsize = ALLPROC_HSIZE;
82 
83 LIST_HEAD(pidhashhead, proc);
84 
85 static MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
86 MALLOC_DEFINE(M_SESSION, "session", "session header");
87 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
88 MALLOC_DEFINE(M_LWP, "lwp", "lwp structures");
89 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
90 
91 int ps_showallprocs = 1;
92 static int ps_showallthreads = 1;
93 SYSCTL_INT(_security, OID_AUTO, ps_showallprocs, CTLFLAG_RW,
94     &ps_showallprocs, 0,
95     "Unprivileged processes can see processes with different UID/GID");
96 SYSCTL_INT(_security, OID_AUTO, ps_showallthreads, CTLFLAG_RW,
97     &ps_showallthreads, 0,
98     "Unprivileged processes can see kernel threads");
99 static u_int pid_domain_skips;
100 SYSCTL_UINT(_kern, OID_AUTO, pid_domain_skips, CTLFLAG_RW,
101     &pid_domain_skips, 0,
102     "Number of pid_doms[] skipped");
103 static u_int pid_inner_skips;
104 SYSCTL_UINT(_kern, OID_AUTO, pid_inner_skips, CTLFLAG_RW,
105     &pid_inner_skips, 0,
106     "Number of pid_doms[] skipped");
107 
108 static void orphanpg(struct pgrp *pg);
109 static void proc_makepid(struct proc *p, int random_offset);
110 
111 /*
112  * Process related lists (for proc_token, allproc, allpgrp, and allsess)
113  */
114 typedef struct procglob procglob_t;
115 
116 static procglob_t	procglob[ALLPROC_HSIZE];
117 
118 /*
119  * We try our best to avoid recycling a PID too quickly.  We do this by
120  * storing (uint8_t)time_second in the related pid domain on-reap and then
121  * using that to skip-over the domain on-allocate.
122  *
123  * This array has to be fairly large to support a high fork/exec rate.
124  * A ~100,000 entry array will support a 10-second reuse latency at
125  * 10,000 execs/second, worst case.  Best-case multiply by PIDDOM_COUNT
126  * (approximately 100,000 execs/second).
127  *
128  * Currently we allocate around a megabyte, making the worst-case fork
129  * rate around 100,000/second.
130  */
131 static uint8_t *pid_doms;
132 
133 /*
134  * Random component to nextpid generation.  We mix in a random factor to make
135  * it a little harder to predict.  We sanity check the modulus value to avoid
136  * doing it in critical paths.  Don't let it be too small or we pointlessly
137  * waste randomness entropy, and don't let it be impossibly large.  Using a
138  * modulus that is too big causes a LOT more process table scans and slows
139  * down fork processing as the pidchecked caching is defeated.
140  */
141 static int randompid = 0;
142 
143 /*
144  * No requirements.
145  */
146 static int
147 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
148 {
149 	int error, pid;
150 
151 	pid = randompid;
152 	error = sysctl_handle_int(oidp, &pid, 0, req);
153 	if (error || !req->newptr)
154 		return (error);
155 	if (pid < 0 || pid > PID_MAX - 100)     /* out of range */
156 		pid = PID_MAX - 100;
157 	else if (pid < 2)                       /* NOP */
158 		pid = 0;
159 	else if (pid < 100)                     /* Make it reasonable */
160 		pid = 100;
161 	randompid = pid;
162 	return (error);
163 }
164 
165 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
166 	    0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
167 
168 /*
169  * Initialize global process hashing structures.
170  *
171  * These functions are ONLY called from the low level boot code and do
172  * not lock their operations.
173  */
174 void
175 procinit(void)
176 {
177 	u_long i;
178 
179 	/*
180 	 * Allocate dynamically.  This array can be large (~1MB) so don't
181 	 * waste boot loader space.
182 	 */
183 	pid_doms = kmalloc(sizeof(pid_doms[0]) * PIDSEL_DOMAINS,
184 			   M_PROC, M_WAITOK | M_ZERO);
185 
186 	/*
187 	 * Avoid unnecessary stalls due to pid_doms[] values all being
188 	 * the same.  Make sure that the allocation of pid 1 and pid 2
189 	 * succeeds.
190 	 */
191 	for (i = 0; i < PIDSEL_DOMAINS; ++i)
192 		pid_doms[i] = (int8_t)i - (int8_t)(PIDDOM_DELAY + 1);
193 
194 	/*
195 	 * Other misc init.
196 	 */
197 	for (i = 0; i < ALLPROC_HSIZE; ++i) {
198 		procglob_t *prg = &procglob[i];
199 		LIST_INIT(&prg->allproc);
200 		LIST_INIT(&prg->allsess);
201 		LIST_INIT(&prg->allpgrp);
202 		lwkt_token_init(&prg->proc_token, "allproc");
203 	}
204 	uihashinit();
205 }
206 
207 void
208 procinsertinit(struct proc *p)
209 {
210 	LIST_INSERT_HEAD(&procglob[ALLPROC_HASH(p->p_pid)].allproc,
211 			 p, p_list);
212 }
213 
214 void
215 pgrpinsertinit(struct pgrp *pg)
216 {
217 	LIST_INSERT_HEAD(&procglob[ALLPROC_HASH(pg->pg_id)].allpgrp,
218 			 pg, pg_list);
219 }
220 
221 void
222 sessinsertinit(struct session *sess)
223 {
224 	LIST_INSERT_HEAD(&procglob[ALLPROC_HASH(sess->s_sid)].allsess,
225 			 sess, s_list);
226 }
227 
228 /*
229  * Process hold/release support functions.  Called via the PHOLD(),
230  * PRELE(), and PSTALL() macros.
231  *
232  * p->p_lock is a simple hold count with a waiting interlock.  No wakeup()
233  * is issued unless someone is actually waiting for the process.
234  *
235  * Most holds are short-term, allowing a process scan or other similar
236  * operation to access a proc structure without it getting ripped out from
237  * under us.  procfs and process-list sysctl ops also use the hold function
238  * interlocked with various p_flags to keep the vmspace intact when reading
239  * or writing a user process's address space.
240  *
241  * There are two situations where a hold count can be longer.  Exiting lwps
242  * hold the process until the lwp is reaped, and the parent will hold the
243  * child during vfork()/exec() sequences while the child is marked P_PPWAIT.
244  *
245  * The kernel waits for the hold count to drop to 0 (or 1 in some cases) at
246  * various critical points in the fork/exec and exit paths before proceeding.
247  */
248 #define PLOCK_ZOMB	0x20000000
249 #define PLOCK_WAITING	0x40000000
250 #define PLOCK_MASK	0x1FFFFFFF
251 
252 void
253 pstall(struct proc *p, const char *wmesg, int count)
254 {
255 	int o;
256 	int n;
257 
258 	for (;;) {
259 		o = p->p_lock;
260 		cpu_ccfence();
261 		if ((o & PLOCK_MASK) <= count)
262 			break;
263 		n = o | PLOCK_WAITING;
264 		tsleep_interlock(&p->p_lock, 0);
265 
266 		/*
267 		 * If someone is trying to single-step the process during
268 		 * an exec or an exit they can deadlock us because procfs
269 		 * sleeps with the process held.
270 		 */
271 		if (p->p_stops) {
272 			if (p->p_flags & P_INEXEC) {
273 				wakeup(&p->p_stype);
274 			} else if (p->p_flags & P_POSTEXIT) {
275 				spin_lock(&p->p_spin);
276 				p->p_stops = 0;
277 				p->p_step = 0;
278 				spin_unlock(&p->p_spin);
279 				wakeup(&p->p_stype);
280 			}
281 		}
282 
283 		if (atomic_cmpset_int(&p->p_lock, o, n)) {
284 			tsleep(&p->p_lock, PINTERLOCKED, wmesg, 0);
285 		}
286 	}
287 }
288 
289 void
290 phold(struct proc *p)
291 {
292 	atomic_add_int(&p->p_lock, 1);
293 }
294 
295 /*
296  * WARNING!  On last release (p) can become instantly invalid due to
297  *	     MP races.
298  */
299 void
300 prele(struct proc *p)
301 {
302 	int o;
303 	int n;
304 
305 	/*
306 	 * Fast path
307 	 */
308 	if (atomic_cmpset_int(&p->p_lock, 1, 0))
309 		return;
310 
311 	/*
312 	 * Slow path
313 	 */
314 	for (;;) {
315 		o = p->p_lock;
316 		KKASSERT((o & PLOCK_MASK) > 0);
317 		cpu_ccfence();
318 		n = (o - 1) & ~PLOCK_WAITING;
319 		if (atomic_cmpset_int(&p->p_lock, o, n)) {
320 			if (o & PLOCK_WAITING)
321 				wakeup(&p->p_lock);
322 			break;
323 		}
324 	}
325 }
326 
327 /*
328  * Hold and flag serialized for zombie reaping purposes.
329  *
330  * This function will fail if it has to block, returning non-zero with
331  * neither the flag set or the hold count bumped.  Note that we must block
332  * without holding a ref, meaning that the caller must ensure that (p)
333  * remains valid through some other interlock (typically on its parent
334  * process's p_token).
335  *
336  * Zero is returned on success.  The hold count will be incremented and
337  * the serialization flag acquired.  Note that serialization is only against
338  * other pholdzomb() calls, not against phold() calls.
339  */
340 int
341 pholdzomb(struct proc *p)
342 {
343 	int o;
344 	int n;
345 
346 	/*
347 	 * Fast path
348 	 */
349 	if (atomic_cmpset_int(&p->p_lock, 0, PLOCK_ZOMB | 1))
350 		return(0);
351 
352 	/*
353 	 * Slow path
354 	 */
355 	for (;;) {
356 		o = p->p_lock;
357 		cpu_ccfence();
358 		if ((o & PLOCK_ZOMB) == 0) {
359 			n = (o + 1) | PLOCK_ZOMB;
360 			if (atomic_cmpset_int(&p->p_lock, o, n))
361 				return(0);
362 		} else {
363 			KKASSERT((o & PLOCK_MASK) > 0);
364 			n = o | PLOCK_WAITING;
365 			tsleep_interlock(&p->p_lock, 0);
366 			if (atomic_cmpset_int(&p->p_lock, o, n)) {
367 				tsleep(&p->p_lock, PINTERLOCKED, "phldz", 0);
368 				/* (p) can be ripped out at this point */
369 				return(1);
370 			}
371 		}
372 	}
373 }
374 
375 /*
376  * Release PLOCK_ZOMB and the hold count, waking up any waiters.
377  *
378  * WARNING!  On last release (p) can become instantly invalid due to
379  *	     MP races.
380  */
381 void
382 prelezomb(struct proc *p)
383 {
384 	int o;
385 	int n;
386 
387 	/*
388 	 * Fast path
389 	 */
390 	if (atomic_cmpset_int(&p->p_lock, PLOCK_ZOMB | 1, 0))
391 		return;
392 
393 	/*
394 	 * Slow path
395 	 */
396 	KKASSERT(p->p_lock & PLOCK_ZOMB);
397 	for (;;) {
398 		o = p->p_lock;
399 		KKASSERT((o & PLOCK_MASK) > 0);
400 		cpu_ccfence();
401 		n = (o - 1) & ~(PLOCK_ZOMB | PLOCK_WAITING);
402 		if (atomic_cmpset_int(&p->p_lock, o, n)) {
403 			if (o & PLOCK_WAITING)
404 				wakeup(&p->p_lock);
405 			break;
406 		}
407 	}
408 }
409 
410 /*
411  * Is p an inferior of the current process?
412  *
413  * No requirements.
414  */
415 int
416 inferior(struct proc *p)
417 {
418 	struct proc *p2;
419 
420 	PHOLD(p);
421 	lwkt_gettoken_shared(&p->p_token);
422 	while (p != curproc) {
423 		if (p->p_pid == 0) {
424 			lwkt_reltoken(&p->p_token);
425 			return (0);
426 		}
427 		p2 = p->p_pptr;
428 		PHOLD(p2);
429 		lwkt_reltoken(&p->p_token);
430 		PRELE(p);
431 		lwkt_gettoken_shared(&p2->p_token);
432 		p = p2;
433 	}
434 	lwkt_reltoken(&p->p_token);
435 	PRELE(p);
436 
437 	return (1);
438 }
439 
440 /*
441  * Locate a process by number.  The returned process will be referenced and
442  * must be released with PRELE().
443  *
444  * No requirements.
445  */
446 struct proc *
447 pfind(pid_t pid)
448 {
449 	struct proc *p = curproc;
450 	procglob_t *prg;
451 	int n;
452 
453 	/*
454 	 * Shortcut the current process
455 	 */
456 	if (p && p->p_pid == pid) {
457 		PHOLD(p);
458 		return (p);
459 	}
460 
461 	/*
462 	 * Otherwise find it in the hash table.
463 	 */
464 	n = ALLPROC_HASH(pid);
465 	prg = &procglob[n];
466 
467 	lwkt_gettoken_shared(&prg->proc_token);
468 	LIST_FOREACH(p, &prg->allproc, p_list) {
469 		if (p->p_stat == SZOMB)
470 			continue;
471 		if (p->p_pid == pid) {
472 			PHOLD(p);
473 			lwkt_reltoken(&prg->proc_token);
474 			return (p);
475 		}
476 	}
477 	lwkt_reltoken(&prg->proc_token);
478 
479 	return (NULL);
480 }
481 
482 /*
483  * Locate a process by number.  The returned process is NOT referenced.
484  * The result will not be stable and is typically only used to validate
485  * against a process that the caller has in-hand.
486  *
487  * No requirements.
488  */
489 struct proc *
490 pfindn(pid_t pid)
491 {
492 	struct proc *p = curproc;
493 	procglob_t *prg;
494 	int n;
495 
496 	/*
497 	 * Shortcut the current process
498 	 */
499 	if (p && p->p_pid == pid)
500 		return (p);
501 
502 	/*
503 	 * Otherwise find it in the hash table.
504 	 */
505 	n = ALLPROC_HASH(pid);
506 	prg = &procglob[n];
507 
508 	lwkt_gettoken_shared(&prg->proc_token);
509 	LIST_FOREACH(p, &prg->allproc, p_list) {
510 		if (p->p_stat == SZOMB)
511 			continue;
512 		if (p->p_pid == pid) {
513 			lwkt_reltoken(&prg->proc_token);
514 			return (p);
515 		}
516 	}
517 	lwkt_reltoken(&prg->proc_token);
518 
519 	return (NULL);
520 }
521 
522 /*
523  * Locate a process on the zombie list.  Return a process or NULL.
524  * The returned process will be referenced and the caller must release
525  * it with PRELE().
526  *
527  * No other requirements.
528  */
529 struct proc *
530 zpfind(pid_t pid)
531 {
532 	struct proc *p = curproc;
533 	procglob_t *prg;
534 	int n;
535 
536 	/*
537 	 * Shortcut the current process
538 	 */
539 	if (p && p->p_pid == pid) {
540 		PHOLD(p);
541 		return (p);
542 	}
543 
544 	/*
545 	 * Otherwise find it in the hash table.
546 	 */
547 	n = ALLPROC_HASH(pid);
548 	prg = &procglob[n];
549 
550 	lwkt_gettoken_shared(&prg->proc_token);
551 	LIST_FOREACH(p, &prg->allproc, p_list) {
552 		if (p->p_stat != SZOMB)
553 			continue;
554 		if (p->p_pid == pid) {
555 			PHOLD(p);
556 			lwkt_reltoken(&prg->proc_token);
557 			return (p);
558 		}
559 	}
560 	lwkt_reltoken(&prg->proc_token);
561 
562 	return (NULL);
563 }
564 
565 
566 void
567 pgref(struct pgrp *pgrp)
568 {
569 	refcount_acquire(&pgrp->pg_refs);
570 }
571 
572 void
573 pgrel(struct pgrp *pgrp)
574 {
575 	procglob_t *prg;
576 	int count;
577 	int n;
578 
579 	n = PGRP_HASH(pgrp->pg_id);
580 	prg = &procglob[n];
581 
582 	for (;;) {
583 		count = pgrp->pg_refs;
584 		cpu_ccfence();
585 		KKASSERT(count > 0);
586 		if (count == 1) {
587 			lwkt_gettoken(&prg->proc_token);
588 			if (atomic_cmpset_int(&pgrp->pg_refs, 1, 0))
589 				break;
590 			lwkt_reltoken(&prg->proc_token);
591 			/* retry */
592 		} else {
593 			if (atomic_cmpset_int(&pgrp->pg_refs, count, count - 1))
594 				return;
595 			/* retry */
596 		}
597 	}
598 
599 	/*
600 	 * Successful 1->0 transition, pghash_spin is held.
601 	 */
602 	LIST_REMOVE(pgrp, pg_list);
603 	if (pid_doms[pgrp->pg_id % PIDSEL_DOMAINS] != (uint8_t)time_second)
604 		pid_doms[pgrp->pg_id % PIDSEL_DOMAINS] = (uint8_t)time_second;
605 
606 	/*
607 	 * Reset any sigio structures pointing to us as a result of
608 	 * F_SETOWN with our pgid.
609 	 */
610 	funsetownlst(&pgrp->pg_sigiolst);
611 
612 	if (pgrp->pg_session->s_ttyp != NULL &&
613 	    pgrp->pg_session->s_ttyp->t_pgrp == pgrp) {
614 		pgrp->pg_session->s_ttyp->t_pgrp = NULL;
615 	}
616 	lwkt_reltoken(&prg->proc_token);
617 
618 	sess_rele(pgrp->pg_session);
619 	kfree(pgrp, M_PGRP);
620 }
621 
622 /*
623  * Locate a process group by number.  The returned process group will be
624  * referenced w/pgref() and must be released with pgrel() (or assigned
625  * somewhere if you wish to keep the reference).
626  *
627  * No requirements.
628  */
629 struct pgrp *
630 pgfind(pid_t pgid)
631 {
632 	struct pgrp *pgrp;
633 	procglob_t *prg;
634 	int n;
635 
636 	n = PGRP_HASH(pgid);
637 	prg = &procglob[n];
638 	lwkt_gettoken_shared(&prg->proc_token);
639 
640 	LIST_FOREACH(pgrp, &prg->allpgrp, pg_list) {
641 		if (pgrp->pg_id == pgid) {
642 			refcount_acquire(&pgrp->pg_refs);
643 			lwkt_reltoken(&prg->proc_token);
644 			return (pgrp);
645 		}
646 	}
647 	lwkt_reltoken(&prg->proc_token);
648 	return (NULL);
649 }
650 
651 /*
652  * Move p to a new or existing process group (and session)
653  *
654  * No requirements.
655  */
656 int
657 enterpgrp(struct proc *p, pid_t pgid, int mksess)
658 {
659 	struct pgrp *pgrp;
660 	struct pgrp *opgrp;
661 	int error;
662 
663 	pgrp = pgfind(pgid);
664 
665 	KASSERT(pgrp == NULL || !mksess,
666 		("enterpgrp: setsid into non-empty pgrp"));
667 	KASSERT(!SESS_LEADER(p),
668 		("enterpgrp: session leader attempted setpgrp"));
669 
670 	if (pgrp == NULL) {
671 		pid_t savepid = p->p_pid;
672 		struct proc *np;
673 		procglob_t *prg;
674 		int n;
675 
676 		/*
677 		 * new process group
678 		 */
679 		KASSERT(p->p_pid == pgid,
680 			("enterpgrp: new pgrp and pid != pgid"));
681 		pgrp = kmalloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
682 		pgrp->pg_id = pgid;
683 		LIST_INIT(&pgrp->pg_members);
684 		pgrp->pg_jobc = 0;
685 		SLIST_INIT(&pgrp->pg_sigiolst);
686 		lwkt_token_init(&pgrp->pg_token, "pgrp_token");
687 		refcount_init(&pgrp->pg_refs, 1);
688 		lockinit(&pgrp->pg_lock, "pgwt", 0, 0);
689 
690 		n = PGRP_HASH(pgid);
691 		prg = &procglob[n];
692 
693 		if ((np = pfindn(savepid)) == NULL || np != p) {
694 			lwkt_reltoken(&prg->proc_token);
695 			error = ESRCH;
696 			kfree(pgrp, M_PGRP);
697 			goto fatal;
698 		}
699 
700 		lwkt_gettoken(&prg->proc_token);
701 		if (mksess) {
702 			struct session *sess;
703 
704 			/*
705 			 * new session
706 			 */
707 			sess = kmalloc(sizeof(struct session), M_SESSION,
708 				       M_WAITOK | M_ZERO);
709 			lwkt_gettoken(&p->p_token);
710 			sess->s_leader = p;
711 			sess->s_sid = p->p_pid;
712 			sess->s_count = 1;
713 			sess->s_ttyvp = NULL;
714 			sess->s_ttyp = NULL;
715 			bcopy(p->p_session->s_login, sess->s_login,
716 			      sizeof(sess->s_login));
717 			pgrp->pg_session = sess;
718 			KASSERT(p == curproc,
719 				("enterpgrp: mksession and p != curproc"));
720 			p->p_flags &= ~P_CONTROLT;
721 			LIST_INSERT_HEAD(&prg->allsess, sess, s_list);
722 			lwkt_reltoken(&p->p_token);
723 		} else {
724 			lwkt_gettoken(&p->p_token);
725 			pgrp->pg_session = p->p_session;
726 			sess_hold(pgrp->pg_session);
727 			lwkt_reltoken(&p->p_token);
728 		}
729 		LIST_INSERT_HEAD(&prg->allpgrp, pgrp, pg_list);
730 
731 		lwkt_reltoken(&prg->proc_token);
732 	} else if (pgrp == p->p_pgrp) {
733 		pgrel(pgrp);
734 		goto done;
735 	} /* else pgfind() referenced the pgrp */
736 
737 	lwkt_gettoken(&pgrp->pg_token);
738 	lwkt_gettoken(&p->p_token);
739 
740 	/*
741 	 * Replace p->p_pgrp, handling any races that occur.
742 	 */
743 	while ((opgrp = p->p_pgrp) != NULL) {
744 		pgref(opgrp);
745 		lwkt_gettoken(&opgrp->pg_token);
746 		if (opgrp != p->p_pgrp) {
747 			lwkt_reltoken(&opgrp->pg_token);
748 			pgrel(opgrp);
749 			continue;
750 		}
751 		LIST_REMOVE(p, p_pglist);
752 		break;
753 	}
754 	p->p_pgrp = pgrp;
755 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
756 
757 	/*
758 	 * Adjust eligibility of affected pgrps to participate in job control.
759 	 * Increment eligibility counts before decrementing, otherwise we
760 	 * could reach 0 spuriously during the first call.
761 	 */
762 	fixjobc(p, pgrp, 1);
763 	if (opgrp) {
764 		fixjobc(p, opgrp, 0);
765 		lwkt_reltoken(&opgrp->pg_token);
766 		pgrel(opgrp);	/* manual pgref */
767 		pgrel(opgrp);	/* p->p_pgrp ref */
768 	}
769 	lwkt_reltoken(&p->p_token);
770 	lwkt_reltoken(&pgrp->pg_token);
771 done:
772 	error = 0;
773 fatal:
774 	return (error);
775 }
776 
777 /*
778  * Remove process from process group
779  *
780  * No requirements.
781  */
782 int
783 leavepgrp(struct proc *p)
784 {
785 	struct pgrp *pg = p->p_pgrp;
786 
787 	lwkt_gettoken(&p->p_token);
788 	while ((pg = p->p_pgrp) != NULL) {
789 		pgref(pg);
790 		lwkt_gettoken(&pg->pg_token);
791 		if (p->p_pgrp != pg) {
792 			lwkt_reltoken(&pg->pg_token);
793 			pgrel(pg);
794 			continue;
795 		}
796 		p->p_pgrp = NULL;
797 		LIST_REMOVE(p, p_pglist);
798 		lwkt_reltoken(&pg->pg_token);
799 		pgrel(pg);	/* manual pgref */
800 		pgrel(pg);	/* p->p_pgrp ref */
801 		break;
802 	}
803 	lwkt_reltoken(&p->p_token);
804 
805 	return (0);
806 }
807 
808 /*
809  * Adjust the ref count on a session structure.  When the ref count falls to
810  * zero the tty is disassociated from the session and the session structure
811  * is freed.  Note that tty assocation is not itself ref-counted.
812  *
813  * No requirements.
814  */
815 void
816 sess_hold(struct session *sp)
817 {
818 	atomic_add_int(&sp->s_count, 1);
819 }
820 
821 /*
822  * No requirements.
823  */
824 void
825 sess_rele(struct session *sess)
826 {
827 	procglob_t *prg;
828 	struct tty *tp;
829 	int count;
830 	int n;
831 
832 	n = SESS_HASH(sess->s_sid);
833 	prg = &procglob[n];
834 
835 	for (;;) {
836 		count = sess->s_count;
837 		cpu_ccfence();
838 		KKASSERT(count > 0);
839 		if (count == 1) {
840 			lwkt_gettoken(&tty_token);
841 			lwkt_gettoken(&prg->proc_token);
842 			if (atomic_cmpset_int(&sess->s_count, 1, 0))
843 				break;
844 			lwkt_reltoken(&prg->proc_token);
845 			lwkt_reltoken(&tty_token);
846 			/* retry */
847 		} else {
848 			if (atomic_cmpset_int(&sess->s_count, count, count - 1))
849 				return;
850 			/* retry */
851 		}
852 	}
853 
854 	/*
855 	 * Successful 1->0 transition and tty_token is held.
856 	 */
857 	LIST_REMOVE(sess, s_list);
858 	if (pid_doms[sess->s_sid % PIDSEL_DOMAINS] != (uint8_t)time_second)
859 		pid_doms[sess->s_sid % PIDSEL_DOMAINS] = (uint8_t)time_second;
860 
861 	if (sess->s_ttyp && sess->s_ttyp->t_session) {
862 #ifdef TTY_DO_FULL_CLOSE
863 		/* FULL CLOSE, see ttyclearsession() */
864 		KKASSERT(sess->s_ttyp->t_session == sess);
865 		sess->s_ttyp->t_session = NULL;
866 #else
867 		/* HALF CLOSE, see ttyclearsession() */
868 		if (sess->s_ttyp->t_session == sess)
869 			sess->s_ttyp->t_session = NULL;
870 #endif
871 	}
872 	if ((tp = sess->s_ttyp) != NULL) {
873 		sess->s_ttyp = NULL;
874 		ttyunhold(tp);
875 	}
876 	lwkt_reltoken(&prg->proc_token);
877 	lwkt_reltoken(&tty_token);
878 
879 	kfree(sess, M_SESSION);
880 }
881 
882 /*
883  * Adjust pgrp jobc counters when specified process changes process group.
884  * We count the number of processes in each process group that "qualify"
885  * the group for terminal job control (those with a parent in a different
886  * process group of the same session).  If that count reaches zero, the
887  * process group becomes orphaned.  Check both the specified process'
888  * process group and that of its children.
889  * entering == 0 => p is leaving specified group.
890  * entering == 1 => p is entering specified group.
891  *
892  * No requirements.
893  */
894 void
895 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
896 {
897 	struct pgrp *hispgrp;
898 	struct session *mysession;
899 	struct proc *np;
900 
901 	/*
902 	 * Check p's parent to see whether p qualifies its own process
903 	 * group; if so, adjust count for p's process group.
904 	 */
905 	lwkt_gettoken(&p->p_token);	/* p_children scan */
906 	lwkt_gettoken(&pgrp->pg_token);
907 
908 	mysession = pgrp->pg_session;
909 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
910 	    hispgrp->pg_session == mysession) {
911 		if (entering)
912 			pgrp->pg_jobc++;
913 		else if (--pgrp->pg_jobc == 0)
914 			orphanpg(pgrp);
915 	}
916 
917 	/*
918 	 * Check this process' children to see whether they qualify
919 	 * their process groups; if so, adjust counts for children's
920 	 * process groups.
921 	 */
922 	LIST_FOREACH(np, &p->p_children, p_sibling) {
923 		PHOLD(np);
924 		lwkt_gettoken(&np->p_token);
925 		if ((hispgrp = np->p_pgrp) != pgrp &&
926 		    hispgrp->pg_session == mysession &&
927 		    np->p_stat != SZOMB) {
928 			pgref(hispgrp);
929 			lwkt_gettoken(&hispgrp->pg_token);
930 			if (entering)
931 				hispgrp->pg_jobc++;
932 			else if (--hispgrp->pg_jobc == 0)
933 				orphanpg(hispgrp);
934 			lwkt_reltoken(&hispgrp->pg_token);
935 			pgrel(hispgrp);
936 		}
937 		lwkt_reltoken(&np->p_token);
938 		PRELE(np);
939 	}
940 	KKASSERT(pgrp->pg_refs > 0);
941 	lwkt_reltoken(&pgrp->pg_token);
942 	lwkt_reltoken(&p->p_token);
943 }
944 
945 /*
946  * A process group has become orphaned;
947  * if there are any stopped processes in the group,
948  * hang-up all process in that group.
949  *
950  * The caller must hold pg_token.
951  */
952 static void
953 orphanpg(struct pgrp *pg)
954 {
955 	struct proc *p;
956 
957 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
958 		if (p->p_stat == SSTOP) {
959 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
960 				ksignal(p, SIGHUP);
961 				ksignal(p, SIGCONT);
962 			}
963 			return;
964 		}
965 	}
966 }
967 
968 /*
969  * Add a new process to the allproc list and the PID hash.  This
970  * also assigns a pid to the new process.
971  *
972  * No requirements.
973  */
974 void
975 proc_add_allproc(struct proc *p)
976 {
977 	int random_offset;
978 
979 	if ((random_offset = randompid) != 0) {
980 		read_random(&random_offset, sizeof(random_offset));
981 		random_offset = (random_offset & 0x7FFFFFFF) % randompid;
982 	}
983 	proc_makepid(p, random_offset);
984 }
985 
986 /*
987  * Calculate a new process pid.  This function is integrated into
988  * proc_add_allproc() to guarentee that the new pid is not reused before
989  * the new process can be added to the allproc list.
990  *
991  * p_pid is assigned and the process is added to the allproc hash table
992  *
993  * WARNING! We need to allocate PIDs sequentially during early boot.
994  *	    In particular, init needs to have a pid of 1.
995  */
996 static
997 void
998 proc_makepid(struct proc *p, int random_offset)
999 {
1000 	static pid_t nextpid = 1;	/* heuristic, allowed to race */
1001 	procglob_t *prg;
1002 	struct pgrp *pg;
1003 	struct proc *ps;
1004 	struct session *sess;
1005 	pid_t base;
1006 	int8_t delta8;
1007 	int retries;
1008 	int n;
1009 
1010 	/*
1011 	 * Select the next pid base candidate.
1012 	 *
1013 	 * Check cyclement, do not allow a pid < 100.
1014 	 */
1015 	retries = 0;
1016 retry:
1017 	base = atomic_fetchadd_int(&nextpid, 1) + random_offset;
1018 	if (base <= 0 || base >= PID_MAX) {
1019 		base = base % PID_MAX;
1020 		if (base < 0)
1021 			base = 100;
1022 		if (base < 100)
1023 			base += 100;
1024 		nextpid = base;		/* reset (SMP race ok) */
1025 	}
1026 
1027 	/*
1028 	 * Do not allow a base pid to be selected from a domain that has
1029 	 * recently seen a pid/pgid/sessid reap.  Sleep a little if we looped
1030 	 * through all available domains.
1031 	 *
1032 	 * WARNING: We want the early pids to be allocated linearly,
1033 	 *	    particularly pid 1 and pid 2.
1034 	 */
1035 	if (++retries >= PIDSEL_DOMAINS)
1036 		tsleep(&nextpid, 0, "makepid", 1);
1037 	if (base >= 100) {
1038 		delta8 = (int8_t)time_second -
1039 			 (int8_t)pid_doms[base % PIDSEL_DOMAINS];
1040 		if (delta8 >= 0 && delta8 <= PIDDOM_DELAY) {
1041 			++pid_domain_skips;
1042 			goto retry;
1043 		}
1044 	}
1045 
1046 	/*
1047 	 * Calculate a hash index and find an unused process id within
1048 	 * the table, looping if we cannot find one.
1049 	 *
1050 	 * The inner loop increments by ALLPROC_HSIZE which keeps the
1051 	 * PID at the same pid_doms[] index as well as the same hash index.
1052 	 */
1053 	n = ALLPROC_HASH(base);
1054 	prg = &procglob[n];
1055 	lwkt_gettoken(&prg->proc_token);
1056 
1057 restart1:
1058 	LIST_FOREACH(ps, &prg->allproc, p_list) {
1059 		if (ps->p_pid == base) {
1060 			base += ALLPROC_HSIZE;
1061 			if (base >= PID_MAX) {
1062 				lwkt_reltoken(&prg->proc_token);
1063 				goto retry;
1064 			}
1065 			++pid_inner_skips;
1066 			goto restart1;
1067 		}
1068 	}
1069 	LIST_FOREACH(pg, &prg->allpgrp, pg_list) {
1070 		if (pg->pg_id == base) {
1071 			base += ALLPROC_HSIZE;
1072 			if (base >= PID_MAX) {
1073 				lwkt_reltoken(&prg->proc_token);
1074 				goto retry;
1075 			}
1076 			++pid_inner_skips;
1077 			goto restart1;
1078 		}
1079 	}
1080 	LIST_FOREACH(sess, &prg->allsess, s_list) {
1081 		if (sess->s_sid == base) {
1082 			base += ALLPROC_HSIZE;
1083 			if (base >= PID_MAX) {
1084 				lwkt_reltoken(&prg->proc_token);
1085 				goto retry;
1086 			}
1087 			++pid_inner_skips;
1088 			goto restart1;
1089 		}
1090 	}
1091 
1092 	/*
1093 	 * Assign the pid and insert the process.
1094 	 */
1095 	p->p_pid = base;
1096 	LIST_INSERT_HEAD(&prg->allproc, p, p_list);
1097 	lwkt_reltoken(&prg->proc_token);
1098 }
1099 
1100 /*
1101  * Called from exit1 to place the process into a zombie state.
1102  * The process is removed from the pid hash and p_stat is set
1103  * to SZOMB.  Normal pfind[n]() calls will not find it any more.
1104  *
1105  * Caller must hold p->p_token.  We are required to wait until p_lock
1106  * becomes zero before we can manipulate the list, allowing allproc
1107  * scans to guarantee consistency during a list scan.
1108  */
1109 void
1110 proc_move_allproc_zombie(struct proc *p)
1111 {
1112 	procglob_t *prg;
1113 	int n;
1114 
1115 	n = ALLPROC_HASH(p->p_pid);
1116 	prg = &procglob[n];
1117 	PSTALL(p, "reap1", 0);
1118 	lwkt_gettoken(&prg->proc_token);
1119 
1120 	PSTALL(p, "reap1a", 0);
1121 	p->p_stat = SZOMB;
1122 
1123 	lwkt_reltoken(&prg->proc_token);
1124 	dsched_exit_proc(p);
1125 }
1126 
1127 /*
1128  * This routine is called from kern_wait() and will remove the process
1129  * from the zombie list and the sibling list.  This routine will block
1130  * if someone has a lock on the proces (p_lock).
1131  *
1132  * Caller must hold p->p_token.  We are required to wait until p_lock
1133  * becomes zero before we can manipulate the list, allowing allproc
1134  * scans to guarantee consistency during a list scan.
1135  */
1136 void
1137 proc_remove_zombie(struct proc *p)
1138 {
1139 	procglob_t *prg;
1140 	int n;
1141 
1142 	n = ALLPROC_HASH(p->p_pid);
1143 	prg = &procglob[n];
1144 
1145 	PSTALL(p, "reap2", 0);
1146 	lwkt_gettoken(&prg->proc_token);
1147 	PSTALL(p, "reap2a", 0);
1148 	LIST_REMOVE(p, p_list);		/* from remove master list */
1149 	LIST_REMOVE(p, p_sibling);	/* and from sibling list */
1150 	p->p_pptr = NULL;
1151 	if (pid_doms[p->p_pid % PIDSEL_DOMAINS] != (uint8_t)time_second)
1152 		pid_doms[p->p_pid % PIDSEL_DOMAINS] = (uint8_t)time_second;
1153 	lwkt_reltoken(&prg->proc_token);
1154 }
1155 
1156 /*
1157  * Handle various requirements prior to returning to usermode.  Called from
1158  * platform trap and system call code.
1159  */
1160 void
1161 lwpuserret(struct lwp *lp)
1162 {
1163 	struct proc *p = lp->lwp_proc;
1164 
1165 	if (lp->lwp_mpflags & LWP_MP_VNLRU) {
1166 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_VNLRU);
1167 		allocvnode_gc();
1168 	}
1169 	if (lp->lwp_mpflags & LWP_MP_WEXIT) {
1170 		lwkt_gettoken(&p->p_token);
1171 		lwp_exit(0, NULL);
1172 		lwkt_reltoken(&p->p_token);     /* NOT REACHED */
1173 	}
1174 }
1175 
1176 /*
1177  * Kernel threads run from user processes can also accumulate deferred
1178  * actions which need to be acted upon.  Callers include:
1179  *
1180  * nfsd		- Can allocate lots of vnodes
1181  */
1182 void
1183 lwpkthreaddeferred(void)
1184 {
1185 	struct lwp *lp = curthread->td_lwp;
1186 
1187 	if (lp) {
1188 		if (lp->lwp_mpflags & LWP_MP_VNLRU) {
1189 			atomic_clear_int(&lp->lwp_mpflags, LWP_MP_VNLRU);
1190 			allocvnode_gc();
1191 		}
1192 	}
1193 }
1194 
1195 void
1196 proc_usermap(struct proc *p, int invfork)
1197 {
1198 	struct sys_upmap *upmap;
1199 
1200 	lwkt_gettoken(&p->p_token);
1201 	upmap = kmalloc(roundup2(sizeof(*upmap), PAGE_SIZE), M_PROC,
1202 			M_WAITOK | M_ZERO);
1203 	if (p->p_upmap == NULL) {
1204 		upmap->header[0].type = UKPTYPE_VERSION;
1205 		upmap->header[0].offset = offsetof(struct sys_upmap, version);
1206 		upmap->header[1].type = UPTYPE_RUNTICKS;
1207 		upmap->header[1].offset = offsetof(struct sys_upmap, runticks);
1208 		upmap->header[2].type = UPTYPE_FORKID;
1209 		upmap->header[2].offset = offsetof(struct sys_upmap, forkid);
1210 		upmap->header[3].type = UPTYPE_PID;
1211 		upmap->header[3].offset = offsetof(struct sys_upmap, pid);
1212 		upmap->header[4].type = UPTYPE_PROC_TITLE;
1213 		upmap->header[4].offset = offsetof(struct sys_upmap,proc_title);
1214 		upmap->header[5].type = UPTYPE_INVFORK;
1215 		upmap->header[5].offset = offsetof(struct sys_upmap, invfork);
1216 
1217 		upmap->version = UPMAP_VERSION;
1218 		upmap->pid = p->p_pid;
1219 		upmap->forkid = p->p_forkid;
1220 		upmap->invfork = invfork;
1221 		p->p_upmap = upmap;
1222 	} else {
1223 		kfree(upmap, M_PROC);
1224 	}
1225 	lwkt_reltoken(&p->p_token);
1226 }
1227 
1228 void
1229 proc_userunmap(struct proc *p)
1230 {
1231 	struct sys_upmap *upmap;
1232 
1233 	lwkt_gettoken(&p->p_token);
1234 	if ((upmap = p->p_upmap) != NULL) {
1235 		p->p_upmap = NULL;
1236 		kfree(upmap, M_PROC);
1237 	}
1238 	lwkt_reltoken(&p->p_token);
1239 }
1240 
1241 /*
1242  * Scan all processes on the allproc list.  The process is automatically
1243  * held for the callback.  A return value of -1 terminates the loop.
1244  * Zombie procs are skipped.
1245  *
1246  * The callback is made with the process held and proc_token held.
1247  *
1248  * We limit the scan to the number of processes as-of the start of
1249  * the scan so as not to get caught up in an endless loop if new processes
1250  * are created more quickly than we can scan the old ones.  Add a little
1251  * slop to try to catch edge cases since nprocs can race.
1252  *
1253  * No requirements.
1254  */
1255 void
1256 allproc_scan(int (*callback)(struct proc *, void *), void *data)
1257 {
1258 	int limit = nprocs + ncpus;
1259 	struct proc *p;
1260 	int r;
1261 	int n;
1262 
1263 	/*
1264 	 * prg->proc_token protects the allproc list and PHOLD() prevents the
1265 	 * process from being removed from the allproc list or the zombproc
1266 	 * list.
1267 	 */
1268 	for (n = 0; n < ALLPROC_HSIZE; ++n) {
1269 		procglob_t *prg = &procglob[n];
1270 		if (LIST_FIRST(&prg->allproc) == NULL)
1271 			continue;
1272 		lwkt_gettoken(&prg->proc_token);
1273 		LIST_FOREACH(p, &prg->allproc, p_list) {
1274 			if (p->p_stat == SZOMB)
1275 				continue;
1276 			PHOLD(p);
1277 			r = callback(p, data);
1278 			PRELE(p);
1279 			if (r < 0)
1280 				break;
1281 			if (--limit < 0)
1282 				break;
1283 		}
1284 		lwkt_reltoken(&prg->proc_token);
1285 
1286 		/*
1287 		 * Check if asked to stop early
1288 		 */
1289 		if (p)
1290 			break;
1291 	}
1292 }
1293 
1294 /*
1295  * Scan all lwps of processes on the allproc list.  The lwp is automatically
1296  * held for the callback.  A return value of -1 terminates the loop.
1297  *
1298  * The callback is made with the proces and lwp both held, and proc_token held.
1299  *
1300  * No requirements.
1301  */
1302 void
1303 alllwp_scan(int (*callback)(struct lwp *, void *), void *data)
1304 {
1305 	struct proc *p;
1306 	struct lwp *lp;
1307 	int r = 0;
1308 	int n;
1309 
1310 	for (n = 0; n < ALLPROC_HSIZE; ++n) {
1311 		procglob_t *prg = &procglob[n];
1312 
1313 		if (LIST_FIRST(&prg->allproc) == NULL)
1314 			continue;
1315 		lwkt_gettoken(&prg->proc_token);
1316 		LIST_FOREACH(p, &prg->allproc, p_list) {
1317 			if (p->p_stat == SZOMB)
1318 				continue;
1319 			PHOLD(p);
1320 			lwkt_gettoken(&p->p_token);
1321 			FOREACH_LWP_IN_PROC(lp, p) {
1322 				LWPHOLD(lp);
1323 				r = callback(lp, data);
1324 				LWPRELE(lp);
1325 			}
1326 			lwkt_reltoken(&p->p_token);
1327 			PRELE(p);
1328 			if (r < 0)
1329 				break;
1330 		}
1331 		lwkt_reltoken(&prg->proc_token);
1332 
1333 		/*
1334 		 * Asked to exit early
1335 		 */
1336 		if (p)
1337 			break;
1338 	}
1339 }
1340 
1341 /*
1342  * Scan all processes on the zombproc list.  The process is automatically
1343  * held for the callback.  A return value of -1 terminates the loop.
1344  *
1345  * No requirements.
1346  * The callback is made with the proces held and proc_token held.
1347  */
1348 void
1349 zombproc_scan(int (*callback)(struct proc *, void *), void *data)
1350 {
1351 	struct proc *p;
1352 	int r;
1353 	int n;
1354 
1355 	/*
1356 	 * prg->proc_token protects the allproc list and PHOLD() prevents the
1357 	 * process from being removed from the allproc list or the zombproc
1358 	 * list.
1359 	 */
1360 	for (n = 0; n < ALLPROC_HSIZE; ++n) {
1361 		procglob_t *prg = &procglob[n];
1362 
1363 		if (LIST_FIRST(&prg->allproc) == NULL)
1364 			continue;
1365 		lwkt_gettoken(&prg->proc_token);
1366 		LIST_FOREACH(p, &prg->allproc, p_list) {
1367 			if (p->p_stat != SZOMB)
1368 				continue;
1369 			PHOLD(p);
1370 			r = callback(p, data);
1371 			PRELE(p);
1372 			if (r < 0)
1373 				break;
1374 		}
1375 		lwkt_reltoken(&prg->proc_token);
1376 
1377 		/*
1378 		 * Check if asked to stop early
1379 		 */
1380 		if (p)
1381 			break;
1382 	}
1383 }
1384 
1385 #include "opt_ddb.h"
1386 #ifdef DDB
1387 #include <ddb/ddb.h>
1388 
1389 /*
1390  * Debugging only
1391  */
1392 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
1393 {
1394 	struct pgrp *pgrp;
1395 	struct proc *p;
1396 	procglob_t *prg;
1397 	int i;
1398 
1399 	for (i = 0; i < ALLPROC_HSIZE; ++i) {
1400 		prg = &procglob[i];
1401 
1402 		if (LIST_EMPTY(&prg->allpgrp))
1403 			continue;
1404 		kprintf("\tindx %d\n", i);
1405 		LIST_FOREACH(pgrp, &prg->allpgrp, pg_list) {
1406 			kprintf("\tpgrp %p, pgid %ld, sess %p, "
1407 				"sesscnt %d, mem %p\n",
1408 				(void *)pgrp, (long)pgrp->pg_id,
1409 				(void *)pgrp->pg_session,
1410 				pgrp->pg_session->s_count,
1411 				(void *)LIST_FIRST(&pgrp->pg_members));
1412 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1413 				kprintf("\t\tpid %ld addr %p pgrp %p\n",
1414 					(long)p->p_pid, (void *)p,
1415 					(void *)p->p_pgrp);
1416 			}
1417 		}
1418 	}
1419 }
1420 #endif /* DDB */
1421 
1422 /*
1423  * The caller must hold proc_token.
1424  */
1425 static int
1426 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1427 {
1428 	struct kinfo_proc ki;
1429 	struct lwp *lp;
1430 	int skp = 0, had_output = 0;
1431 	int error;
1432 
1433 	bzero(&ki, sizeof(ki));
1434 	lwkt_gettoken_shared(&p->p_token);
1435 	fill_kinfo_proc(p, &ki);
1436 	if ((flags & KERN_PROC_FLAG_LWP) == 0)
1437 		skp = 1;
1438 	error = 0;
1439 	FOREACH_LWP_IN_PROC(lp, p) {
1440 		LWPHOLD(lp);
1441 		fill_kinfo_lwp(lp, &ki.kp_lwp);
1442 		had_output = 1;
1443 		error = SYSCTL_OUT(req, &ki, sizeof(ki));
1444 		LWPRELE(lp);
1445 		if (error)
1446 			break;
1447 		if (skp)
1448 			break;
1449 	}
1450 	lwkt_reltoken(&p->p_token);
1451 	/* We need to output at least the proc, even if there is no lwp. */
1452 	if (had_output == 0) {
1453 		error = SYSCTL_OUT(req, &ki, sizeof(ki));
1454 	}
1455 	return (error);
1456 }
1457 
1458 /*
1459  * The caller must hold proc_token.
1460  */
1461 static int
1462 sysctl_out_proc_kthread(struct thread *td, struct sysctl_req *req)
1463 {
1464 	struct kinfo_proc ki;
1465 	int error;
1466 
1467 	fill_kinfo_proc_kthread(td, &ki);
1468 	error = SYSCTL_OUT(req, &ki, sizeof(ki));
1469 	if (error)
1470 		return error;
1471 	return(0);
1472 }
1473 
1474 /*
1475  * No requirements.
1476  */
1477 static int
1478 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1479 {
1480 	int *name = (int *)arg1;
1481 	int oid = oidp->oid_number;
1482 	u_int namelen = arg2;
1483 	struct proc *p;
1484 	struct thread *td;
1485 	struct thread *marker;
1486 	int flags = 0;
1487 	int error = 0;
1488 	int n;
1489 	int origcpu;
1490 	struct ucred *cr1 = curproc->p_ucred;
1491 
1492 	flags = oid & KERN_PROC_FLAGMASK;
1493 	oid &= ~KERN_PROC_FLAGMASK;
1494 
1495 	if ((oid == KERN_PROC_ALL && namelen != 0) ||
1496 	    (oid != KERN_PROC_ALL && namelen != 1)) {
1497 		return (EINVAL);
1498 	}
1499 
1500 	/*
1501 	 * proc_token protects the allproc list and PHOLD() prevents the
1502 	 * process from being removed from the allproc list or the zombproc
1503 	 * list.
1504 	 */
1505 	if (oid == KERN_PROC_PID) {
1506 		p = pfind((pid_t)name[0]);
1507 		if (p) {
1508 			if (PRISON_CHECK(cr1, p->p_ucred))
1509 				error = sysctl_out_proc(p, req, flags);
1510 			PRELE(p);
1511 		}
1512 		goto post_threads;
1513 	}
1514 	p = NULL;
1515 
1516 	if (!req->oldptr) {
1517 		/* overestimate by 5 procs */
1518 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1519 		if (error)
1520 			goto post_threads;
1521 	}
1522 
1523 	for (n = 0; n < ALLPROC_HSIZE; ++n) {
1524 		procglob_t *prg = &procglob[n];
1525 
1526 		if (LIST_EMPTY(&prg->allproc))
1527 			continue;
1528 		lwkt_gettoken_shared(&prg->proc_token);
1529 		LIST_FOREACH(p, &prg->allproc, p_list) {
1530 			/*
1531 			 * Show a user only their processes.
1532 			 */
1533 			if ((!ps_showallprocs) &&
1534 				(p->p_ucred == NULL || p_trespass(cr1, p->p_ucred))) {
1535 				continue;
1536 			}
1537 			/*
1538 			 * Skip embryonic processes.
1539 			 */
1540 			if (p->p_stat == SIDL)
1541 				continue;
1542 			/*
1543 			 * TODO - make more efficient (see notes below).
1544 			 * do by session.
1545 			 */
1546 			switch (oid) {
1547 			case KERN_PROC_PGRP:
1548 				/* could do this by traversing pgrp */
1549 				if (p->p_pgrp == NULL ||
1550 				    p->p_pgrp->pg_id != (pid_t)name[0])
1551 					continue;
1552 				break;
1553 
1554 			case KERN_PROC_TTY:
1555 				if ((p->p_flags & P_CONTROLT) == 0 ||
1556 				    p->p_session == NULL ||
1557 				    p->p_session->s_ttyp == NULL ||
1558 				    dev2udev(p->p_session->s_ttyp->t_dev) !=
1559 					(udev_t)name[0])
1560 					continue;
1561 				break;
1562 
1563 			case KERN_PROC_UID:
1564 				if (p->p_ucred == NULL ||
1565 				    p->p_ucred->cr_uid != (uid_t)name[0])
1566 					continue;
1567 				break;
1568 
1569 			case KERN_PROC_RUID:
1570 				if (p->p_ucred == NULL ||
1571 				    p->p_ucred->cr_ruid != (uid_t)name[0])
1572 					continue;
1573 				break;
1574 			}
1575 
1576 			if (!PRISON_CHECK(cr1, p->p_ucred))
1577 				continue;
1578 			PHOLD(p);
1579 			error = sysctl_out_proc(p, req, flags);
1580 			PRELE(p);
1581 			if (error) {
1582 				lwkt_reltoken(&prg->proc_token);
1583 				goto post_threads;
1584 			}
1585 		}
1586 		lwkt_reltoken(&prg->proc_token);
1587 	}
1588 
1589 	/*
1590 	 * Iterate over all active cpus and scan their thread list.  Start
1591 	 * with the next logical cpu and end with our original cpu.  We
1592 	 * migrate our own thread to each target cpu in order to safely scan
1593 	 * its thread list.  In the last loop we migrate back to our original
1594 	 * cpu.
1595 	 */
1596 	origcpu = mycpu->gd_cpuid;
1597 	if (!ps_showallthreads || jailed(cr1))
1598 		goto post_threads;
1599 
1600 	marker = kmalloc(sizeof(struct thread), M_TEMP, M_WAITOK|M_ZERO);
1601 	marker->td_flags = TDF_MARKER;
1602 	error = 0;
1603 
1604 	for (n = 1; n <= ncpus; ++n) {
1605 		globaldata_t rgd;
1606 		int nid;
1607 
1608 		nid = (origcpu + n) % ncpus;
1609 		if (CPUMASK_TESTBIT(smp_active_mask, nid) == 0)
1610 			continue;
1611 		rgd = globaldata_find(nid);
1612 		lwkt_setcpu_self(rgd);
1613 
1614 		crit_enter();
1615 		TAILQ_INSERT_TAIL(&rgd->gd_tdallq, marker, td_allq);
1616 
1617 		while ((td = TAILQ_PREV(marker, lwkt_queue, td_allq)) != NULL) {
1618 			TAILQ_REMOVE(&rgd->gd_tdallq, marker, td_allq);
1619 			TAILQ_INSERT_BEFORE(td, marker, td_allq);
1620 			if (td->td_flags & TDF_MARKER)
1621 				continue;
1622 			if (td->td_proc)
1623 				continue;
1624 
1625 			lwkt_hold(td);
1626 			crit_exit();
1627 
1628 			switch (oid) {
1629 			case KERN_PROC_PGRP:
1630 			case KERN_PROC_TTY:
1631 			case KERN_PROC_UID:
1632 			case KERN_PROC_RUID:
1633 				break;
1634 			default:
1635 				error = sysctl_out_proc_kthread(td, req);
1636 				break;
1637 			}
1638 			lwkt_rele(td);
1639 			crit_enter();
1640 			if (error)
1641 				break;
1642 		}
1643 		TAILQ_REMOVE(&rgd->gd_tdallq, marker, td_allq);
1644 		crit_exit();
1645 
1646 		if (error)
1647 			break;
1648 	}
1649 
1650 	/*
1651 	 * Userland scheduler expects us to return on the same cpu we
1652 	 * started on.
1653 	 */
1654 	if (mycpu->gd_cpuid != origcpu)
1655 		lwkt_setcpu_self(globaldata_find(origcpu));
1656 
1657 	kfree(marker, M_TEMP);
1658 
1659 post_threads:
1660 	return (error);
1661 }
1662 
1663 /*
1664  * This sysctl allows a process to retrieve the argument list or process
1665  * title for another process without groping around in the address space
1666  * of the other process.  It also allow a process to set its own "process
1667  * title to a string of its own choice.
1668  *
1669  * No requirements.
1670  */
1671 static int
1672 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1673 {
1674 	int *name = (int*) arg1;
1675 	u_int namelen = arg2;
1676 	struct proc *p;
1677 	struct pargs *opa;
1678 	struct pargs *pa;
1679 	int error = 0;
1680 	struct ucred *cr1 = curproc->p_ucred;
1681 
1682 	if (namelen != 1)
1683 		return (EINVAL);
1684 
1685 	p = pfind((pid_t)name[0]);
1686 	if (p == NULL)
1687 		goto done;
1688 	lwkt_gettoken(&p->p_token);
1689 
1690 	if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred))
1691 		goto done;
1692 
1693 	if (req->newptr && curproc != p) {
1694 		error = EPERM;
1695 		goto done;
1696 	}
1697 	if (req->oldptr) {
1698 		if (p->p_upmap != NULL && p->p_upmap->proc_title[0]) {
1699 			/*
1700 			 * Args set via writable user process mmap.
1701 			 * We must calculate the string length manually
1702 			 * because the user data can change at any time.
1703 			 */
1704 			size_t n;
1705 			char *base;
1706 
1707 			base = p->p_upmap->proc_title;
1708 			for (n = 0; n < UPMAP_MAXPROCTITLE - 1; ++n) {
1709 				if (base[n] == 0)
1710 					break;
1711 			}
1712 			error = SYSCTL_OUT(req, base, n);
1713 			if (error == 0)
1714 				error = SYSCTL_OUT(req, "", 1);
1715 		} else if ((pa = p->p_args) != NULL) {
1716 			/*
1717 			 * Args set by setproctitle() sysctl.
1718 			 */
1719 			refcount_acquire(&pa->ar_ref);
1720 			error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1721 			if (refcount_release(&pa->ar_ref))
1722 				kfree(pa, M_PARGS);
1723 		}
1724 	}
1725 	if (req->newptr == NULL)
1726 		goto done;
1727 
1728 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) {
1729 		goto done;
1730 	}
1731 
1732 	pa = kmalloc(sizeof(struct pargs) + req->newlen, M_PARGS, M_WAITOK);
1733 	refcount_init(&pa->ar_ref, 1);
1734 	pa->ar_length = req->newlen;
1735 	error = SYSCTL_IN(req, pa->ar_args, req->newlen);
1736 	if (error) {
1737 		kfree(pa, M_PARGS);
1738 		goto done;
1739 	}
1740 
1741 
1742 	/*
1743 	 * Replace p_args with the new pa.  p_args may have previously
1744 	 * been NULL.
1745 	 */
1746 	opa = p->p_args;
1747 	p->p_args = pa;
1748 
1749 	if (opa) {
1750 		KKASSERT(opa->ar_ref > 0);
1751 		if (refcount_release(&opa->ar_ref)) {
1752 			kfree(opa, M_PARGS);
1753 			/* opa = NULL; */
1754 		}
1755 	}
1756 done:
1757 	if (p) {
1758 		lwkt_reltoken(&p->p_token);
1759 		PRELE(p);
1760 	}
1761 	return (error);
1762 }
1763 
1764 static int
1765 sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)
1766 {
1767 	int *name = (int*) arg1;
1768 	u_int namelen = arg2;
1769 	struct proc *p;
1770 	int error = 0;
1771 	char *fullpath, *freepath;
1772 	struct ucred *cr1 = curproc->p_ucred;
1773 
1774 	if (namelen != 1)
1775 		return (EINVAL);
1776 
1777 	p = pfind((pid_t)name[0]);
1778 	if (p == NULL)
1779 		goto done;
1780 	lwkt_gettoken_shared(&p->p_token);
1781 
1782 	/*
1783 	 * If we are not allowed to see other args, we certainly shouldn't
1784 	 * get the cwd either. Also check the usual trespassing.
1785 	 */
1786 	if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred))
1787 		goto done;
1788 
1789 	if (req->oldptr && p->p_fd != NULL && p->p_fd->fd_ncdir.ncp) {
1790 		struct nchandle nch;
1791 
1792 		cache_copy(&p->p_fd->fd_ncdir, &nch);
1793 		error = cache_fullpath(p, &nch, NULL,
1794 				       &fullpath, &freepath, 0);
1795 		cache_drop(&nch);
1796 		if (error)
1797 			goto done;
1798 		error = SYSCTL_OUT(req, fullpath, strlen(fullpath) + 1);
1799 		kfree(freepath, M_TEMP);
1800 	}
1801 
1802 done:
1803 	if (p) {
1804 		lwkt_reltoken(&p->p_token);
1805 		PRELE(p);
1806 	}
1807 	return (error);
1808 }
1809 
1810 /*
1811  * This sysctl allows a process to retrieve the path of the executable for
1812  * itself or another process.
1813  */
1814 static int
1815 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1816 {
1817 	pid_t *pidp = (pid_t *)arg1;
1818 	unsigned int arglen = arg2;
1819 	struct proc *p;
1820 	char *retbuf, *freebuf;
1821 	int error = 0;
1822 	struct nchandle nch;
1823 
1824 	if (arglen != 1)
1825 		return (EINVAL);
1826 	if (*pidp == -1) {	/* -1 means this process */
1827 		p = curproc;
1828 	} else {
1829 		p = pfind(*pidp);
1830 		if (p == NULL)
1831 			return (ESRCH);
1832 	}
1833 
1834 	cache_copy(&p->p_textnch, &nch);
1835 	error = cache_fullpath(p, &nch, NULL, &retbuf, &freebuf, 0);
1836 	cache_drop(&nch);
1837 	if (error)
1838 		goto done;
1839 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1840 	kfree(freebuf, M_TEMP);
1841 done:
1842 	if (*pidp != -1)
1843 		PRELE(p);
1844 
1845 	return (error);
1846 }
1847 
1848 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1849 
1850 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT,
1851 	0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
1852 
1853 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD,
1854 	sysctl_kern_proc, "Process table");
1855 
1856 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD,
1857 	sysctl_kern_proc, "Process table");
1858 
1859 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD,
1860 	sysctl_kern_proc, "Process table");
1861 
1862 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD,
1863 	sysctl_kern_proc, "Process table");
1864 
1865 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD,
1866 	sysctl_kern_proc, "Process table");
1867 
1868 SYSCTL_NODE(_kern_proc, (KERN_PROC_ALL | KERN_PROC_FLAG_LWP), all_lwp, CTLFLAG_RD,
1869 	sysctl_kern_proc, "Process table");
1870 
1871 SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_FLAG_LWP), pgrp_lwp, CTLFLAG_RD,
1872 	sysctl_kern_proc, "Process table");
1873 
1874 SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_FLAG_LWP), tty_lwp, CTLFLAG_RD,
1875 	sysctl_kern_proc, "Process table");
1876 
1877 SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_FLAG_LWP), uid_lwp, CTLFLAG_RD,
1878 	sysctl_kern_proc, "Process table");
1879 
1880 SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_FLAG_LWP), ruid_lwp, CTLFLAG_RD,
1881 	sysctl_kern_proc, "Process table");
1882 
1883 SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_FLAG_LWP), pid_lwp, CTLFLAG_RD,
1884 	sysctl_kern_proc, "Process table");
1885 
1886 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY,
1887 	sysctl_kern_proc_args, "Process argument list");
1888 
1889 SYSCTL_NODE(_kern_proc, KERN_PROC_CWD, cwd, CTLFLAG_RD | CTLFLAG_ANYBODY,
1890 	sysctl_kern_proc_cwd, "Process argument list");
1891 
1892 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD,
1893 	sysctl_kern_proc_pathname, "Process executable path");
1894