xref: /dragonfly/sys/kern/kern_proc.c (revision 50b09fda)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/sysctl.h>
34 #include <sys/malloc.h>
35 #include <sys/proc.h>
36 #include <sys/vnode.h>
37 #include <sys/jail.h>
38 #include <sys/filedesc.h>
39 #include <sys/tty.h>
40 #include <sys/dsched.h>
41 #include <sys/signalvar.h>
42 #include <sys/spinlock.h>
43 #include <sys/random.h>
44 #include <sys/vnode.h>
45 #include <sys/exec.h>
46 #include <vm/vm.h>
47 #include <sys/lock.h>
48 #include <vm/pmap.h>
49 #include <vm/vm_map.h>
50 #include <sys/user.h>
51 #include <machine/smp.h>
52 
53 #include <sys/refcount.h>
54 #include <sys/spinlock2.h>
55 
56 /*
57  * Hash table size must be a power of two and is not currently dynamically
58  * sized.  There is a trade-off between the linear scans which must iterate
59  * all HSIZE elements and the number of elements which might accumulate
60  * within each hash chain.
61  */
62 #define ALLPROC_HSIZE	256
63 #define ALLPROC_HMASK	(ALLPROC_HSIZE - 1)
64 #define ALLPROC_HASH(pid)	(pid & ALLPROC_HMASK)
65 #define PGRP_HASH(pid)	(pid & ALLPROC_HMASK)
66 #define SESS_HASH(pid)	(pid & ALLPROC_HMASK)
67 
68 /*
69  * pid_doms[] management, used to control how quickly a PID can be recycled.
70  * Must be a multiple of ALLPROC_HSIZE for the proc_makepid() inner loops.
71  *
72  * WARNING! PIDDOM_DELAY should not be defined > 20 or so unless you change
73  *	    the array from int8_t's to int16_t's.
74  */
75 #define PIDDOM_COUNT	10	/* 10 pids per domain - reduce array size */
76 #define PIDDOM_DELAY	10	/* min 10 seconds after exit before reuse */
77 #define PIDDOM_SCALE	10	/* (10,000*SCALE)/sec performance guarantee */
78 #define PIDSEL_DOMAINS	(PID_MAX * PIDDOM_SCALE / PIDDOM_COUNT /	\
79 			 ALLPROC_HSIZE * ALLPROC_HSIZE)
80 
81 /* Used by libkvm */
82 int allproc_hsize = ALLPROC_HSIZE;
83 
84 LIST_HEAD(pidhashhead, proc);
85 
86 static MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
87 MALLOC_DEFINE(M_SESSION, "session", "session header");
88 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
89 MALLOC_DEFINE(M_LWP, "lwp", "lwp structures");
90 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
91 
92 int ps_showallprocs = 1;
93 static int ps_showallthreads = 1;
94 SYSCTL_INT(_security, OID_AUTO, ps_showallprocs, CTLFLAG_RW,
95     &ps_showallprocs, 0,
96     "Unprivileged processes can see processes with different UID/GID");
97 SYSCTL_INT(_security, OID_AUTO, ps_showallthreads, CTLFLAG_RW,
98     &ps_showallthreads, 0,
99     "Unprivileged processes can see kernel threads");
100 static u_int pid_domain_skips;
101 SYSCTL_UINT(_kern, OID_AUTO, pid_domain_skips, CTLFLAG_RW,
102     &pid_domain_skips, 0,
103     "Number of pid_doms[] skipped");
104 static u_int pid_inner_skips;
105 SYSCTL_UINT(_kern, OID_AUTO, pid_inner_skips, CTLFLAG_RW,
106     &pid_inner_skips, 0,
107     "Number of pid_doms[] skipped");
108 
109 static void orphanpg(struct pgrp *pg);
110 static void proc_makepid(struct proc *p, int random_offset);
111 
112 /*
113  * Process related lists (for proc_token, allproc, allpgrp, and allsess)
114  */
115 typedef struct procglob procglob_t;
116 
117 static procglob_t	procglob[ALLPROC_HSIZE];
118 
119 /*
120  * We try our best to avoid recycling a PID too quickly.  We do this by
121  * storing (uint8_t)time_second in the related pid domain on-reap and then
122  * using that to skip-over the domain on-allocate.
123  *
124  * This array has to be fairly large to support a high fork/exec rate.
125  * A ~100,000 entry array will support a 10-second reuse latency at
126  * 10,000 execs/second, worst case.  Best-case multiply by PIDDOM_COUNT
127  * (approximately 100,000 execs/second).
128  *
129  * Currently we allocate around a megabyte, making the worst-case fork
130  * rate around 100,000/second.
131  */
132 static uint8_t *pid_doms;
133 
134 /*
135  * Random component to nextpid generation.  We mix in a random factor to make
136  * it a little harder to predict.  We sanity check the modulus value to avoid
137  * doing it in critical paths.  Don't let it be too small or we pointlessly
138  * waste randomness entropy, and don't let it be impossibly large.  Using a
139  * modulus that is too big causes a LOT more process table scans and slows
140  * down fork processing as the pidchecked caching is defeated.
141  */
142 static int randompid = 0;
143 
144 static __inline
145 struct ucred *
146 pcredcache(struct ucred *cr, struct proc *p)
147 {
148 	if (cr != p->p_ucred) {
149 		if (cr)
150 			crfree(cr);
151 		spin_lock(&p->p_spin);
152 		if ((cr = p->p_ucred) != NULL)
153 			crhold(cr);
154 		spin_unlock(&p->p_spin);
155 	}
156 	return cr;
157 }
158 
159 /*
160  * No requirements.
161  */
162 static int
163 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
164 {
165 	int error, pid;
166 
167 	pid = randompid;
168 	error = sysctl_handle_int(oidp, &pid, 0, req);
169 	if (error || !req->newptr)
170 		return (error);
171 	if (pid < 0 || pid > PID_MAX - 100)     /* out of range */
172 		pid = PID_MAX - 100;
173 	else if (pid < 2)                       /* NOP */
174 		pid = 0;
175 	else if (pid < 100)                     /* Make it reasonable */
176 		pid = 100;
177 	randompid = pid;
178 	return (error);
179 }
180 
181 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
182 	    0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
183 
184 /*
185  * Initialize global process hashing structures.
186  *
187  * These functions are ONLY called from the low level boot code and do
188  * not lock their operations.
189  */
190 void
191 procinit(void)
192 {
193 	u_long i;
194 
195 	/*
196 	 * Allocate dynamically.  This array can be large (~1MB) so don't
197 	 * waste boot loader space.
198 	 */
199 	pid_doms = kmalloc(sizeof(pid_doms[0]) * PIDSEL_DOMAINS,
200 			   M_PROC, M_WAITOK | M_ZERO);
201 
202 	/*
203 	 * Avoid unnecessary stalls due to pid_doms[] values all being
204 	 * the same.  Make sure that the allocation of pid 1 and pid 2
205 	 * succeeds.
206 	 */
207 	for (i = 0; i < PIDSEL_DOMAINS; ++i)
208 		pid_doms[i] = (int8_t)i - (int8_t)(PIDDOM_DELAY + 1);
209 
210 	/*
211 	 * Other misc init.
212 	 */
213 	for (i = 0; i < ALLPROC_HSIZE; ++i) {
214 		procglob_t *prg = &procglob[i];
215 		LIST_INIT(&prg->allproc);
216 		LIST_INIT(&prg->allsess);
217 		LIST_INIT(&prg->allpgrp);
218 		lwkt_token_init(&prg->proc_token, "allproc");
219 	}
220 	uihashinit();
221 }
222 
223 void
224 procinsertinit(struct proc *p)
225 {
226 	LIST_INSERT_HEAD(&procglob[ALLPROC_HASH(p->p_pid)].allproc,
227 			 p, p_list);
228 }
229 
230 void
231 pgrpinsertinit(struct pgrp *pg)
232 {
233 	LIST_INSERT_HEAD(&procglob[ALLPROC_HASH(pg->pg_id)].allpgrp,
234 			 pg, pg_list);
235 }
236 
237 void
238 sessinsertinit(struct session *sess)
239 {
240 	LIST_INSERT_HEAD(&procglob[ALLPROC_HASH(sess->s_sid)].allsess,
241 			 sess, s_list);
242 }
243 
244 /*
245  * Process hold/release support functions.  Called via the PHOLD(),
246  * PRELE(), and PSTALL() macros.
247  *
248  * p->p_lock is a simple hold count with a waiting interlock.  No wakeup()
249  * is issued unless someone is actually waiting for the process.
250  *
251  * Most holds are short-term, allowing a process scan or other similar
252  * operation to access a proc structure without it getting ripped out from
253  * under us.  procfs and process-list sysctl ops also use the hold function
254  * interlocked with various p_flags to keep the vmspace intact when reading
255  * or writing a user process's address space.
256  *
257  * There are two situations where a hold count can be longer.  Exiting lwps
258  * hold the process until the lwp is reaped, and the parent will hold the
259  * child during vfork()/exec() sequences while the child is marked P_PPWAIT.
260  *
261  * The kernel waits for the hold count to drop to 0 (or 1 in some cases) at
262  * various critical points in the fork/exec and exit paths before proceeding.
263  */
264 #define PLOCK_ZOMB	0x20000000
265 #define PLOCK_WAITING	0x40000000
266 #define PLOCK_MASK	0x1FFFFFFF
267 
268 void
269 pstall(struct proc *p, const char *wmesg, int count)
270 {
271 	int o;
272 	int n;
273 
274 	for (;;) {
275 		o = p->p_lock;
276 		cpu_ccfence();
277 		if ((o & PLOCK_MASK) <= count)
278 			break;
279 		n = o | PLOCK_WAITING;
280 		tsleep_interlock(&p->p_lock, 0);
281 
282 		/*
283 		 * If someone is trying to single-step the process during
284 		 * an exec or an exit they can deadlock us because procfs
285 		 * sleeps with the process held.
286 		 */
287 		if (p->p_stops) {
288 			if (p->p_flags & P_INEXEC) {
289 				wakeup(&p->p_stype);
290 			} else if (p->p_flags & P_POSTEXIT) {
291 				spin_lock(&p->p_spin);
292 				p->p_stops = 0;
293 				p->p_step = 0;
294 				spin_unlock(&p->p_spin);
295 				wakeup(&p->p_stype);
296 			}
297 		}
298 
299 		if (atomic_cmpset_int(&p->p_lock, o, n)) {
300 			tsleep(&p->p_lock, PINTERLOCKED, wmesg, 0);
301 		}
302 	}
303 }
304 
305 void
306 phold(struct proc *p)
307 {
308 	atomic_add_int(&p->p_lock, 1);
309 }
310 
311 /*
312  * WARNING!  On last release (p) can become instantly invalid due to
313  *	     MP races.
314  */
315 void
316 prele(struct proc *p)
317 {
318 	int o;
319 	int n;
320 
321 	/*
322 	 * Fast path
323 	 */
324 	if (atomic_cmpset_int(&p->p_lock, 1, 0))
325 		return;
326 
327 	/*
328 	 * Slow path
329 	 */
330 	for (;;) {
331 		o = p->p_lock;
332 		KKASSERT((o & PLOCK_MASK) > 0);
333 		cpu_ccfence();
334 		n = (o - 1) & ~PLOCK_WAITING;
335 		if (atomic_cmpset_int(&p->p_lock, o, n)) {
336 			if (o & PLOCK_WAITING)
337 				wakeup(&p->p_lock);
338 			break;
339 		}
340 	}
341 }
342 
343 /*
344  * Hold and flag serialized for zombie reaping purposes.
345  *
346  * This function will fail if it has to block, returning non-zero with
347  * neither the flag set or the hold count bumped.  Note that (p) may
348  * not be valid in this case if the caller does not have some other
349  * reference on (p).
350  *
351  * This function does not block on other PHOLD()s, only on other
352  * PHOLDZOMB()s.
353  *
354  * Zero is returned on success.  The hold count will be incremented and
355  * the serialization flag acquired.  Note that serialization is only against
356  * other pholdzomb() calls, not against phold() calls.
357  */
358 int
359 pholdzomb(struct proc *p)
360 {
361 	int o;
362 	int n;
363 
364 	/*
365 	 * Fast path
366 	 */
367 	if (atomic_cmpset_int(&p->p_lock, 0, PLOCK_ZOMB | 1))
368 		return(0);
369 
370 	/*
371 	 * Slow path
372 	 */
373 	for (;;) {
374 		o = p->p_lock;
375 		cpu_ccfence();
376 		if ((o & PLOCK_ZOMB) == 0) {
377 			n = (o + 1) | PLOCK_ZOMB;
378 			if (atomic_cmpset_int(&p->p_lock, o, n))
379 				return(0);
380 		} else {
381 			KKASSERT((o & PLOCK_MASK) > 0);
382 			n = o | PLOCK_WAITING;
383 			tsleep_interlock(&p->p_lock, 0);
384 			if (atomic_cmpset_int(&p->p_lock, o, n)) {
385 				tsleep(&p->p_lock, PINTERLOCKED, "phldz", 0);
386 				/* (p) can be ripped out at this point */
387 				return(1);
388 			}
389 		}
390 	}
391 }
392 
393 /*
394  * Release PLOCK_ZOMB and the hold count, waking up any waiters.
395  *
396  * WARNING!  On last release (p) can become instantly invalid due to
397  *	     MP races.
398  */
399 void
400 prelezomb(struct proc *p)
401 {
402 	int o;
403 	int n;
404 
405 	/*
406 	 * Fast path
407 	 */
408 	if (atomic_cmpset_int(&p->p_lock, PLOCK_ZOMB | 1, 0))
409 		return;
410 
411 	/*
412 	 * Slow path
413 	 */
414 	KKASSERT(p->p_lock & PLOCK_ZOMB);
415 	for (;;) {
416 		o = p->p_lock;
417 		KKASSERT((o & PLOCK_MASK) > 0);
418 		cpu_ccfence();
419 		n = (o - 1) & ~(PLOCK_ZOMB | PLOCK_WAITING);
420 		if (atomic_cmpset_int(&p->p_lock, o, n)) {
421 			if (o & PLOCK_WAITING)
422 				wakeup(&p->p_lock);
423 			break;
424 		}
425 	}
426 }
427 
428 /*
429  * Is p an inferior of the current process?
430  *
431  * No requirements.
432  */
433 int
434 inferior(struct proc *p)
435 {
436 	struct proc *p2;
437 
438 	PHOLD(p);
439 	lwkt_gettoken_shared(&p->p_token);
440 	while (p != curproc) {
441 		if (p->p_pid == 0) {
442 			lwkt_reltoken(&p->p_token);
443 			return (0);
444 		}
445 		p2 = p->p_pptr;
446 		PHOLD(p2);
447 		lwkt_reltoken(&p->p_token);
448 		PRELE(p);
449 		lwkt_gettoken_shared(&p2->p_token);
450 		p = p2;
451 	}
452 	lwkt_reltoken(&p->p_token);
453 	PRELE(p);
454 
455 	return (1);
456 }
457 
458 /*
459  * Locate a process by number.  The returned process will be referenced and
460  * must be released with PRELE().
461  *
462  * No requirements.
463  */
464 struct proc *
465 pfind(pid_t pid)
466 {
467 	struct proc *p = curproc;
468 	procglob_t *prg;
469 	int n;
470 
471 	/*
472 	 * Shortcut the current process
473 	 */
474 	if (p && p->p_pid == pid) {
475 		PHOLD(p);
476 		return (p);
477 	}
478 
479 	/*
480 	 * Otherwise find it in the hash table.
481 	 */
482 	n = ALLPROC_HASH(pid);
483 	prg = &procglob[n];
484 
485 	lwkt_gettoken_shared(&prg->proc_token);
486 	LIST_FOREACH(p, &prg->allproc, p_list) {
487 		if (p->p_stat == SZOMB)
488 			continue;
489 		if (p->p_pid == pid) {
490 			PHOLD(p);
491 			lwkt_reltoken(&prg->proc_token);
492 			return (p);
493 		}
494 	}
495 	lwkt_reltoken(&prg->proc_token);
496 
497 	return (NULL);
498 }
499 
500 /*
501  * Locate a process by number.  The returned process is NOT referenced.
502  * The result will not be stable and is typically only used to validate
503  * against a process that the caller has in-hand.
504  *
505  * No requirements.
506  */
507 struct proc *
508 pfindn(pid_t pid)
509 {
510 	struct proc *p = curproc;
511 	procglob_t *prg;
512 	int n;
513 
514 	/*
515 	 * Shortcut the current process
516 	 */
517 	if (p && p->p_pid == pid)
518 		return (p);
519 
520 	/*
521 	 * Otherwise find it in the hash table.
522 	 */
523 	n = ALLPROC_HASH(pid);
524 	prg = &procglob[n];
525 
526 	lwkt_gettoken_shared(&prg->proc_token);
527 	LIST_FOREACH(p, &prg->allproc, p_list) {
528 		if (p->p_stat == SZOMB)
529 			continue;
530 		if (p->p_pid == pid) {
531 			lwkt_reltoken(&prg->proc_token);
532 			return (p);
533 		}
534 	}
535 	lwkt_reltoken(&prg->proc_token);
536 
537 	return (NULL);
538 }
539 
540 /*
541  * Locate a process on the zombie list.  Return a process or NULL.
542  * The returned process will be referenced and the caller must release
543  * it with PRELE().
544  *
545  * No other requirements.
546  */
547 struct proc *
548 zpfind(pid_t pid)
549 {
550 	struct proc *p = curproc;
551 	procglob_t *prg;
552 	int n;
553 
554 	/*
555 	 * Shortcut the current process
556 	 */
557 	if (p && p->p_pid == pid) {
558 		PHOLD(p);
559 		return (p);
560 	}
561 
562 	/*
563 	 * Otherwise find it in the hash table.
564 	 */
565 	n = ALLPROC_HASH(pid);
566 	prg = &procglob[n];
567 
568 	lwkt_gettoken_shared(&prg->proc_token);
569 	LIST_FOREACH(p, &prg->allproc, p_list) {
570 		if (p->p_stat != SZOMB)
571 			continue;
572 		if (p->p_pid == pid) {
573 			PHOLD(p);
574 			lwkt_reltoken(&prg->proc_token);
575 			return (p);
576 		}
577 	}
578 	lwkt_reltoken(&prg->proc_token);
579 
580 	return (NULL);
581 }
582 
583 
584 void
585 pgref(struct pgrp *pgrp)
586 {
587 	refcount_acquire(&pgrp->pg_refs);
588 }
589 
590 void
591 pgrel(struct pgrp *pgrp)
592 {
593 	procglob_t *prg;
594 	int count;
595 	int n;
596 
597 	n = PGRP_HASH(pgrp->pg_id);
598 	prg = &procglob[n];
599 
600 	for (;;) {
601 		count = pgrp->pg_refs;
602 		cpu_ccfence();
603 		KKASSERT(count > 0);
604 		if (count == 1) {
605 			lwkt_gettoken(&prg->proc_token);
606 			if (atomic_cmpset_int(&pgrp->pg_refs, 1, 0))
607 				break;
608 			lwkt_reltoken(&prg->proc_token);
609 			/* retry */
610 		} else {
611 			if (atomic_cmpset_int(&pgrp->pg_refs, count, count - 1))
612 				return;
613 			/* retry */
614 		}
615 	}
616 
617 	/*
618 	 * Successful 1->0 transition, pghash_spin is held.
619 	 */
620 	LIST_REMOVE(pgrp, pg_list);
621 	if (pid_doms[pgrp->pg_id % PIDSEL_DOMAINS] != (uint8_t)time_second)
622 		pid_doms[pgrp->pg_id % PIDSEL_DOMAINS] = (uint8_t)time_second;
623 
624 	/*
625 	 * Reset any sigio structures pointing to us as a result of
626 	 * F_SETOWN with our pgid.
627 	 */
628 	funsetownlst(&pgrp->pg_sigiolst);
629 
630 	if (pgrp->pg_session->s_ttyp != NULL &&
631 	    pgrp->pg_session->s_ttyp->t_pgrp == pgrp) {
632 		pgrp->pg_session->s_ttyp->t_pgrp = NULL;
633 	}
634 	lwkt_reltoken(&prg->proc_token);
635 
636 	sess_rele(pgrp->pg_session);
637 	kfree(pgrp, M_PGRP);
638 }
639 
640 /*
641  * Locate a process group by number.  The returned process group will be
642  * referenced w/pgref() and must be released with pgrel() (or assigned
643  * somewhere if you wish to keep the reference).
644  *
645  * No requirements.
646  */
647 struct pgrp *
648 pgfind(pid_t pgid)
649 {
650 	struct pgrp *pgrp;
651 	procglob_t *prg;
652 	int n;
653 
654 	n = PGRP_HASH(pgid);
655 	prg = &procglob[n];
656 	lwkt_gettoken_shared(&prg->proc_token);
657 
658 	LIST_FOREACH(pgrp, &prg->allpgrp, pg_list) {
659 		if (pgrp->pg_id == pgid) {
660 			refcount_acquire(&pgrp->pg_refs);
661 			lwkt_reltoken(&prg->proc_token);
662 			return (pgrp);
663 		}
664 	}
665 	lwkt_reltoken(&prg->proc_token);
666 	return (NULL);
667 }
668 
669 /*
670  * Move p to a new or existing process group (and session)
671  *
672  * No requirements.
673  */
674 int
675 enterpgrp(struct proc *p, pid_t pgid, int mksess)
676 {
677 	struct pgrp *pgrp;
678 	struct pgrp *opgrp;
679 	int error;
680 
681 	pgrp = pgfind(pgid);
682 
683 	KASSERT(pgrp == NULL || !mksess,
684 		("enterpgrp: setsid into non-empty pgrp"));
685 	KASSERT(!SESS_LEADER(p),
686 		("enterpgrp: session leader attempted setpgrp"));
687 
688 	if (pgrp == NULL) {
689 		pid_t savepid = p->p_pid;
690 		struct proc *np;
691 		procglob_t *prg;
692 		int n;
693 
694 		/*
695 		 * new process group
696 		 */
697 		KASSERT(p->p_pid == pgid,
698 			("enterpgrp: new pgrp and pid != pgid"));
699 		pgrp = kmalloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
700 		pgrp->pg_id = pgid;
701 		LIST_INIT(&pgrp->pg_members);
702 		pgrp->pg_jobc = 0;
703 		SLIST_INIT(&pgrp->pg_sigiolst);
704 		lwkt_token_init(&pgrp->pg_token, "pgrp_token");
705 		refcount_init(&pgrp->pg_refs, 1);
706 		lockinit(&pgrp->pg_lock, "pgwt", 0, 0);
707 
708 		n = PGRP_HASH(pgid);
709 		prg = &procglob[n];
710 
711 		if ((np = pfindn(savepid)) == NULL || np != p) {
712 			lwkt_reltoken(&prg->proc_token);
713 			error = ESRCH;
714 			kfree(pgrp, M_PGRP);
715 			goto fatal;
716 		}
717 
718 		lwkt_gettoken(&prg->proc_token);
719 		if (mksess) {
720 			struct session *sess;
721 
722 			/*
723 			 * new session
724 			 */
725 			sess = kmalloc(sizeof(struct session), M_SESSION,
726 				       M_WAITOK | M_ZERO);
727 			lwkt_gettoken(&p->p_token);
728 			sess->s_prg = prg;
729 			sess->s_leader = p;
730 			sess->s_sid = p->p_pid;
731 			sess->s_count = 1;
732 			sess->s_ttyvp = NULL;
733 			sess->s_ttyp = NULL;
734 			bcopy(p->p_session->s_login, sess->s_login,
735 			      sizeof(sess->s_login));
736 			pgrp->pg_session = sess;
737 			KASSERT(p == curproc,
738 				("enterpgrp: mksession and p != curproc"));
739 			p->p_flags &= ~P_CONTROLT;
740 			LIST_INSERT_HEAD(&prg->allsess, sess, s_list);
741 			lwkt_reltoken(&p->p_token);
742 		} else {
743 			lwkt_gettoken(&p->p_token);
744 			pgrp->pg_session = p->p_session;
745 			sess_hold(pgrp->pg_session);
746 			lwkt_reltoken(&p->p_token);
747 		}
748 		LIST_INSERT_HEAD(&prg->allpgrp, pgrp, pg_list);
749 
750 		lwkt_reltoken(&prg->proc_token);
751 	} else if (pgrp == p->p_pgrp) {
752 		pgrel(pgrp);
753 		goto done;
754 	} /* else pgfind() referenced the pgrp */
755 
756 	lwkt_gettoken(&pgrp->pg_token);
757 	lwkt_gettoken(&p->p_token);
758 
759 	/*
760 	 * Replace p->p_pgrp, handling any races that occur.
761 	 */
762 	while ((opgrp = p->p_pgrp) != NULL) {
763 		pgref(opgrp);
764 		lwkt_gettoken(&opgrp->pg_token);
765 		if (opgrp != p->p_pgrp) {
766 			lwkt_reltoken(&opgrp->pg_token);
767 			pgrel(opgrp);
768 			continue;
769 		}
770 		LIST_REMOVE(p, p_pglist);
771 		break;
772 	}
773 	p->p_pgrp = pgrp;
774 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
775 
776 	/*
777 	 * Adjust eligibility of affected pgrps to participate in job control.
778 	 * Increment eligibility counts before decrementing, otherwise we
779 	 * could reach 0 spuriously during the first call.
780 	 */
781 	fixjobc(p, pgrp, 1);
782 	if (opgrp) {
783 		fixjobc(p, opgrp, 0);
784 		lwkt_reltoken(&opgrp->pg_token);
785 		pgrel(opgrp);	/* manual pgref */
786 		pgrel(opgrp);	/* p->p_pgrp ref */
787 	}
788 	lwkt_reltoken(&p->p_token);
789 	lwkt_reltoken(&pgrp->pg_token);
790 done:
791 	error = 0;
792 fatal:
793 	return (error);
794 }
795 
796 /*
797  * Remove process from process group
798  *
799  * No requirements.
800  */
801 int
802 leavepgrp(struct proc *p)
803 {
804 	struct pgrp *pg = p->p_pgrp;
805 
806 	lwkt_gettoken(&p->p_token);
807 	while ((pg = p->p_pgrp) != NULL) {
808 		pgref(pg);
809 		lwkt_gettoken(&pg->pg_token);
810 		if (p->p_pgrp != pg) {
811 			lwkt_reltoken(&pg->pg_token);
812 			pgrel(pg);
813 			continue;
814 		}
815 		p->p_pgrp = NULL;
816 		LIST_REMOVE(p, p_pglist);
817 		lwkt_reltoken(&pg->pg_token);
818 		pgrel(pg);	/* manual pgref */
819 		pgrel(pg);	/* p->p_pgrp ref */
820 		break;
821 	}
822 	lwkt_reltoken(&p->p_token);
823 
824 	return (0);
825 }
826 
827 /*
828  * Adjust the ref count on a session structure.  When the ref count falls to
829  * zero the tty is disassociated from the session and the session structure
830  * is freed.  Note that tty assocation is not itself ref-counted.
831  *
832  * No requirements.
833  */
834 void
835 sess_hold(struct session *sp)
836 {
837 	atomic_add_int(&sp->s_count, 1);
838 }
839 
840 /*
841  * No requirements.
842  */
843 void
844 sess_rele(struct session *sess)
845 {
846 	procglob_t *prg;
847 	struct tty *tp;
848 	int count;
849 	int n;
850 
851 	n = SESS_HASH(sess->s_sid);
852 	prg = &procglob[n];
853 
854 	for (;;) {
855 		count = sess->s_count;
856 		cpu_ccfence();
857 		KKASSERT(count > 0);
858 		if (count == 1) {
859 			lwkt_gettoken(&prg->proc_token);
860 			if (atomic_cmpset_int(&sess->s_count, 1, 0))
861 				break;
862 			lwkt_reltoken(&prg->proc_token);
863 			/* retry */
864 		} else {
865 			if (atomic_cmpset_int(&sess->s_count, count, count - 1))
866 				return;
867 			/* retry */
868 		}
869 	}
870 
871 	/*
872 	 * Successful 1->0 transition and prg->proc_token is held.
873 	 */
874 	LIST_REMOVE(sess, s_list);
875 	if (pid_doms[sess->s_sid % PIDSEL_DOMAINS] != (uint8_t)time_second)
876 		pid_doms[sess->s_sid % PIDSEL_DOMAINS] = (uint8_t)time_second;
877 
878 	if (sess->s_ttyp && sess->s_ttyp->t_session) {
879 #ifdef TTY_DO_FULL_CLOSE
880 		/* FULL CLOSE, see ttyclearsession() */
881 		KKASSERT(sess->s_ttyp->t_session == sess);
882 		sess->s_ttyp->t_session = NULL;
883 #else
884 		/* HALF CLOSE, see ttyclearsession() */
885 		if (sess->s_ttyp->t_session == sess)
886 			sess->s_ttyp->t_session = NULL;
887 #endif
888 	}
889 	if ((tp = sess->s_ttyp) != NULL) {
890 		sess->s_ttyp = NULL;
891 		ttyunhold(tp);
892 	}
893 	lwkt_reltoken(&prg->proc_token);
894 
895 	kfree(sess, M_SESSION);
896 }
897 
898 /*
899  * Adjust pgrp jobc counters when specified process changes process group.
900  * We count the number of processes in each process group that "qualify"
901  * the group for terminal job control (those with a parent in a different
902  * process group of the same session).  If that count reaches zero, the
903  * process group becomes orphaned.  Check both the specified process'
904  * process group and that of its children.
905  * entering == 0 => p is leaving specified group.
906  * entering == 1 => p is entering specified group.
907  *
908  * No requirements.
909  */
910 void
911 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
912 {
913 	struct pgrp *hispgrp;
914 	struct session *mysession;
915 	struct proc *np;
916 
917 	/*
918 	 * Check p's parent to see whether p qualifies its own process
919 	 * group; if so, adjust count for p's process group.
920 	 */
921 	lwkt_gettoken(&p->p_token);	/* p_children scan */
922 	lwkt_gettoken(&pgrp->pg_token);
923 
924 	mysession = pgrp->pg_session;
925 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
926 	    hispgrp->pg_session == mysession) {
927 		if (entering)
928 			pgrp->pg_jobc++;
929 		else if (--pgrp->pg_jobc == 0)
930 			orphanpg(pgrp);
931 	}
932 
933 	/*
934 	 * Check this process' children to see whether they qualify
935 	 * their process groups; if so, adjust counts for children's
936 	 * process groups.
937 	 */
938 	LIST_FOREACH(np, &p->p_children, p_sibling) {
939 		PHOLD(np);
940 		lwkt_gettoken(&np->p_token);
941 		if ((hispgrp = np->p_pgrp) != pgrp &&
942 		    hispgrp->pg_session == mysession &&
943 		    np->p_stat != SZOMB) {
944 			pgref(hispgrp);
945 			lwkt_gettoken(&hispgrp->pg_token);
946 			if (entering)
947 				hispgrp->pg_jobc++;
948 			else if (--hispgrp->pg_jobc == 0)
949 				orphanpg(hispgrp);
950 			lwkt_reltoken(&hispgrp->pg_token);
951 			pgrel(hispgrp);
952 		}
953 		lwkt_reltoken(&np->p_token);
954 		PRELE(np);
955 	}
956 	KKASSERT(pgrp->pg_refs > 0);
957 	lwkt_reltoken(&pgrp->pg_token);
958 	lwkt_reltoken(&p->p_token);
959 }
960 
961 /*
962  * A process group has become orphaned;
963  * if there are any stopped processes in the group,
964  * hang-up all process in that group.
965  *
966  * The caller must hold pg_token.
967  */
968 static void
969 orphanpg(struct pgrp *pg)
970 {
971 	struct proc *p;
972 
973 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
974 		if (p->p_stat == SSTOP) {
975 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
976 				ksignal(p, SIGHUP);
977 				ksignal(p, SIGCONT);
978 			}
979 			return;
980 		}
981 	}
982 }
983 
984 /*
985  * Add a new process to the allproc list and the PID hash.  This
986  * also assigns a pid to the new process.
987  *
988  * No requirements.
989  */
990 void
991 proc_add_allproc(struct proc *p)
992 {
993 	int random_offset;
994 
995 	if ((random_offset = randompid) != 0) {
996 		read_random(&random_offset, sizeof(random_offset));
997 		random_offset = (random_offset & 0x7FFFFFFF) % randompid;
998 	}
999 	proc_makepid(p, random_offset);
1000 }
1001 
1002 /*
1003  * Calculate a new process pid.  This function is integrated into
1004  * proc_add_allproc() to guarentee that the new pid is not reused before
1005  * the new process can be added to the allproc list.
1006  *
1007  * p_pid is assigned and the process is added to the allproc hash table
1008  *
1009  * WARNING! We need to allocate PIDs sequentially during early boot.
1010  *	    In particular, init needs to have a pid of 1.
1011  */
1012 static
1013 void
1014 proc_makepid(struct proc *p, int random_offset)
1015 {
1016 	static pid_t nextpid = 1;	/* heuristic, allowed to race */
1017 	procglob_t *prg;
1018 	struct pgrp *pg;
1019 	struct proc *ps;
1020 	struct session *sess;
1021 	pid_t base;
1022 	int8_t delta8;
1023 	int retries;
1024 	int n;
1025 
1026 	/*
1027 	 * Select the next pid base candidate.
1028 	 *
1029 	 * Check cyclement, do not allow a pid < 100.
1030 	 */
1031 	retries = 0;
1032 retry:
1033 	base = atomic_fetchadd_int(&nextpid, 1) + random_offset;
1034 	if (base <= 0 || base >= PID_MAX) {
1035 		base = base % PID_MAX;
1036 		if (base < 0)
1037 			base = 100;
1038 		if (base < 100)
1039 			base += 100;
1040 		nextpid = base;		/* reset (SMP race ok) */
1041 	}
1042 
1043 	/*
1044 	 * Do not allow a base pid to be selected from a domain that has
1045 	 * recently seen a pid/pgid/sessid reap.  Sleep a little if we looped
1046 	 * through all available domains.
1047 	 *
1048 	 * WARNING: We want the early pids to be allocated linearly,
1049 	 *	    particularly pid 1 and pid 2.
1050 	 */
1051 	if (++retries >= PIDSEL_DOMAINS)
1052 		tsleep(&nextpid, 0, "makepid", 1);
1053 	if (base >= 100) {
1054 		delta8 = (int8_t)time_second -
1055 			 (int8_t)pid_doms[base % PIDSEL_DOMAINS];
1056 		if (delta8 >= 0 && delta8 <= PIDDOM_DELAY) {
1057 			++pid_domain_skips;
1058 			goto retry;
1059 		}
1060 	}
1061 
1062 	/*
1063 	 * Calculate a hash index and find an unused process id within
1064 	 * the table, looping if we cannot find one.
1065 	 *
1066 	 * The inner loop increments by ALLPROC_HSIZE which keeps the
1067 	 * PID at the same pid_doms[] index as well as the same hash index.
1068 	 */
1069 	n = ALLPROC_HASH(base);
1070 	prg = &procglob[n];
1071 	lwkt_gettoken(&prg->proc_token);
1072 
1073 restart1:
1074 	LIST_FOREACH(ps, &prg->allproc, p_list) {
1075 		if (ps->p_pid == base) {
1076 			base += ALLPROC_HSIZE;
1077 			if (base >= PID_MAX) {
1078 				lwkt_reltoken(&prg->proc_token);
1079 				goto retry;
1080 			}
1081 			++pid_inner_skips;
1082 			goto restart1;
1083 		}
1084 	}
1085 	LIST_FOREACH(pg, &prg->allpgrp, pg_list) {
1086 		if (pg->pg_id == base) {
1087 			base += ALLPROC_HSIZE;
1088 			if (base >= PID_MAX) {
1089 				lwkt_reltoken(&prg->proc_token);
1090 				goto retry;
1091 			}
1092 			++pid_inner_skips;
1093 			goto restart1;
1094 		}
1095 	}
1096 	LIST_FOREACH(sess, &prg->allsess, s_list) {
1097 		if (sess->s_sid == base) {
1098 			base += ALLPROC_HSIZE;
1099 			if (base >= PID_MAX) {
1100 				lwkt_reltoken(&prg->proc_token);
1101 				goto retry;
1102 			}
1103 			++pid_inner_skips;
1104 			goto restart1;
1105 		}
1106 	}
1107 
1108 	/*
1109 	 * Assign the pid and insert the process.
1110 	 */
1111 	p->p_pid = base;
1112 	LIST_INSERT_HEAD(&prg->allproc, p, p_list);
1113 	lwkt_reltoken(&prg->proc_token);
1114 }
1115 
1116 /*
1117  * Called from exit1 to place the process into a zombie state.
1118  * The process is removed from the pid hash and p_stat is set
1119  * to SZOMB.  Normal pfind[n]() calls will not find it any more.
1120  *
1121  * Caller must hold p->p_token.  We are required to wait until p_lock
1122  * becomes zero before we can manipulate the list, allowing allproc
1123  * scans to guarantee consistency during a list scan.
1124  */
1125 void
1126 proc_move_allproc_zombie(struct proc *p)
1127 {
1128 	procglob_t *prg;
1129 	int n;
1130 
1131 	n = ALLPROC_HASH(p->p_pid);
1132 	prg = &procglob[n];
1133 	PSTALL(p, "reap1", 0);
1134 	lwkt_gettoken(&prg->proc_token);
1135 
1136 	PSTALL(p, "reap1a", 0);
1137 	p->p_stat = SZOMB;
1138 
1139 	lwkt_reltoken(&prg->proc_token);
1140 	dsched_exit_proc(p);
1141 }
1142 
1143 /*
1144  * This routine is called from kern_wait() and will remove the process
1145  * from the zombie list and the sibling list.  This routine will block
1146  * if someone has a lock on the proces (p_lock).
1147  *
1148  * Caller must hold p->p_token.  We are required to wait until p_lock
1149  * becomes one before we can manipulate the list, allowing allproc
1150  * scans to guarantee consistency during a list scan.
1151  *
1152  * Assumes caller has one ref.
1153  */
1154 void
1155 proc_remove_zombie(struct proc *p)
1156 {
1157 	procglob_t *prg;
1158 	int n;
1159 
1160 	n = ALLPROC_HASH(p->p_pid);
1161 	prg = &procglob[n];
1162 
1163 	PSTALL(p, "reap2", 1);
1164 	lwkt_gettoken(&prg->proc_token);
1165 	PSTALL(p, "reap2a", 1);
1166 	LIST_REMOVE(p, p_list);		/* from remove master list */
1167 	LIST_REMOVE(p, p_sibling);	/* and from sibling list */
1168 	p->p_pptr = NULL;
1169 	p->p_ppid = 0;
1170 	if (pid_doms[p->p_pid % PIDSEL_DOMAINS] != (uint8_t)time_second)
1171 		pid_doms[p->p_pid % PIDSEL_DOMAINS] = (uint8_t)time_second;
1172 	lwkt_reltoken(&prg->proc_token);
1173 }
1174 
1175 /*
1176  * Handle various requirements prior to returning to usermode.  Called from
1177  * platform trap and system call code.
1178  */
1179 void
1180 lwpuserret(struct lwp *lp)
1181 {
1182 	struct proc *p = lp->lwp_proc;
1183 
1184 	if (lp->lwp_mpflags & LWP_MP_VNLRU) {
1185 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_VNLRU);
1186 		allocvnode_gc();
1187 	}
1188 	if (lp->lwp_mpflags & LWP_MP_WEXIT) {
1189 		lwkt_gettoken(&p->p_token);
1190 		lwp_exit(0, NULL);
1191 		lwkt_reltoken(&p->p_token);     /* NOT REACHED */
1192 	}
1193 }
1194 
1195 /*
1196  * Kernel threads run from user processes can also accumulate deferred
1197  * actions which need to be acted upon.  Callers include:
1198  *
1199  * nfsd		- Can allocate lots of vnodes
1200  */
1201 void
1202 lwpkthreaddeferred(void)
1203 {
1204 	struct lwp *lp = curthread->td_lwp;
1205 
1206 	if (lp) {
1207 		if (lp->lwp_mpflags & LWP_MP_VNLRU) {
1208 			atomic_clear_int(&lp->lwp_mpflags, LWP_MP_VNLRU);
1209 			allocvnode_gc();
1210 		}
1211 	}
1212 }
1213 
1214 void
1215 proc_usermap(struct proc *p, int invfork)
1216 {
1217 	struct sys_upmap *upmap;
1218 
1219 	lwkt_gettoken(&p->p_token);
1220 	upmap = kmalloc(roundup2(sizeof(*upmap), PAGE_SIZE), M_PROC,
1221 			M_WAITOK | M_ZERO);
1222 	if (p->p_upmap == NULL) {
1223 		upmap->header[0].type = UKPTYPE_VERSION;
1224 		upmap->header[0].offset = offsetof(struct sys_upmap, version);
1225 		upmap->header[1].type = UPTYPE_RUNTICKS;
1226 		upmap->header[1].offset = offsetof(struct sys_upmap, runticks);
1227 		upmap->header[2].type = UPTYPE_FORKID;
1228 		upmap->header[2].offset = offsetof(struct sys_upmap, forkid);
1229 		upmap->header[3].type = UPTYPE_PID;
1230 		upmap->header[3].offset = offsetof(struct sys_upmap, pid);
1231 		upmap->header[4].type = UPTYPE_PROC_TITLE;
1232 		upmap->header[4].offset = offsetof(struct sys_upmap,proc_title);
1233 		upmap->header[5].type = UPTYPE_INVFORK;
1234 		upmap->header[5].offset = offsetof(struct sys_upmap, invfork);
1235 
1236 		upmap->version = UPMAP_VERSION;
1237 		upmap->pid = p->p_pid;
1238 		upmap->forkid = p->p_forkid;
1239 		upmap->invfork = invfork;
1240 		p->p_upmap = upmap;
1241 	} else {
1242 		kfree(upmap, M_PROC);
1243 	}
1244 	lwkt_reltoken(&p->p_token);
1245 }
1246 
1247 void
1248 proc_userunmap(struct proc *p)
1249 {
1250 	struct sys_upmap *upmap;
1251 
1252 	lwkt_gettoken(&p->p_token);
1253 	if ((upmap = p->p_upmap) != NULL) {
1254 		p->p_upmap = NULL;
1255 		kfree(upmap, M_PROC);
1256 	}
1257 	lwkt_reltoken(&p->p_token);
1258 }
1259 
1260 /*
1261  * Scan all processes on the allproc list.  The process is automatically
1262  * held for the callback.  A return value of -1 terminates the loop.
1263  * Zombie procs are skipped.
1264  *
1265  * The callback is made with the process held and proc_token held.
1266  *
1267  * We limit the scan to the number of processes as-of the start of
1268  * the scan so as not to get caught up in an endless loop if new processes
1269  * are created more quickly than we can scan the old ones.  Add a little
1270  * slop to try to catch edge cases since nprocs can race.
1271  *
1272  * No requirements.
1273  */
1274 void
1275 allproc_scan(int (*callback)(struct proc *, void *), void *data, int segmented)
1276 {
1277 	int limit = nprocs + ncpus;
1278 	struct proc *p;
1279 	int ns;
1280 	int ne;
1281 	int r;
1282 	int n;
1283 
1284 	if (segmented) {
1285 		int id = mycpu->gd_cpuid;
1286 		ns = id * ALLPROC_HSIZE / ncpus;
1287 		ne = (id + 1) * ALLPROC_HSIZE / ncpus;
1288 	} else {
1289 		ns = 0;
1290 		ne = ALLPROC_HSIZE;
1291 	}
1292 
1293 	/*
1294 	 * prg->proc_token protects the allproc list and PHOLD() prevents the
1295 	 * process from being removed from the allproc list or the zombproc
1296 	 * list.
1297 	 */
1298 	for (n = ns; n < ne; ++n) {
1299 		procglob_t *prg = &procglob[n];
1300 		if (LIST_FIRST(&prg->allproc) == NULL)
1301 			continue;
1302 		lwkt_gettoken(&prg->proc_token);
1303 		LIST_FOREACH(p, &prg->allproc, p_list) {
1304 			if (p->p_stat == SZOMB)
1305 				continue;
1306 			PHOLD(p);
1307 			r = callback(p, data);
1308 			PRELE(p);
1309 			if (r < 0)
1310 				break;
1311 			if (--limit < 0)
1312 				break;
1313 		}
1314 		lwkt_reltoken(&prg->proc_token);
1315 
1316 		/*
1317 		 * Check if asked to stop early
1318 		 */
1319 		if (p)
1320 			break;
1321 	}
1322 }
1323 
1324 /*
1325  * Scan all lwps of processes on the allproc list.  The lwp is automatically
1326  * held for the callback.  A return value of -1 terminates the loop.
1327  *
1328  * The callback is made with the proces and lwp both held, and proc_token held.
1329  *
1330  * No requirements.
1331  */
1332 void
1333 alllwp_scan(int (*callback)(struct lwp *, void *), void *data, int segmented)
1334 {
1335 	struct proc *p;
1336 	struct lwp *lp;
1337 	int ns;
1338 	int ne;
1339 	int r = 0;
1340 	int n;
1341 
1342 	if (segmented) {
1343 		int id = mycpu->gd_cpuid;
1344 		ns = id * ALLPROC_HSIZE / ncpus;
1345 		ne = (id + 1) * ALLPROC_HSIZE / ncpus;
1346 	} else {
1347 		ns = 0;
1348 		ne = ALLPROC_HSIZE;
1349 	}
1350 
1351 	for (n = ns; n < ne; ++n) {
1352 		procglob_t *prg = &procglob[n];
1353 
1354 		if (LIST_FIRST(&prg->allproc) == NULL)
1355 			continue;
1356 		lwkt_gettoken(&prg->proc_token);
1357 		LIST_FOREACH(p, &prg->allproc, p_list) {
1358 			if (p->p_stat == SZOMB)
1359 				continue;
1360 			PHOLD(p);
1361 			lwkt_gettoken(&p->p_token);
1362 			FOREACH_LWP_IN_PROC(lp, p) {
1363 				LWPHOLD(lp);
1364 				r = callback(lp, data);
1365 				LWPRELE(lp);
1366 			}
1367 			lwkt_reltoken(&p->p_token);
1368 			PRELE(p);
1369 			if (r < 0)
1370 				break;
1371 		}
1372 		lwkt_reltoken(&prg->proc_token);
1373 
1374 		/*
1375 		 * Asked to exit early
1376 		 */
1377 		if (p)
1378 			break;
1379 	}
1380 }
1381 
1382 /*
1383  * Scan all processes on the zombproc list.  The process is automatically
1384  * held for the callback.  A return value of -1 terminates the loop.
1385  *
1386  * No requirements.
1387  * The callback is made with the proces held and proc_token held.
1388  */
1389 void
1390 zombproc_scan(int (*callback)(struct proc *, void *), void *data)
1391 {
1392 	struct proc *p;
1393 	int r;
1394 	int n;
1395 
1396 	/*
1397 	 * prg->proc_token protects the allproc list and PHOLD() prevents the
1398 	 * process from being removed from the allproc list or the zombproc
1399 	 * list.
1400 	 */
1401 	for (n = 0; n < ALLPROC_HSIZE; ++n) {
1402 		procglob_t *prg = &procglob[n];
1403 
1404 		if (LIST_FIRST(&prg->allproc) == NULL)
1405 			continue;
1406 		lwkt_gettoken(&prg->proc_token);
1407 		LIST_FOREACH(p, &prg->allproc, p_list) {
1408 			if (p->p_stat != SZOMB)
1409 				continue;
1410 			PHOLD(p);
1411 			r = callback(p, data);
1412 			PRELE(p);
1413 			if (r < 0)
1414 				break;
1415 		}
1416 		lwkt_reltoken(&prg->proc_token);
1417 
1418 		/*
1419 		 * Check if asked to stop early
1420 		 */
1421 		if (p)
1422 			break;
1423 	}
1424 }
1425 
1426 #include "opt_ddb.h"
1427 #ifdef DDB
1428 #include <ddb/ddb.h>
1429 
1430 /*
1431  * Debugging only
1432  */
1433 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
1434 {
1435 	struct pgrp *pgrp;
1436 	struct proc *p;
1437 	procglob_t *prg;
1438 	int i;
1439 
1440 	for (i = 0; i < ALLPROC_HSIZE; ++i) {
1441 		prg = &procglob[i];
1442 
1443 		if (LIST_EMPTY(&prg->allpgrp))
1444 			continue;
1445 		kprintf("\tindx %d\n", i);
1446 		LIST_FOREACH(pgrp, &prg->allpgrp, pg_list) {
1447 			kprintf("\tpgrp %p, pgid %ld, sess %p, "
1448 				"sesscnt %d, mem %p\n",
1449 				(void *)pgrp, (long)pgrp->pg_id,
1450 				(void *)pgrp->pg_session,
1451 				pgrp->pg_session->s_count,
1452 				(void *)LIST_FIRST(&pgrp->pg_members));
1453 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1454 				kprintf("\t\tpid %ld addr %p pgrp %p\n",
1455 					(long)p->p_pid, (void *)p,
1456 					(void *)p->p_pgrp);
1457 			}
1458 		}
1459 	}
1460 }
1461 #endif /* DDB */
1462 
1463 /*
1464  * The caller must hold proc_token.
1465  */
1466 static int
1467 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1468 {
1469 	struct kinfo_proc ki;
1470 	struct lwp *lp;
1471 	int skp = 0, had_output = 0;
1472 	int error;
1473 
1474 	bzero(&ki, sizeof(ki));
1475 	lwkt_gettoken_shared(&p->p_token);
1476 	fill_kinfo_proc(p, &ki);
1477 	if ((flags & KERN_PROC_FLAG_LWP) == 0)
1478 		skp = 1;
1479 	error = 0;
1480 	FOREACH_LWP_IN_PROC(lp, p) {
1481 		LWPHOLD(lp);
1482 		fill_kinfo_lwp(lp, &ki.kp_lwp);
1483 		had_output = 1;
1484 		error = SYSCTL_OUT(req, &ki, sizeof(ki));
1485 		LWPRELE(lp);
1486 		if (error)
1487 			break;
1488 		if (skp)
1489 			break;
1490 	}
1491 	lwkt_reltoken(&p->p_token);
1492 	/* We need to output at least the proc, even if there is no lwp. */
1493 	if (had_output == 0) {
1494 		error = SYSCTL_OUT(req, &ki, sizeof(ki));
1495 	}
1496 	return (error);
1497 }
1498 
1499 /*
1500  * The caller must hold proc_token.
1501  */
1502 static int
1503 sysctl_out_proc_kthread(struct thread *td, struct sysctl_req *req)
1504 {
1505 	struct kinfo_proc ki;
1506 	int error;
1507 
1508 	fill_kinfo_proc_kthread(td, &ki);
1509 	error = SYSCTL_OUT(req, &ki, sizeof(ki));
1510 	if (error)
1511 		return error;
1512 	return(0);
1513 }
1514 
1515 /*
1516  * No requirements.
1517  */
1518 static int
1519 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1520 {
1521 	int *name = (int *)arg1;
1522 	int oid = oidp->oid_number;
1523 	u_int namelen = arg2;
1524 	struct proc *p;
1525 	struct thread *td;
1526 	struct thread *marker;
1527 	int flags = 0;
1528 	int error = 0;
1529 	int n;
1530 	int origcpu;
1531 	struct ucred *cr1 = curproc->p_ucred;
1532 	struct ucred *crcache = NULL;
1533 
1534 	flags = oid & KERN_PROC_FLAGMASK;
1535 	oid &= ~KERN_PROC_FLAGMASK;
1536 
1537 	if ((oid == KERN_PROC_ALL && namelen != 0) ||
1538 	    (oid != KERN_PROC_ALL && namelen != 1)) {
1539 		return (EINVAL);
1540 	}
1541 
1542 	/*
1543 	 * proc_token protects the allproc list and PHOLD() prevents the
1544 	 * process from being removed from the allproc list or the zombproc
1545 	 * list.
1546 	 */
1547 	if (oid == KERN_PROC_PID) {
1548 		p = pfind((pid_t)name[0]);
1549 		if (p) {
1550 			crcache = pcredcache(crcache, p);
1551 			if (PRISON_CHECK(cr1, crcache))
1552 				error = sysctl_out_proc(p, req, flags);
1553 			PRELE(p);
1554 		}
1555 		goto post_threads;
1556 	}
1557 	p = NULL;
1558 
1559 	if (!req->oldptr) {
1560 		/* overestimate by 5 procs */
1561 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1562 		if (error)
1563 			goto post_threads;
1564 	}
1565 
1566 	for (n = 0; n < ALLPROC_HSIZE; ++n) {
1567 		procglob_t *prg = &procglob[n];
1568 
1569 		if (LIST_EMPTY(&prg->allproc))
1570 			continue;
1571 		lwkt_gettoken_shared(&prg->proc_token);
1572 		LIST_FOREACH(p, &prg->allproc, p_list) {
1573 			/*
1574 			 * Show a user only their processes.
1575 			 */
1576 			if (ps_showallprocs == 0) {
1577 				crcache = pcredcache(crcache, p);
1578 				if (crcache == NULL ||
1579 				    p_trespass(cr1, crcache)) {
1580 					continue;
1581 				}
1582 			}
1583 
1584 			/*
1585 			 * Skip embryonic processes.
1586 			 */
1587 			if (p->p_stat == SIDL)
1588 				continue;
1589 			/*
1590 			 * TODO - make more efficient (see notes below).
1591 			 * do by session.
1592 			 */
1593 			switch (oid) {
1594 			case KERN_PROC_PGRP:
1595 				/* could do this by traversing pgrp */
1596 				if (p->p_pgrp == NULL ||
1597 				    p->p_pgrp->pg_id != (pid_t)name[0])
1598 					continue;
1599 				break;
1600 
1601 			case KERN_PROC_TTY:
1602 				if ((p->p_flags & P_CONTROLT) == 0 ||
1603 				    p->p_session == NULL ||
1604 				    p->p_session->s_ttyp == NULL ||
1605 				    dev2udev(p->p_session->s_ttyp->t_dev) !=
1606 					(udev_t)name[0])
1607 					continue;
1608 				break;
1609 
1610 			case KERN_PROC_UID:
1611 				crcache = pcredcache(crcache, p);
1612 				if (crcache == NULL ||
1613 				    crcache->cr_uid != (uid_t)name[0]) {
1614 					continue;
1615 				}
1616 				break;
1617 
1618 			case KERN_PROC_RUID:
1619 				crcache = pcredcache(crcache, p);
1620 				if (crcache == NULL ||
1621 				    crcache->cr_ruid != (uid_t)name[0]) {
1622 					continue;
1623 				}
1624 				break;
1625 			}
1626 
1627 			crcache = pcredcache(crcache, p);
1628 			if (!PRISON_CHECK(cr1, crcache))
1629 				continue;
1630 			PHOLD(p);
1631 			error = sysctl_out_proc(p, req, flags);
1632 			PRELE(p);
1633 			if (error) {
1634 				lwkt_reltoken(&prg->proc_token);
1635 				goto post_threads;
1636 			}
1637 		}
1638 		lwkt_reltoken(&prg->proc_token);
1639 	}
1640 
1641 	/*
1642 	 * Iterate over all active cpus and scan their thread list.  Start
1643 	 * with the next logical cpu and end with our original cpu.  We
1644 	 * migrate our own thread to each target cpu in order to safely scan
1645 	 * its thread list.  In the last loop we migrate back to our original
1646 	 * cpu.
1647 	 */
1648 	origcpu = mycpu->gd_cpuid;
1649 	if (!ps_showallthreads || jailed(cr1))
1650 		goto post_threads;
1651 
1652 	marker = kmalloc(sizeof(struct thread), M_TEMP, M_WAITOK|M_ZERO);
1653 	marker->td_flags = TDF_MARKER;
1654 	error = 0;
1655 
1656 	for (n = 1; n <= ncpus; ++n) {
1657 		globaldata_t rgd;
1658 		int nid;
1659 
1660 		nid = (origcpu + n) % ncpus;
1661 		if (CPUMASK_TESTBIT(smp_active_mask, nid) == 0)
1662 			continue;
1663 		rgd = globaldata_find(nid);
1664 		lwkt_setcpu_self(rgd);
1665 
1666 		crit_enter();
1667 		TAILQ_INSERT_TAIL(&rgd->gd_tdallq, marker, td_allq);
1668 
1669 		while ((td = TAILQ_PREV(marker, lwkt_queue, td_allq)) != NULL) {
1670 			TAILQ_REMOVE(&rgd->gd_tdallq, marker, td_allq);
1671 			TAILQ_INSERT_BEFORE(td, marker, td_allq);
1672 			if (td->td_flags & TDF_MARKER)
1673 				continue;
1674 			if (td->td_proc)
1675 				continue;
1676 
1677 			lwkt_hold(td);
1678 			crit_exit();
1679 
1680 			switch (oid) {
1681 			case KERN_PROC_PGRP:
1682 			case KERN_PROC_TTY:
1683 			case KERN_PROC_UID:
1684 			case KERN_PROC_RUID:
1685 				break;
1686 			default:
1687 				error = sysctl_out_proc_kthread(td, req);
1688 				break;
1689 			}
1690 			lwkt_rele(td);
1691 			crit_enter();
1692 			if (error)
1693 				break;
1694 		}
1695 		TAILQ_REMOVE(&rgd->gd_tdallq, marker, td_allq);
1696 		crit_exit();
1697 
1698 		if (error)
1699 			break;
1700 	}
1701 
1702 	/*
1703 	 * Userland scheduler expects us to return on the same cpu we
1704 	 * started on.
1705 	 */
1706 	if (mycpu->gd_cpuid != origcpu)
1707 		lwkt_setcpu_self(globaldata_find(origcpu));
1708 
1709 	kfree(marker, M_TEMP);
1710 
1711 post_threads:
1712 	if (crcache)
1713 		crfree(crcache);
1714 	return (error);
1715 }
1716 
1717 /*
1718  * This sysctl allows a process to retrieve the argument list or process
1719  * title for another process without groping around in the address space
1720  * of the other process.  It also allow a process to set its own "process
1721  * title to a string of its own choice.
1722  *
1723  * No requirements.
1724  */
1725 static int
1726 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1727 {
1728 	int *name = (int*) arg1;
1729 	u_int namelen = arg2;
1730 	struct proc *p;
1731 	struct pargs *opa;
1732 	struct pargs *pa;
1733 	int error = 0;
1734 	struct ucred *cr1 = curproc->p_ucred;
1735 
1736 	if (namelen != 1)
1737 		return (EINVAL);
1738 
1739 	p = pfind((pid_t)name[0]);
1740 	if (p == NULL)
1741 		goto done;
1742 	lwkt_gettoken(&p->p_token);
1743 
1744 	if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred))
1745 		goto done;
1746 
1747 	if (req->newptr && curproc != p) {
1748 		error = EPERM;
1749 		goto done;
1750 	}
1751 	if (req->oldptr) {
1752 		if (p->p_upmap != NULL && p->p_upmap->proc_title[0]) {
1753 			/*
1754 			 * Args set via writable user process mmap.
1755 			 * We must calculate the string length manually
1756 			 * because the user data can change at any time.
1757 			 */
1758 			size_t n;
1759 			char *base;
1760 
1761 			base = p->p_upmap->proc_title;
1762 			for (n = 0; n < UPMAP_MAXPROCTITLE - 1; ++n) {
1763 				if (base[n] == 0)
1764 					break;
1765 			}
1766 			error = SYSCTL_OUT(req, base, n);
1767 			if (error == 0)
1768 				error = SYSCTL_OUT(req, "", 1);
1769 		} else if ((pa = p->p_args) != NULL) {
1770 			/*
1771 			 * Args set by setproctitle() sysctl.
1772 			 */
1773 			refcount_acquire(&pa->ar_ref);
1774 			error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1775 			if (refcount_release(&pa->ar_ref))
1776 				kfree(pa, M_PARGS);
1777 		}
1778 	}
1779 	if (req->newptr == NULL)
1780 		goto done;
1781 
1782 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) {
1783 		goto done;
1784 	}
1785 
1786 	pa = kmalloc(sizeof(struct pargs) + req->newlen, M_PARGS, M_WAITOK);
1787 	refcount_init(&pa->ar_ref, 1);
1788 	pa->ar_length = req->newlen;
1789 	error = SYSCTL_IN(req, pa->ar_args, req->newlen);
1790 	if (error) {
1791 		kfree(pa, M_PARGS);
1792 		goto done;
1793 	}
1794 
1795 
1796 	/*
1797 	 * Replace p_args with the new pa.  p_args may have previously
1798 	 * been NULL.
1799 	 */
1800 	opa = p->p_args;
1801 	p->p_args = pa;
1802 
1803 	if (opa) {
1804 		KKASSERT(opa->ar_ref > 0);
1805 		if (refcount_release(&opa->ar_ref)) {
1806 			kfree(opa, M_PARGS);
1807 			/* opa = NULL; */
1808 		}
1809 	}
1810 done:
1811 	if (p) {
1812 		lwkt_reltoken(&p->p_token);
1813 		PRELE(p);
1814 	}
1815 	return (error);
1816 }
1817 
1818 static int
1819 sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)
1820 {
1821 	int *name = (int*) arg1;
1822 	u_int namelen = arg2;
1823 	struct proc *p;
1824 	int error = 0;
1825 	char *fullpath, *freepath;
1826 	struct ucred *cr1 = curproc->p_ucred;
1827 
1828 	if (namelen != 1)
1829 		return (EINVAL);
1830 
1831 	p = pfind((pid_t)name[0]);
1832 	if (p == NULL)
1833 		goto done;
1834 	lwkt_gettoken_shared(&p->p_token);
1835 
1836 	/*
1837 	 * If we are not allowed to see other args, we certainly shouldn't
1838 	 * get the cwd either. Also check the usual trespassing.
1839 	 */
1840 	if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred))
1841 		goto done;
1842 
1843 	if (req->oldptr && p->p_fd != NULL && p->p_fd->fd_ncdir.ncp) {
1844 		struct nchandle nch;
1845 
1846 		cache_copy(&p->p_fd->fd_ncdir, &nch);
1847 		error = cache_fullpath(p, &nch, NULL,
1848 				       &fullpath, &freepath, 0);
1849 		cache_drop(&nch);
1850 		if (error)
1851 			goto done;
1852 		error = SYSCTL_OUT(req, fullpath, strlen(fullpath) + 1);
1853 		kfree(freepath, M_TEMP);
1854 	}
1855 
1856 done:
1857 	if (p) {
1858 		lwkt_reltoken(&p->p_token);
1859 		PRELE(p);
1860 	}
1861 	return (error);
1862 }
1863 
1864 /*
1865  * This sysctl allows a process to retrieve the path of the executable for
1866  * itself or another process.
1867  */
1868 static int
1869 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1870 {
1871 	pid_t *pidp = (pid_t *)arg1;
1872 	unsigned int arglen = arg2;
1873 	struct proc *p;
1874 	char *retbuf, *freebuf;
1875 	int error = 0;
1876 	struct nchandle nch;
1877 
1878 	if (arglen != 1)
1879 		return (EINVAL);
1880 	if (*pidp == -1) {	/* -1 means this process */
1881 		p = curproc;
1882 	} else {
1883 		p = pfind(*pidp);
1884 		if (p == NULL)
1885 			return (ESRCH);
1886 	}
1887 
1888 	cache_copy(&p->p_textnch, &nch);
1889 	error = cache_fullpath(p, &nch, NULL, &retbuf, &freebuf, 0);
1890 	cache_drop(&nch);
1891 	if (error)
1892 		goto done;
1893 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1894 	kfree(freebuf, M_TEMP);
1895 done:
1896 	if (*pidp != -1)
1897 		PRELE(p);
1898 
1899 	return (error);
1900 }
1901 
1902 static int
1903 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
1904 {
1905         /*int *name = (int *)arg1;*/
1906         u_int namelen = arg2;
1907         struct kinfo_sigtramp kst;
1908         const struct sysentvec *sv;
1909         int error;
1910 
1911         if (namelen > 1)
1912                 return (EINVAL);
1913         /* ignore pid if passed in (freebsd compatibility) */
1914 
1915         sv = curproc->p_sysent;
1916         bzero(&kst, sizeof(kst));
1917         if (sv->sv_szsigcode) {
1918 		intptr_t sigbase;
1919 
1920 		sigbase = trunc_page64((intptr_t)PS_STRINGS -
1921 				       *sv->sv_szsigcode);
1922 		sigbase -= SZSIGCODE_EXTRA_BYTES;
1923 
1924                 kst.ksigtramp_start = (void *)sigbase;
1925                 kst.ksigtramp_end = (void *)(sigbase + *sv->sv_szsigcode);
1926         }
1927         error = SYSCTL_OUT(req, &kst, sizeof(kst));
1928 
1929         return (error);
1930 }
1931 
1932 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1933 
1934 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all,
1935 	CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_NOLOCK,
1936 	0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
1937 
1938 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp,
1939 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1940 	sysctl_kern_proc, "Process table");
1941 
1942 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty,
1943 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1944 	sysctl_kern_proc, "Process table");
1945 
1946 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid,
1947 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1948 	sysctl_kern_proc, "Process table");
1949 
1950 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid,
1951 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1952 	sysctl_kern_proc, "Process table");
1953 
1954 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid,
1955 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1956 	sysctl_kern_proc, "Process table");
1957 
1958 SYSCTL_NODE(_kern_proc, (KERN_PROC_ALL | KERN_PROC_FLAG_LWP), all_lwp,
1959 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1960 	sysctl_kern_proc, "Process table");
1961 
1962 SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_FLAG_LWP), pgrp_lwp,
1963 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1964 	sysctl_kern_proc, "Process table");
1965 
1966 SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_FLAG_LWP), tty_lwp,
1967 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1968 	sysctl_kern_proc, "Process table");
1969 
1970 SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_FLAG_LWP), uid_lwp,
1971 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1972 	sysctl_kern_proc, "Process table");
1973 
1974 SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_FLAG_LWP), ruid_lwp,
1975 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1976 	sysctl_kern_proc, "Process table");
1977 
1978 SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_FLAG_LWP), pid_lwp,
1979 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1980 	sysctl_kern_proc, "Process table");
1981 
1982 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
1983 	CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_NOLOCK,
1984 	sysctl_kern_proc_args, "Process argument list");
1985 
1986 SYSCTL_NODE(_kern_proc, KERN_PROC_CWD, cwd,
1987 	CTLFLAG_RD | CTLFLAG_ANYBODY | CTLFLAG_NOLOCK,
1988 	sysctl_kern_proc_cwd, "Process argument list");
1989 
1990 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname,
1991 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1992 	sysctl_kern_proc_pathname, "Process executable path");
1993 
1994 SYSCTL_PROC(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp,
1995 	CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_NOLOCK,
1996         0, 0, sysctl_kern_proc_sigtramp, "S,sigtramp",
1997         "Return sigtramp address range");
1998