xref: /dragonfly/sys/kern/kern_proc.c (revision 4ff4d99f)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/sysctl.h>
34 #include <sys/malloc.h>
35 #include <sys/proc.h>
36 #include <sys/vnode.h>
37 #include <sys/jail.h>
38 #include <sys/filedesc.h>
39 #include <sys/tty.h>
40 #include <sys/dsched.h>
41 #include <sys/signalvar.h>
42 #include <sys/spinlock.h>
43 #include <sys/random.h>
44 #include <sys/vnode.h>
45 #include <vm/vm.h>
46 #include <sys/lock.h>
47 #include <vm/pmap.h>
48 #include <vm/vm_map.h>
49 #include <sys/user.h>
50 #include <machine/smp.h>
51 
52 #include <sys/refcount.h>
53 #include <sys/spinlock2.h>
54 #include <sys/mplock2.h>
55 
56 /*
57  * Hash table size must be a power of two and is not currently dynamically
58  * sized.  There is a trade-off between the linear scans which must iterate
59  * all HSIZE elements and the number of elements which might accumulate
60  * within each hash chain.
61  */
62 #define ALLPROC_HSIZE	256
63 #define ALLPROC_HMASK	(ALLPROC_HSIZE - 1)
64 #define ALLPROC_HASH(pid)	(pid & ALLPROC_HMASK)
65 #define PGRP_HASH(pid)	(pid & ALLPROC_HMASK)
66 #define SESS_HASH(pid)	(pid & ALLPROC_HMASK)
67 
68 /*
69  * pid_doms[] management, used to control how quickly a PID can be recycled.
70  * Must be a multiple of ALLPROC_HSIZE for the proc_makepid() inner loops.
71  *
72  * WARNING! PIDDOM_DELAY should not be defined > 20 or so unless you change
73  *	    the array from int8_t's to int16_t's.
74  */
75 #define PIDDOM_COUNT	10	/* 10 pids per domain - reduce array size */
76 #define PIDDOM_DELAY	10	/* min 10 seconds after exit before reuse */
77 #define PIDSEL_DOMAINS	(PID_MAX / PIDDOM_COUNT / ALLPROC_HSIZE * ALLPROC_HSIZE)
78 
79 /* Used by libkvm */
80 int allproc_hsize = ALLPROC_HSIZE;
81 
82 LIST_HEAD(pidhashhead, proc);
83 
84 static MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
85 MALLOC_DEFINE(M_SESSION, "session", "session header");
86 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
87 MALLOC_DEFINE(M_LWP, "lwp", "lwp structures");
88 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
89 
90 int ps_showallprocs = 1;
91 static int ps_showallthreads = 1;
92 SYSCTL_INT(_security, OID_AUTO, ps_showallprocs, CTLFLAG_RW,
93     &ps_showallprocs, 0,
94     "Unprivileged processes can see processes with different UID/GID");
95 SYSCTL_INT(_security, OID_AUTO, ps_showallthreads, CTLFLAG_RW,
96     &ps_showallthreads, 0,
97     "Unprivileged processes can see kernel threads");
98 static u_int pid_domain_skips;
99 SYSCTL_UINT(_kern, OID_AUTO, pid_domain_skips, CTLFLAG_RW,
100     &pid_domain_skips, 0,
101     "Number of pid_doms[] skipped");
102 static u_int pid_inner_skips;
103 SYSCTL_UINT(_kern, OID_AUTO, pid_inner_skips, CTLFLAG_RW,
104     &pid_inner_skips, 0,
105     "Number of pid_doms[] skipped");
106 
107 static void orphanpg(struct pgrp *pg);
108 static void proc_makepid(struct proc *p, int random_offset);
109 
110 /*
111  * Other process lists
112  */
113 static struct lwkt_token proc_tokens[ALLPROC_HSIZE];
114 static struct proclist allprocs[ALLPROC_HSIZE];	/* locked by proc_tokens */
115 static struct pgrplist allpgrps[ALLPROC_HSIZE];	/* locked by proc_tokens */
116 static struct sesslist allsessn[ALLPROC_HSIZE];	/* locked by proc_tokens */
117 
118 /*
119  * We try our best to avoid recycling a PID too quickly.  We do this by
120  * storing (uint8_t)time_second in the related pid domain on-reap and then
121  * using that to skip-over the domain on-allocate.
122  *
123  * This array has to be fairly large to support a high fork/exec rate.
124  * We want ~100,000 entries or so to support a 10-second reuse latency
125  * at 10,000 execs/second, worst case.  Best-case multiply by PIDDOM_COUNT
126  * (approximately 100,000 execs/second).
127  */
128 static uint8_t pid_doms[PIDSEL_DOMAINS];	/* ~100,000 entries */
129 
130 /*
131  * Random component to nextpid generation.  We mix in a random factor to make
132  * it a little harder to predict.  We sanity check the modulus value to avoid
133  * doing it in critical paths.  Don't let it be too small or we pointlessly
134  * waste randomness entropy, and don't let it be impossibly large.  Using a
135  * modulus that is too big causes a LOT more process table scans and slows
136  * down fork processing as the pidchecked caching is defeated.
137  */
138 static int randompid = 0;
139 
140 /*
141  * No requirements.
142  */
143 static int
144 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
145 {
146 	int error, pid;
147 
148 	pid = randompid;
149 	error = sysctl_handle_int(oidp, &pid, 0, req);
150 	if (error || !req->newptr)
151 		return (error);
152 	if (pid < 0 || pid > PID_MAX - 100)     /* out of range */
153 		pid = PID_MAX - 100;
154 	else if (pid < 2)                       /* NOP */
155 		pid = 0;
156 	else if (pid < 100)                     /* Make it reasonable */
157 		pid = 100;
158 	randompid = pid;
159 	return (error);
160 }
161 
162 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
163 	    0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
164 
165 /*
166  * Initialize global process hashing structures.
167  *
168  * These functions are ONLY called from the low level boot code and do
169  * not lock their operations.
170  */
171 void
172 procinit(void)
173 {
174 	u_long i;
175 
176 	/*
177 	 * Avoid unnecessary stalls due to pid_doms[] values all being
178 	 * the same.  Make sure that the allocation of pid 1 and pid 2
179 	 * succeeds.
180 	 */
181 	for (i = 0; i < PIDSEL_DOMAINS; ++i)
182 		pid_doms[i] = (int8_t)i - (int8_t)(PIDDOM_DELAY + 1);
183 
184 	/*
185 	 * Other misc init.
186 	 */
187 	for (i = 0; i < ALLPROC_HSIZE; ++i) {
188 		LIST_INIT(&allprocs[i]);
189 		LIST_INIT(&allsessn[i]);
190 		LIST_INIT(&allpgrps[i]);
191 		lwkt_token_init(&proc_tokens[i], "allproc");
192 	}
193 	lwkt_init();
194 	uihashinit();
195 }
196 
197 void
198 procinsertinit(struct proc *p)
199 {
200 	LIST_INSERT_HEAD(&allprocs[ALLPROC_HASH(p->p_pid)], p, p_list);
201 }
202 
203 void
204 pgrpinsertinit(struct pgrp *pg)
205 {
206 	LIST_INSERT_HEAD(&allpgrps[ALLPROC_HASH(pg->pg_id)], pg, pg_list);
207 }
208 
209 void
210 sessinsertinit(struct session *sess)
211 {
212 	LIST_INSERT_HEAD(&allsessn[ALLPROC_HASH(sess->s_sid)], sess, s_list);
213 }
214 
215 /*
216  * Process hold/release support functions.  Called via the PHOLD(),
217  * PRELE(), and PSTALL() macros.
218  *
219  * p->p_lock is a simple hold count with a waiting interlock.  No wakeup()
220  * is issued unless someone is actually waiting for the process.
221  *
222  * Most holds are short-term, allowing a process scan or other similar
223  * operation to access a proc structure without it getting ripped out from
224  * under us.  procfs and process-list sysctl ops also use the hold function
225  * interlocked with various p_flags to keep the vmspace intact when reading
226  * or writing a user process's address space.
227  *
228  * There are two situations where a hold count can be longer.  Exiting lwps
229  * hold the process until the lwp is reaped, and the parent will hold the
230  * child during vfork()/exec() sequences while the child is marked P_PPWAIT.
231  *
232  * The kernel waits for the hold count to drop to 0 (or 1 in some cases) at
233  * various critical points in the fork/exec and exit paths before proceeding.
234  */
235 #define PLOCK_ZOMB	0x20000000
236 #define PLOCK_WAITING	0x40000000
237 #define PLOCK_MASK	0x1FFFFFFF
238 
239 void
240 pstall(struct proc *p, const char *wmesg, int count)
241 {
242 	int o;
243 	int n;
244 
245 	for (;;) {
246 		o = p->p_lock;
247 		cpu_ccfence();
248 		if ((o & PLOCK_MASK) <= count)
249 			break;
250 		n = o | PLOCK_WAITING;
251 		tsleep_interlock(&p->p_lock, 0);
252 
253 		/*
254 		 * If someone is trying to single-step the process during
255 		 * an exec or an exit they can deadlock us because procfs
256 		 * sleeps with the process held.
257 		 */
258 		if (p->p_stops) {
259 			if (p->p_flags & P_INEXEC) {
260 				wakeup(&p->p_stype);
261 			} else if (p->p_flags & P_POSTEXIT) {
262 				spin_lock(&p->p_spin);
263 				p->p_stops = 0;
264 				p->p_step = 0;
265 				spin_unlock(&p->p_spin);
266 				wakeup(&p->p_stype);
267 			}
268 		}
269 
270 		if (atomic_cmpset_int(&p->p_lock, o, n)) {
271 			tsleep(&p->p_lock, PINTERLOCKED, wmesg, 0);
272 		}
273 	}
274 }
275 
276 void
277 phold(struct proc *p)
278 {
279 	atomic_add_int(&p->p_lock, 1);
280 }
281 
282 /*
283  * WARNING!  On last release (p) can become instantly invalid due to
284  *	     MP races.
285  */
286 void
287 prele(struct proc *p)
288 {
289 	int o;
290 	int n;
291 
292 	/*
293 	 * Fast path
294 	 */
295 	if (atomic_cmpset_int(&p->p_lock, 1, 0))
296 		return;
297 
298 	/*
299 	 * Slow path
300 	 */
301 	for (;;) {
302 		o = p->p_lock;
303 		KKASSERT((o & PLOCK_MASK) > 0);
304 		cpu_ccfence();
305 		n = (o - 1) & ~PLOCK_WAITING;
306 		if (atomic_cmpset_int(&p->p_lock, o, n)) {
307 			if (o & PLOCK_WAITING)
308 				wakeup(&p->p_lock);
309 			break;
310 		}
311 	}
312 }
313 
314 /*
315  * Hold and flag serialized for zombie reaping purposes.
316  *
317  * This function will fail if it has to block, returning non-zero with
318  * neither the flag set or the hold count bumped.  Note that we must block
319  * without holding a ref, meaning that the caller must ensure that (p)
320  * remains valid through some other interlock (typically on its parent
321  * process's p_token).
322  *
323  * Zero is returned on success.  The hold count will be incremented and
324  * the serialization flag acquired.  Note that serialization is only against
325  * other pholdzomb() calls, not against phold() calls.
326  */
327 int
328 pholdzomb(struct proc *p)
329 {
330 	int o;
331 	int n;
332 
333 	/*
334 	 * Fast path
335 	 */
336 	if (atomic_cmpset_int(&p->p_lock, 0, PLOCK_ZOMB | 1))
337 		return(0);
338 
339 	/*
340 	 * Slow path
341 	 */
342 	for (;;) {
343 		o = p->p_lock;
344 		cpu_ccfence();
345 		if ((o & PLOCK_ZOMB) == 0) {
346 			n = (o + 1) | PLOCK_ZOMB;
347 			if (atomic_cmpset_int(&p->p_lock, o, n))
348 				return(0);
349 		} else {
350 			KKASSERT((o & PLOCK_MASK) > 0);
351 			n = o | PLOCK_WAITING;
352 			tsleep_interlock(&p->p_lock, 0);
353 			if (atomic_cmpset_int(&p->p_lock, o, n)) {
354 				tsleep(&p->p_lock, PINTERLOCKED, "phldz", 0);
355 				/* (p) can be ripped out at this point */
356 				return(1);
357 			}
358 		}
359 	}
360 }
361 
362 /*
363  * Release PLOCK_ZOMB and the hold count, waking up any waiters.
364  *
365  * WARNING!  On last release (p) can become instantly invalid due to
366  *	     MP races.
367  */
368 void
369 prelezomb(struct proc *p)
370 {
371 	int o;
372 	int n;
373 
374 	/*
375 	 * Fast path
376 	 */
377 	if (atomic_cmpset_int(&p->p_lock, PLOCK_ZOMB | 1, 0))
378 		return;
379 
380 	/*
381 	 * Slow path
382 	 */
383 	KKASSERT(p->p_lock & PLOCK_ZOMB);
384 	for (;;) {
385 		o = p->p_lock;
386 		KKASSERT((o & PLOCK_MASK) > 0);
387 		cpu_ccfence();
388 		n = (o - 1) & ~(PLOCK_ZOMB | PLOCK_WAITING);
389 		if (atomic_cmpset_int(&p->p_lock, o, n)) {
390 			if (o & PLOCK_WAITING)
391 				wakeup(&p->p_lock);
392 			break;
393 		}
394 	}
395 }
396 
397 /*
398  * Is p an inferior of the current process?
399  *
400  * No requirements.
401  */
402 int
403 inferior(struct proc *p)
404 {
405 	struct proc *p2;
406 
407 	PHOLD(p);
408 	lwkt_gettoken_shared(&p->p_token);
409 	while (p != curproc) {
410 		if (p->p_pid == 0) {
411 			lwkt_reltoken(&p->p_token);
412 			return (0);
413 		}
414 		p2 = p->p_pptr;
415 		PHOLD(p2);
416 		lwkt_reltoken(&p->p_token);
417 		PRELE(p);
418 		lwkt_gettoken_shared(&p2->p_token);
419 		p = p2;
420 	}
421 	lwkt_reltoken(&p->p_token);
422 	PRELE(p);
423 
424 	return (1);
425 }
426 
427 /*
428  * Locate a process by number.  The returned process will be referenced and
429  * must be released with PRELE().
430  *
431  * No requirements.
432  */
433 struct proc *
434 pfind(pid_t pid)
435 {
436 	struct proc *p = curproc;
437 	int n;
438 
439 	/*
440 	 * Shortcut the current process
441 	 */
442 	if (p && p->p_pid == pid) {
443 		PHOLD(p);
444 		return (p);
445 	}
446 
447 	/*
448 	 * Otherwise find it in the hash table.
449 	 */
450 	n = ALLPROC_HASH(pid);
451 
452 	lwkt_gettoken_shared(&proc_tokens[n]);
453 	LIST_FOREACH(p, &allprocs[n], p_list) {
454 		if (p->p_stat == SZOMB)
455 			continue;
456 		if (p->p_pid == pid) {
457 			PHOLD(p);
458 			lwkt_reltoken(&proc_tokens[n]);
459 			return (p);
460 		}
461 	}
462 	lwkt_reltoken(&proc_tokens[n]);
463 
464 	return (NULL);
465 }
466 
467 /*
468  * Locate a process by number.  The returned process is NOT referenced.
469  * The result will not be stable and is typically only used to validate
470  * against a process that the caller has in-hand.
471  *
472  * No requirements.
473  */
474 struct proc *
475 pfindn(pid_t pid)
476 {
477 	struct proc *p = curproc;
478 	int n;
479 
480 	/*
481 	 * Shortcut the current process
482 	 */
483 	if (p && p->p_pid == pid)
484 		return (p);
485 
486 	/*
487 	 * Otherwise find it in the hash table.
488 	 */
489 	n = ALLPROC_HASH(pid);
490 
491 	lwkt_gettoken_shared(&proc_tokens[n]);
492 	LIST_FOREACH(p, &allprocs[n], p_list) {
493 		if (p->p_stat == SZOMB)
494 			continue;
495 		if (p->p_pid == pid) {
496 			lwkt_reltoken(&proc_tokens[n]);
497 			return (p);
498 		}
499 	}
500 	lwkt_reltoken(&proc_tokens[n]);
501 
502 	return (NULL);
503 }
504 
505 /*
506  * Locate a process on the zombie list.  Return a process or NULL.
507  * The returned process will be referenced and the caller must release
508  * it with PRELE().
509  *
510  * No other requirements.
511  */
512 struct proc *
513 zpfind(pid_t pid)
514 {
515 	struct proc *p = curproc;
516 	int n;
517 
518 	/*
519 	 * Shortcut the current process
520 	 */
521 	if (p && p->p_pid == pid) {
522 		PHOLD(p);
523 		return (p);
524 	}
525 
526 	/*
527 	 * Otherwise find it in the hash table.
528 	 */
529 	n = ALLPROC_HASH(pid);
530 
531 	lwkt_gettoken_shared(&proc_tokens[n]);
532 	LIST_FOREACH(p, &allprocs[n], p_list) {
533 		if (p->p_stat != SZOMB)
534 			continue;
535 		if (p->p_pid == pid) {
536 			PHOLD(p);
537 			lwkt_reltoken(&proc_tokens[n]);
538 			return (p);
539 		}
540 	}
541 	lwkt_reltoken(&proc_tokens[n]);
542 
543 	return (NULL);
544 }
545 
546 
547 void
548 pgref(struct pgrp *pgrp)
549 {
550 	refcount_acquire(&pgrp->pg_refs);
551 }
552 
553 void
554 pgrel(struct pgrp *pgrp)
555 {
556 	int count;
557 	int n;
558 
559 	n = PGRP_HASH(pgrp->pg_id);
560 	for (;;) {
561 		count = pgrp->pg_refs;
562 		cpu_ccfence();
563 		KKASSERT(count > 0);
564 		if (count == 1) {
565 			lwkt_gettoken(&proc_tokens[n]);
566 			if (atomic_cmpset_int(&pgrp->pg_refs, 1, 0))
567 				break;
568 			lwkt_reltoken(&proc_tokens[n]);
569 			/* retry */
570 		} else {
571 			if (atomic_cmpset_int(&pgrp->pg_refs, count, count - 1))
572 				return;
573 			/* retry */
574 		}
575 	}
576 
577 	/*
578 	 * Successful 1->0 transition, pghash_spin is held.
579 	 */
580 	LIST_REMOVE(pgrp, pg_list);
581 	pid_doms[pgrp->pg_id % PIDSEL_DOMAINS] = (uint8_t)time_second;
582 
583 	/*
584 	 * Reset any sigio structures pointing to us as a result of
585 	 * F_SETOWN with our pgid.
586 	 */
587 	funsetownlst(&pgrp->pg_sigiolst);
588 
589 	if (pgrp->pg_session->s_ttyp != NULL &&
590 	    pgrp->pg_session->s_ttyp->t_pgrp == pgrp) {
591 		pgrp->pg_session->s_ttyp->t_pgrp = NULL;
592 	}
593 	lwkt_reltoken(&proc_tokens[n]);
594 
595 	sess_rele(pgrp->pg_session);
596 	kfree(pgrp, M_PGRP);
597 }
598 
599 /*
600  * Locate a process group by number.  The returned process group will be
601  * referenced w/pgref() and must be released with pgrel() (or assigned
602  * somewhere if you wish to keep the reference).
603  *
604  * No requirements.
605  */
606 struct pgrp *
607 pgfind(pid_t pgid)
608 {
609 	struct pgrp *pgrp;
610 	int n;
611 
612 	n = PGRP_HASH(pgid);
613 	lwkt_gettoken_shared(&proc_tokens[n]);
614 
615 	LIST_FOREACH(pgrp, &allpgrps[n], pg_list) {
616 		if (pgrp->pg_id == pgid) {
617 			refcount_acquire(&pgrp->pg_refs);
618 			lwkt_reltoken(&proc_tokens[n]);
619 			return (pgrp);
620 		}
621 	}
622 	lwkt_reltoken(&proc_tokens[n]);
623 	return (NULL);
624 }
625 
626 /*
627  * Move p to a new or existing process group (and session)
628  *
629  * No requirements.
630  */
631 int
632 enterpgrp(struct proc *p, pid_t pgid, int mksess)
633 {
634 	struct pgrp *pgrp;
635 	struct pgrp *opgrp;
636 	int error;
637 
638 	pgrp = pgfind(pgid);
639 
640 	KASSERT(pgrp == NULL || !mksess,
641 		("enterpgrp: setsid into non-empty pgrp"));
642 	KASSERT(!SESS_LEADER(p),
643 		("enterpgrp: session leader attempted setpgrp"));
644 
645 	if (pgrp == NULL) {
646 		pid_t savepid = p->p_pid;
647 		struct proc *np;
648 		int n;
649 
650 		/*
651 		 * new process group
652 		 */
653 		KASSERT(p->p_pid == pgid,
654 			("enterpgrp: new pgrp and pid != pgid"));
655 		pgrp = kmalloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
656 		pgrp->pg_id = pgid;
657 		LIST_INIT(&pgrp->pg_members);
658 		pgrp->pg_jobc = 0;
659 		SLIST_INIT(&pgrp->pg_sigiolst);
660 		lwkt_token_init(&pgrp->pg_token, "pgrp_token");
661 		refcount_init(&pgrp->pg_refs, 1);
662 		lockinit(&pgrp->pg_lock, "pgwt", 0, 0);
663 
664 		n = PGRP_HASH(pgid);
665 
666 		if ((np = pfindn(savepid)) == NULL || np != p) {
667 			lwkt_reltoken(&proc_tokens[n]);
668 			error = ESRCH;
669 			kfree(pgrp, M_PGRP);
670 			goto fatal;
671 		}
672 
673 		lwkt_gettoken(&proc_tokens[n]);
674 		if (mksess) {
675 			struct session *sess;
676 
677 			/*
678 			 * new session
679 			 */
680 			sess = kmalloc(sizeof(struct session), M_SESSION,
681 				       M_WAITOK | M_ZERO);
682 			lwkt_gettoken(&p->p_token);
683 			sess->s_leader = p;
684 			sess->s_sid = p->p_pid;
685 			sess->s_count = 1;
686 			sess->s_ttyvp = NULL;
687 			sess->s_ttyp = NULL;
688 			bcopy(p->p_session->s_login, sess->s_login,
689 			      sizeof(sess->s_login));
690 			pgrp->pg_session = sess;
691 			KASSERT(p == curproc,
692 				("enterpgrp: mksession and p != curproc"));
693 			p->p_flags &= ~P_CONTROLT;
694 			LIST_INSERT_HEAD(&allsessn[n], sess, s_list);
695 			lwkt_reltoken(&p->p_token);
696 		} else {
697 			lwkt_gettoken(&p->p_token);
698 			pgrp->pg_session = p->p_session;
699 			sess_hold(pgrp->pg_session);
700 			lwkt_reltoken(&p->p_token);
701 		}
702 		LIST_INSERT_HEAD(&allpgrps[n], pgrp, pg_list);
703 
704 		lwkt_reltoken(&proc_tokens[n]);
705 	} else if (pgrp == p->p_pgrp) {
706 		pgrel(pgrp);
707 		goto done;
708 	} /* else pgfind() referenced the pgrp */
709 
710 	lwkt_gettoken(&pgrp->pg_token);
711 	lwkt_gettoken(&p->p_token);
712 
713 	/*
714 	 * Replace p->p_pgrp, handling any races that occur.
715 	 */
716 	while ((opgrp = p->p_pgrp) != NULL) {
717 		pgref(opgrp);
718 		lwkt_gettoken(&opgrp->pg_token);
719 		if (opgrp != p->p_pgrp) {
720 			lwkt_reltoken(&opgrp->pg_token);
721 			pgrel(opgrp);
722 			continue;
723 		}
724 		LIST_REMOVE(p, p_pglist);
725 		break;
726 	}
727 	p->p_pgrp = pgrp;
728 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
729 
730 	/*
731 	 * Adjust eligibility of affected pgrps to participate in job control.
732 	 * Increment eligibility counts before decrementing, otherwise we
733 	 * could reach 0 spuriously during the first call.
734 	 */
735 	fixjobc(p, pgrp, 1);
736 	if (opgrp) {
737 		fixjobc(p, opgrp, 0);
738 		lwkt_reltoken(&opgrp->pg_token);
739 		pgrel(opgrp);	/* manual pgref */
740 		pgrel(opgrp);	/* p->p_pgrp ref */
741 	}
742 	lwkt_reltoken(&p->p_token);
743 	lwkt_reltoken(&pgrp->pg_token);
744 done:
745 	error = 0;
746 fatal:
747 	return (error);
748 }
749 
750 /*
751  * Remove process from process group
752  *
753  * No requirements.
754  */
755 int
756 leavepgrp(struct proc *p)
757 {
758 	struct pgrp *pg = p->p_pgrp;
759 
760 	lwkt_gettoken(&p->p_token);
761 	while ((pg = p->p_pgrp) != NULL) {
762 		pgref(pg);
763 		lwkt_gettoken(&pg->pg_token);
764 		if (p->p_pgrp != pg) {
765 			lwkt_reltoken(&pg->pg_token);
766 			pgrel(pg);
767 			continue;
768 		}
769 		p->p_pgrp = NULL;
770 		LIST_REMOVE(p, p_pglist);
771 		lwkt_reltoken(&pg->pg_token);
772 		pgrel(pg);	/* manual pgref */
773 		pgrel(pg);	/* p->p_pgrp ref */
774 		break;
775 	}
776 	lwkt_reltoken(&p->p_token);
777 
778 	return (0);
779 }
780 
781 /*
782  * Adjust the ref count on a session structure.  When the ref count falls to
783  * zero the tty is disassociated from the session and the session structure
784  * is freed.  Note that tty assocation is not itself ref-counted.
785  *
786  * No requirements.
787  */
788 void
789 sess_hold(struct session *sp)
790 {
791 	atomic_add_int(&sp->s_count, 1);
792 }
793 
794 /*
795  * No requirements.
796  */
797 void
798 sess_rele(struct session *sess)
799 {
800 	struct tty *tp;
801 	int count;
802 	int n;
803 
804 	n = SESS_HASH(sess->s_sid);
805 	for (;;) {
806 		count = sess->s_count;
807 		cpu_ccfence();
808 		KKASSERT(count > 0);
809 		if (count == 1) {
810 			lwkt_gettoken(&tty_token);
811 			lwkt_gettoken(&proc_tokens[n]);
812 			if (atomic_cmpset_int(&sess->s_count, 1, 0))
813 				break;
814 			lwkt_reltoken(&proc_tokens[n]);
815 			lwkt_reltoken(&tty_token);
816 			/* retry */
817 		} else {
818 			if (atomic_cmpset_int(&sess->s_count, count, count - 1))
819 				return;
820 			/* retry */
821 		}
822 	}
823 
824 	/*
825 	 * Successful 1->0 transition and tty_token is held.
826 	 */
827 	LIST_REMOVE(sess, s_list);
828 	pid_doms[sess->s_sid % PIDSEL_DOMAINS] = (uint8_t)time_second;
829 
830 	if (sess->s_ttyp && sess->s_ttyp->t_session) {
831 #ifdef TTY_DO_FULL_CLOSE
832 		/* FULL CLOSE, see ttyclearsession() */
833 		KKASSERT(sess->s_ttyp->t_session == sess);
834 		sess->s_ttyp->t_session = NULL;
835 #else
836 		/* HALF CLOSE, see ttyclearsession() */
837 		if (sess->s_ttyp->t_session == sess)
838 			sess->s_ttyp->t_session = NULL;
839 #endif
840 	}
841 	if ((tp = sess->s_ttyp) != NULL) {
842 		sess->s_ttyp = NULL;
843 		ttyunhold(tp);
844 	}
845 	lwkt_reltoken(&proc_tokens[n]);
846 	lwkt_reltoken(&tty_token);
847 
848 	kfree(sess, M_SESSION);
849 }
850 
851 /*
852  * Adjust pgrp jobc counters when specified process changes process group.
853  * We count the number of processes in each process group that "qualify"
854  * the group for terminal job control (those with a parent in a different
855  * process group of the same session).  If that count reaches zero, the
856  * process group becomes orphaned.  Check both the specified process'
857  * process group and that of its children.
858  * entering == 0 => p is leaving specified group.
859  * entering == 1 => p is entering specified group.
860  *
861  * No requirements.
862  */
863 void
864 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
865 {
866 	struct pgrp *hispgrp;
867 	struct session *mysession;
868 	struct proc *np;
869 
870 	/*
871 	 * Check p's parent to see whether p qualifies its own process
872 	 * group; if so, adjust count for p's process group.
873 	 */
874 	lwkt_gettoken(&p->p_token);	/* p_children scan */
875 	lwkt_gettoken(&pgrp->pg_token);
876 
877 	mysession = pgrp->pg_session;
878 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
879 	    hispgrp->pg_session == mysession) {
880 		if (entering)
881 			pgrp->pg_jobc++;
882 		else if (--pgrp->pg_jobc == 0)
883 			orphanpg(pgrp);
884 	}
885 
886 	/*
887 	 * Check this process' children to see whether they qualify
888 	 * their process groups; if so, adjust counts for children's
889 	 * process groups.
890 	 */
891 	LIST_FOREACH(np, &p->p_children, p_sibling) {
892 		PHOLD(np);
893 		lwkt_gettoken(&np->p_token);
894 		if ((hispgrp = np->p_pgrp) != pgrp &&
895 		    hispgrp->pg_session == mysession &&
896 		    np->p_stat != SZOMB) {
897 			pgref(hispgrp);
898 			lwkt_gettoken(&hispgrp->pg_token);
899 			if (entering)
900 				hispgrp->pg_jobc++;
901 			else if (--hispgrp->pg_jobc == 0)
902 				orphanpg(hispgrp);
903 			lwkt_reltoken(&hispgrp->pg_token);
904 			pgrel(hispgrp);
905 		}
906 		lwkt_reltoken(&np->p_token);
907 		PRELE(np);
908 	}
909 	KKASSERT(pgrp->pg_refs > 0);
910 	lwkt_reltoken(&pgrp->pg_token);
911 	lwkt_reltoken(&p->p_token);
912 }
913 
914 /*
915  * A process group has become orphaned;
916  * if there are any stopped processes in the group,
917  * hang-up all process in that group.
918  *
919  * The caller must hold pg_token.
920  */
921 static void
922 orphanpg(struct pgrp *pg)
923 {
924 	struct proc *p;
925 
926 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
927 		if (p->p_stat == SSTOP) {
928 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
929 				ksignal(p, SIGHUP);
930 				ksignal(p, SIGCONT);
931 			}
932 			return;
933 		}
934 	}
935 }
936 
937 /*
938  * Add a new process to the allproc list and the PID hash.  This
939  * also assigns a pid to the new process.
940  *
941  * No requirements.
942  */
943 void
944 proc_add_allproc(struct proc *p)
945 {
946 	int random_offset;
947 
948 	if ((random_offset = randompid) != 0) {
949 		read_random(&random_offset, sizeof(random_offset));
950 		random_offset = (random_offset & 0x7FFFFFFF) % randompid;
951 	}
952 	proc_makepid(p, random_offset);
953 }
954 
955 /*
956  * Calculate a new process pid.  This function is integrated into
957  * proc_add_allproc() to guarentee that the new pid is not reused before
958  * the new process can be added to the allproc list.
959  *
960  * p_pid is assigned and the process is added to the allproc hash table
961  *
962  * WARNING! We need to allocate PIDs sequentially during early boot.
963  *	    In particular, init needs to have a pid of 1.
964  */
965 static
966 void
967 proc_makepid(struct proc *p, int random_offset)
968 {
969 	static pid_t nextpid = 1;	/* heuristic, allowed to race */
970 	struct pgrp *pg;
971 	struct proc *ps;
972 	struct session *sess;
973 	pid_t base;
974 	int8_t delta8;
975 	int retries;
976 	int n;
977 
978 	/*
979 	 * Select the next pid base candidate.
980 	 *
981 	 * Check cyclement, do not allow a pid < 100.
982 	 */
983 	retries = 0;
984 retry:
985 	base = atomic_fetchadd_int(&nextpid, 1) + random_offset;
986 	if (base <= 0 || base >= PID_MAX) {
987 		base = base % PID_MAX;
988 		if (base < 0)
989 			base = 100;
990 		if (base < 100)
991 			base += 100;
992 		nextpid = base;		/* reset (SMP race ok) */
993 	}
994 
995 	/*
996 	 * Do not allow a base pid to be selected from a domain that has
997 	 * recently seen a pid/pgid/sessid reap.  Sleep a little if we looped
998 	 * through all available domains.
999 	 *
1000 	 * WARNING: We want the early pids to be allocated linearly,
1001 	 *	    particularly pid 1 and pid 2.
1002 	 */
1003 	if (++retries >= PIDSEL_DOMAINS)
1004 		tsleep(&nextpid, 0, "makepid", 1);
1005 	if (base >= 100) {
1006 		delta8 = (int8_t)time_second -
1007 			 (int8_t)pid_doms[base % PIDSEL_DOMAINS];
1008 		if (delta8 >= 0 && delta8 <= PIDDOM_DELAY) {
1009 			++pid_domain_skips;
1010 			goto retry;
1011 		}
1012 	}
1013 
1014 	/*
1015 	 * Calculate a hash index and find an unused process id within
1016 	 * the table, looping if we cannot find one.
1017 	 *
1018 	 * The inner loop increments by ALLPROC_HSIZE which keeps the
1019 	 * PID at the same pid_doms[] index as well as the same hash index.
1020 	 */
1021 	n = ALLPROC_HASH(base);
1022 	lwkt_gettoken(&proc_tokens[n]);
1023 
1024 restart1:
1025 	LIST_FOREACH(ps, &allprocs[n], p_list) {
1026 		if (ps->p_pid == base) {
1027 			base += ALLPROC_HSIZE;
1028 			if (base >= PID_MAX) {
1029 				lwkt_reltoken(&proc_tokens[n]);
1030 				goto retry;
1031 			}
1032 			++pid_inner_skips;
1033 			goto restart1;
1034 		}
1035 	}
1036 	LIST_FOREACH(pg, &allpgrps[n], pg_list) {
1037 		if (pg->pg_id == base) {
1038 			base += ALLPROC_HSIZE;
1039 			if (base >= PID_MAX) {
1040 				lwkt_reltoken(&proc_tokens[n]);
1041 				goto retry;
1042 			}
1043 			++pid_inner_skips;
1044 			goto restart1;
1045 		}
1046 	}
1047 	LIST_FOREACH(sess, &allsessn[n], s_list) {
1048 		if (sess->s_sid == base) {
1049 			base += ALLPROC_HSIZE;
1050 			if (base >= PID_MAX) {
1051 				lwkt_reltoken(&proc_tokens[n]);
1052 				goto retry;
1053 			}
1054 			++pid_inner_skips;
1055 			goto restart1;
1056 		}
1057 	}
1058 
1059 	/*
1060 	 * Assign the pid and insert the process.
1061 	 */
1062 	p->p_pid = base;
1063 	LIST_INSERT_HEAD(&allprocs[n], p, p_list);
1064 	lwkt_reltoken(&proc_tokens[n]);
1065 }
1066 
1067 /*
1068  * Called from exit1 to place the process into a zombie state.
1069  * The process is removed from the pid hash and p_stat is set
1070  * to SZOMB.  Normal pfind[n]() calls will not find it any more.
1071  *
1072  * Caller must hold p->p_token.  We are required to wait until p_lock
1073  * becomes zero before we can manipulate the list, allowing allproc
1074  * scans to guarantee consistency during a list scan.
1075  */
1076 void
1077 proc_move_allproc_zombie(struct proc *p)
1078 {
1079 	int n;
1080 
1081 	n = ALLPROC_HASH(p->p_pid);
1082 	PSTALL(p, "reap1", 0);
1083 	lwkt_gettoken(&proc_tokens[n]);
1084 
1085 	PSTALL(p, "reap1a", 0);
1086 	p->p_stat = SZOMB;
1087 
1088 	lwkt_reltoken(&proc_tokens[n]);
1089 	dsched_exit_proc(p);
1090 }
1091 
1092 /*
1093  * This routine is called from kern_wait() and will remove the process
1094  * from the zombie list and the sibling list.  This routine will block
1095  * if someone has a lock on the proces (p_lock).
1096  *
1097  * Caller must hold p->p_token.  We are required to wait until p_lock
1098  * becomes zero before we can manipulate the list, allowing allproc
1099  * scans to guarantee consistency during a list scan.
1100  */
1101 void
1102 proc_remove_zombie(struct proc *p)
1103 {
1104 	int n;
1105 
1106 	n = ALLPROC_HASH(p->p_pid);
1107 
1108 	PSTALL(p, "reap2", 0);
1109 	lwkt_gettoken(&proc_tokens[n]);
1110 	PSTALL(p, "reap2a", 0);
1111 	LIST_REMOVE(p, p_list);		/* from remove master list */
1112 	LIST_REMOVE(p, p_sibling);	/* and from sibling list */
1113 	p->p_pptr = NULL;
1114 	pid_doms[p->p_pid % PIDSEL_DOMAINS] = (uint8_t)time_second;
1115 	lwkt_reltoken(&proc_tokens[n]);
1116 }
1117 
1118 /*
1119  * Handle various requirements prior to returning to usermode.  Called from
1120  * platform trap and system call code.
1121  */
1122 void
1123 lwpuserret(struct lwp *lp)
1124 {
1125 	struct proc *p = lp->lwp_proc;
1126 
1127 	if (lp->lwp_mpflags & LWP_MP_VNLRU) {
1128 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_VNLRU);
1129 		allocvnode_gc();
1130 	}
1131 	if (lp->lwp_mpflags & LWP_MP_WEXIT) {
1132 		lwkt_gettoken(&p->p_token);
1133 		lwp_exit(0, NULL);
1134 		lwkt_reltoken(&p->p_token);     /* NOT REACHED */
1135 	}
1136 }
1137 
1138 /*
1139  * Kernel threads run from user processes can also accumulate deferred
1140  * actions which need to be acted upon.  Callers include:
1141  *
1142  * nfsd		- Can allocate lots of vnodes
1143  */
1144 void
1145 lwpkthreaddeferred(void)
1146 {
1147 	struct lwp *lp = curthread->td_lwp;
1148 
1149 	if (lp) {
1150 		if (lp->lwp_mpflags & LWP_MP_VNLRU) {
1151 			atomic_clear_int(&lp->lwp_mpflags, LWP_MP_VNLRU);
1152 			allocvnode_gc();
1153 		}
1154 	}
1155 }
1156 
1157 /*
1158  * Scan all processes on the allproc list.  The process is automatically
1159  * held for the callback.  A return value of -1 terminates the loop.
1160  * Zombie procs are skipped.
1161  *
1162  * The callback is made with the process held and proc_token held.
1163  *
1164  * We limit the scan to the number of processes as-of the start of
1165  * the scan so as not to get caught up in an endless loop if new processes
1166  * are created more quickly than we can scan the old ones.  Add a little
1167  * slop to try to catch edge cases since nprocs can race.
1168  *
1169  * No requirements.
1170  */
1171 void
1172 allproc_scan(int (*callback)(struct proc *, void *), void *data)
1173 {
1174 	int limit = nprocs + ncpus;
1175 	struct proc *p;
1176 	int r;
1177 	int n;
1178 
1179 	/*
1180 	 * proc_tokens[n] protects the allproc list and PHOLD() prevents the
1181 	 * process from being removed from the allproc list or the zombproc
1182 	 * list.
1183 	 */
1184 	for (n = 0; n < ALLPROC_HSIZE; ++n) {
1185 		if (LIST_FIRST(&allprocs[n]) == NULL)
1186 			continue;
1187 		lwkt_gettoken(&proc_tokens[n]);
1188 		LIST_FOREACH(p, &allprocs[n], p_list) {
1189 			if (p->p_stat == SZOMB)
1190 				continue;
1191 			PHOLD(p);
1192 			r = callback(p, data);
1193 			PRELE(p);
1194 			if (r < 0)
1195 				break;
1196 			if (--limit < 0)
1197 				break;
1198 		}
1199 		lwkt_reltoken(&proc_tokens[n]);
1200 
1201 		/*
1202 		 * Check if asked to stop early
1203 		 */
1204 		if (p)
1205 			break;
1206 	}
1207 }
1208 
1209 /*
1210  * Scan all lwps of processes on the allproc list.  The lwp is automatically
1211  * held for the callback.  A return value of -1 terminates the loop.
1212  *
1213  * The callback is made with the proces and lwp both held, and proc_token held.
1214  *
1215  * No requirements.
1216  */
1217 void
1218 alllwp_scan(int (*callback)(struct lwp *, void *), void *data)
1219 {
1220 	struct proc *p;
1221 	struct lwp *lp;
1222 	int r = 0;
1223 	int n;
1224 
1225 	for (n = 0; n < ALLPROC_HSIZE; ++n) {
1226 		if (LIST_FIRST(&allprocs[n]) == NULL)
1227 			continue;
1228 		lwkt_gettoken(&proc_tokens[n]);
1229 		LIST_FOREACH(p, &allprocs[n], p_list) {
1230 			if (p->p_stat == SZOMB)
1231 				continue;
1232 			PHOLD(p);
1233 			lwkt_gettoken(&p->p_token);
1234 			FOREACH_LWP_IN_PROC(lp, p) {
1235 				LWPHOLD(lp);
1236 				r = callback(lp, data);
1237 				LWPRELE(lp);
1238 			}
1239 			lwkt_reltoken(&p->p_token);
1240 			PRELE(p);
1241 			if (r < 0)
1242 				break;
1243 		}
1244 		lwkt_reltoken(&proc_tokens[n]);
1245 
1246 		/*
1247 		 * Asked to exit early
1248 		 */
1249 		if (p)
1250 			break;
1251 	}
1252 }
1253 
1254 /*
1255  * Scan all processes on the zombproc list.  The process is automatically
1256  * held for the callback.  A return value of -1 terminates the loop.
1257  *
1258  * No requirements.
1259  * The callback is made with the proces held and proc_token held.
1260  */
1261 void
1262 zombproc_scan(int (*callback)(struct proc *, void *), void *data)
1263 {
1264 	struct proc *p;
1265 	int r;
1266 	int n;
1267 
1268 	/*
1269 	 * proc_tokens[n] protects the allproc list and PHOLD() prevents the
1270 	 * process from being removed from the allproc list or the zombproc
1271 	 * list.
1272 	 */
1273 	for (n = 0; n < ALLPROC_HSIZE; ++n) {
1274 		if (LIST_FIRST(&allprocs[n]) == NULL)
1275 			continue;
1276 		lwkt_gettoken(&proc_tokens[n]);
1277 		LIST_FOREACH(p, &allprocs[n], p_list) {
1278 			if (p->p_stat != SZOMB)
1279 				continue;
1280 			PHOLD(p);
1281 			r = callback(p, data);
1282 			PRELE(p);
1283 			if (r < 0)
1284 				break;
1285 		}
1286 		lwkt_reltoken(&proc_tokens[n]);
1287 
1288 		/*
1289 		 * Check if asked to stop early
1290 		 */
1291 		if (p)
1292 			break;
1293 	}
1294 }
1295 
1296 #include "opt_ddb.h"
1297 #ifdef DDB
1298 #include <ddb/ddb.h>
1299 
1300 /*
1301  * Debugging only
1302  */
1303 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
1304 {
1305 	struct pgrp *pgrp;
1306 	struct proc *p;
1307 	int i;
1308 
1309 	for (i = 0; i < ALLPROC_HSIZE; ++i) {
1310 		if (LIST_EMPTY(&allpgrps[i]))
1311 			continue;
1312 		kprintf("\tindx %d\n", i);
1313 		LIST_FOREACH(pgrp, &allpgrps[i], pg_list) {
1314 			kprintf("\tpgrp %p, pgid %ld, sess %p, "
1315 				"sesscnt %d, mem %p\n",
1316 				(void *)pgrp, (long)pgrp->pg_id,
1317 				(void *)pgrp->pg_session,
1318 				pgrp->pg_session->s_count,
1319 				(void *)LIST_FIRST(&pgrp->pg_members));
1320 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1321 				kprintf("\t\tpid %ld addr %p pgrp %p\n",
1322 					(long)p->p_pid, (void *)p,
1323 					(void *)p->p_pgrp);
1324 			}
1325 		}
1326 	}
1327 }
1328 #endif /* DDB */
1329 
1330 /*
1331  * The caller must hold proc_token.
1332  */
1333 static int
1334 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1335 {
1336 	struct kinfo_proc ki;
1337 	struct lwp *lp;
1338 	int skp = 0, had_output = 0;
1339 	int error;
1340 
1341 	bzero(&ki, sizeof(ki));
1342 	lwkt_gettoken_shared(&p->p_token);
1343 	fill_kinfo_proc(p, &ki);
1344 	if ((flags & KERN_PROC_FLAG_LWP) == 0)
1345 		skp = 1;
1346 	error = 0;
1347 	FOREACH_LWP_IN_PROC(lp, p) {
1348 		LWPHOLD(lp);
1349 		fill_kinfo_lwp(lp, &ki.kp_lwp);
1350 		had_output = 1;
1351 		error = SYSCTL_OUT(req, &ki, sizeof(ki));
1352 		LWPRELE(lp);
1353 		if (error)
1354 			break;
1355 		if (skp)
1356 			break;
1357 	}
1358 	lwkt_reltoken(&p->p_token);
1359 	/* We need to output at least the proc, even if there is no lwp. */
1360 	if (had_output == 0) {
1361 		error = SYSCTL_OUT(req, &ki, sizeof(ki));
1362 	}
1363 	return (error);
1364 }
1365 
1366 /*
1367  * The caller must hold proc_token.
1368  */
1369 static int
1370 sysctl_out_proc_kthread(struct thread *td, struct sysctl_req *req)
1371 {
1372 	struct kinfo_proc ki;
1373 	int error;
1374 
1375 	fill_kinfo_proc_kthread(td, &ki);
1376 	error = SYSCTL_OUT(req, &ki, sizeof(ki));
1377 	if (error)
1378 		return error;
1379 	return(0);
1380 }
1381 
1382 /*
1383  * No requirements.
1384  */
1385 static int
1386 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1387 {
1388 	int *name = (int *)arg1;
1389 	int oid = oidp->oid_number;
1390 	u_int namelen = arg2;
1391 	struct proc *p;
1392 	struct thread *td;
1393 	struct thread *marker;
1394 	int flags = 0;
1395 	int error = 0;
1396 	int n;
1397 	int origcpu;
1398 	struct ucred *cr1 = curproc->p_ucred;
1399 
1400 	flags = oid & KERN_PROC_FLAGMASK;
1401 	oid &= ~KERN_PROC_FLAGMASK;
1402 
1403 	if ((oid == KERN_PROC_ALL && namelen != 0) ||
1404 	    (oid != KERN_PROC_ALL && namelen != 1)) {
1405 		return (EINVAL);
1406 	}
1407 
1408 	/*
1409 	 * proc_token protects the allproc list and PHOLD() prevents the
1410 	 * process from being removed from the allproc list or the zombproc
1411 	 * list.
1412 	 */
1413 	if (oid == KERN_PROC_PID) {
1414 		p = pfind((pid_t)name[0]);
1415 		if (p) {
1416 			if (PRISON_CHECK(cr1, p->p_ucred))
1417 				error = sysctl_out_proc(p, req, flags);
1418 			PRELE(p);
1419 		}
1420 		goto post_threads;
1421 	}
1422 	p = NULL;
1423 
1424 	if (!req->oldptr) {
1425 		/* overestimate by 5 procs */
1426 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1427 		if (error)
1428 			goto post_threads;
1429 	}
1430 
1431 	for (n = 0; n < ALLPROC_HSIZE; ++n) {
1432 		if (LIST_EMPTY(&allprocs[n]))
1433 			continue;
1434 		lwkt_gettoken_shared(&proc_tokens[n]);
1435 		LIST_FOREACH(p, &allprocs[n], p_list) {
1436 			/*
1437 			 * Show a user only their processes.
1438 			 */
1439 			if ((!ps_showallprocs) &&
1440 				(p->p_ucred == NULL || p_trespass(cr1, p->p_ucred))) {
1441 				continue;
1442 			}
1443 			/*
1444 			 * Skip embryonic processes.
1445 			 */
1446 			if (p->p_stat == SIDL)
1447 				continue;
1448 			/*
1449 			 * TODO - make more efficient (see notes below).
1450 			 * do by session.
1451 			 */
1452 			switch (oid) {
1453 			case KERN_PROC_PGRP:
1454 				/* could do this by traversing pgrp */
1455 				if (p->p_pgrp == NULL ||
1456 				    p->p_pgrp->pg_id != (pid_t)name[0])
1457 					continue;
1458 				break;
1459 
1460 			case KERN_PROC_TTY:
1461 				if ((p->p_flags & P_CONTROLT) == 0 ||
1462 				    p->p_session == NULL ||
1463 				    p->p_session->s_ttyp == NULL ||
1464 				    dev2udev(p->p_session->s_ttyp->t_dev) !=
1465 					(udev_t)name[0])
1466 					continue;
1467 				break;
1468 
1469 			case KERN_PROC_UID:
1470 				if (p->p_ucred == NULL ||
1471 				    p->p_ucred->cr_uid != (uid_t)name[0])
1472 					continue;
1473 				break;
1474 
1475 			case KERN_PROC_RUID:
1476 				if (p->p_ucred == NULL ||
1477 				    p->p_ucred->cr_ruid != (uid_t)name[0])
1478 					continue;
1479 				break;
1480 			}
1481 
1482 			if (!PRISON_CHECK(cr1, p->p_ucred))
1483 				continue;
1484 			PHOLD(p);
1485 			error = sysctl_out_proc(p, req, flags);
1486 			PRELE(p);
1487 			if (error) {
1488 				lwkt_reltoken(&proc_tokens[n]);
1489 				goto post_threads;
1490 			}
1491 		}
1492 		lwkt_reltoken(&proc_tokens[n]);
1493 	}
1494 
1495 	/*
1496 	 * Iterate over all active cpus and scan their thread list.  Start
1497 	 * with the next logical cpu and end with our original cpu.  We
1498 	 * migrate our own thread to each target cpu in order to safely scan
1499 	 * its thread list.  In the last loop we migrate back to our original
1500 	 * cpu.
1501 	 */
1502 	origcpu = mycpu->gd_cpuid;
1503 	if (!ps_showallthreads || jailed(cr1))
1504 		goto post_threads;
1505 
1506 	marker = kmalloc(sizeof(struct thread), M_TEMP, M_WAITOK|M_ZERO);
1507 	marker->td_flags = TDF_MARKER;
1508 	error = 0;
1509 
1510 	for (n = 1; n <= ncpus; ++n) {
1511 		globaldata_t rgd;
1512 		int nid;
1513 
1514 		nid = (origcpu + n) % ncpus;
1515 		if (CPUMASK_TESTBIT(smp_active_mask, nid) == 0)
1516 			continue;
1517 		rgd = globaldata_find(nid);
1518 		lwkt_setcpu_self(rgd);
1519 
1520 		crit_enter();
1521 		TAILQ_INSERT_TAIL(&rgd->gd_tdallq, marker, td_allq);
1522 
1523 		while ((td = TAILQ_PREV(marker, lwkt_queue, td_allq)) != NULL) {
1524 			TAILQ_REMOVE(&rgd->gd_tdallq, marker, td_allq);
1525 			TAILQ_INSERT_BEFORE(td, marker, td_allq);
1526 			if (td->td_flags & TDF_MARKER)
1527 				continue;
1528 			if (td->td_proc)
1529 				continue;
1530 
1531 			lwkt_hold(td);
1532 			crit_exit();
1533 
1534 			switch (oid) {
1535 			case KERN_PROC_PGRP:
1536 			case KERN_PROC_TTY:
1537 			case KERN_PROC_UID:
1538 			case KERN_PROC_RUID:
1539 				break;
1540 			default:
1541 				error = sysctl_out_proc_kthread(td, req);
1542 				break;
1543 			}
1544 			lwkt_rele(td);
1545 			crit_enter();
1546 			if (error)
1547 				break;
1548 		}
1549 		TAILQ_REMOVE(&rgd->gd_tdallq, marker, td_allq);
1550 		crit_exit();
1551 
1552 		if (error)
1553 			break;
1554 	}
1555 
1556 	/*
1557 	 * Userland scheduler expects us to return on the same cpu we
1558 	 * started on.
1559 	 */
1560 	if (mycpu->gd_cpuid != origcpu)
1561 		lwkt_setcpu_self(globaldata_find(origcpu));
1562 
1563 	kfree(marker, M_TEMP);
1564 
1565 post_threads:
1566 	return (error);
1567 }
1568 
1569 /*
1570  * This sysctl allows a process to retrieve the argument list or process
1571  * title for another process without groping around in the address space
1572  * of the other process.  It also allow a process to set its own "process
1573  * title to a string of its own choice.
1574  *
1575  * No requirements.
1576  */
1577 static int
1578 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1579 {
1580 	int *name = (int*) arg1;
1581 	u_int namelen = arg2;
1582 	struct proc *p;
1583 	struct pargs *opa;
1584 	struct pargs *pa;
1585 	int error = 0;
1586 	struct ucred *cr1 = curproc->p_ucred;
1587 
1588 	if (namelen != 1)
1589 		return (EINVAL);
1590 
1591 	p = pfind((pid_t)name[0]);
1592 	if (p == NULL)
1593 		goto done;
1594 	lwkt_gettoken(&p->p_token);
1595 
1596 	if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred))
1597 		goto done;
1598 
1599 	if (req->newptr && curproc != p) {
1600 		error = EPERM;
1601 		goto done;
1602 	}
1603 	if (req->oldptr && (pa = p->p_args) != NULL) {
1604 		refcount_acquire(&pa->ar_ref);
1605 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1606 		if (refcount_release(&pa->ar_ref))
1607 			kfree(pa, M_PARGS);
1608 	}
1609 	if (req->newptr == NULL)
1610 		goto done;
1611 
1612 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) {
1613 		goto done;
1614 	}
1615 
1616 	pa = kmalloc(sizeof(struct pargs) + req->newlen, M_PARGS, M_WAITOK);
1617 	refcount_init(&pa->ar_ref, 1);
1618 	pa->ar_length = req->newlen;
1619 	error = SYSCTL_IN(req, pa->ar_args, req->newlen);
1620 	if (error) {
1621 		kfree(pa, M_PARGS);
1622 		goto done;
1623 	}
1624 
1625 
1626 	/*
1627 	 * Replace p_args with the new pa.  p_args may have previously
1628 	 * been NULL.
1629 	 */
1630 	opa = p->p_args;
1631 	p->p_args = pa;
1632 
1633 	if (opa) {
1634 		KKASSERT(opa->ar_ref > 0);
1635 		if (refcount_release(&opa->ar_ref)) {
1636 			kfree(opa, M_PARGS);
1637 			/* opa = NULL; */
1638 		}
1639 	}
1640 done:
1641 	if (p) {
1642 		lwkt_reltoken(&p->p_token);
1643 		PRELE(p);
1644 	}
1645 	return (error);
1646 }
1647 
1648 static int
1649 sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)
1650 {
1651 	int *name = (int*) arg1;
1652 	u_int namelen = arg2;
1653 	struct proc *p;
1654 	int error = 0;
1655 	char *fullpath, *freepath;
1656 	struct ucred *cr1 = curproc->p_ucred;
1657 
1658 	if (namelen != 1)
1659 		return (EINVAL);
1660 
1661 	p = pfind((pid_t)name[0]);
1662 	if (p == NULL)
1663 		goto done;
1664 	lwkt_gettoken_shared(&p->p_token);
1665 
1666 	/*
1667 	 * If we are not allowed to see other args, we certainly shouldn't
1668 	 * get the cwd either. Also check the usual trespassing.
1669 	 */
1670 	if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred))
1671 		goto done;
1672 
1673 	if (req->oldptr && p->p_fd != NULL && p->p_fd->fd_ncdir.ncp) {
1674 		struct nchandle nch;
1675 
1676 		cache_copy(&p->p_fd->fd_ncdir, &nch);
1677 		error = cache_fullpath(p, &nch, NULL,
1678 				       &fullpath, &freepath, 0);
1679 		cache_drop(&nch);
1680 		if (error)
1681 			goto done;
1682 		error = SYSCTL_OUT(req, fullpath, strlen(fullpath) + 1);
1683 		kfree(freepath, M_TEMP);
1684 	}
1685 
1686 done:
1687 	if (p) {
1688 		lwkt_reltoken(&p->p_token);
1689 		PRELE(p);
1690 	}
1691 	return (error);
1692 }
1693 
1694 /*
1695  * This sysctl allows a process to retrieve the path of the executable for
1696  * itself or another process.
1697  */
1698 static int
1699 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1700 {
1701 	pid_t *pidp = (pid_t *)arg1;
1702 	unsigned int arglen = arg2;
1703 	struct proc *p;
1704 	struct vnode *vp;
1705 	char *retbuf, *freebuf;
1706 	int error = 0;
1707 
1708 	if (arglen != 1)
1709 		return (EINVAL);
1710 	if (*pidp == -1) {	/* -1 means this process */
1711 		p = curproc;
1712 	} else {
1713 		p = pfind(*pidp);
1714 		if (p == NULL)
1715 			return (ESRCH);
1716 	}
1717 
1718 	vp = p->p_textvp;
1719 	if (vp == NULL)
1720 		goto done;
1721 
1722 	vref(vp);
1723 	error = vn_fullpath(p, vp, &retbuf, &freebuf, 0);
1724 	vrele(vp);
1725 	if (error)
1726 		goto done;
1727 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1728 	kfree(freebuf, M_TEMP);
1729 done:
1730 	if(*pidp != -1)
1731 		PRELE(p);
1732 
1733 	return (error);
1734 }
1735 
1736 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1737 
1738 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT,
1739 	0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
1740 
1741 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD,
1742 	sysctl_kern_proc, "Process table");
1743 
1744 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD,
1745 	sysctl_kern_proc, "Process table");
1746 
1747 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD,
1748 	sysctl_kern_proc, "Process table");
1749 
1750 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD,
1751 	sysctl_kern_proc, "Process table");
1752 
1753 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD,
1754 	sysctl_kern_proc, "Process table");
1755 
1756 SYSCTL_NODE(_kern_proc, (KERN_PROC_ALL | KERN_PROC_FLAG_LWP), all_lwp, CTLFLAG_RD,
1757 	sysctl_kern_proc, "Process table");
1758 
1759 SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_FLAG_LWP), pgrp_lwp, CTLFLAG_RD,
1760 	sysctl_kern_proc, "Process table");
1761 
1762 SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_FLAG_LWP), tty_lwp, CTLFLAG_RD,
1763 	sysctl_kern_proc, "Process table");
1764 
1765 SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_FLAG_LWP), uid_lwp, CTLFLAG_RD,
1766 	sysctl_kern_proc, "Process table");
1767 
1768 SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_FLAG_LWP), ruid_lwp, CTLFLAG_RD,
1769 	sysctl_kern_proc, "Process table");
1770 
1771 SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_FLAG_LWP), pid_lwp, CTLFLAG_RD,
1772 	sysctl_kern_proc, "Process table");
1773 
1774 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY,
1775 	sysctl_kern_proc_args, "Process argument list");
1776 
1777 SYSCTL_NODE(_kern_proc, KERN_PROC_CWD, cwd, CTLFLAG_RD | CTLFLAG_ANYBODY,
1778 	sysctl_kern_proc_cwd, "Process argument list");
1779 
1780 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD,
1781 	sysctl_kern_proc_pathname, "Process executable path");
1782