xref: /dragonfly/sys/kern/kern_proc.c (revision 71126e33)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
34  * $FreeBSD: src/sys/kern/kern_proc.c,v 1.63.2.9 2003/05/08 07:47:16 kbyanc Exp $
35  * $DragonFly: src/sys/kern/kern_proc.c,v 1.17 2004/09/13 16:22:36 dillon Exp $
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/sysctl.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/filedesc.h>
45 #include <sys/tty.h>
46 #include <sys/signalvar.h>
47 #include <vm/vm.h>
48 #include <sys/lock.h>
49 #include <vm/pmap.h>
50 #include <vm/vm_map.h>
51 #include <sys/user.h>
52 #include <vm/vm_zone.h>
53 #include <machine/smp.h>
54 
55 static MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
56 MALLOC_DEFINE(M_SESSION, "session", "session header");
57 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
58 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
59 
60 int ps_showallprocs = 1;
61 static int ps_showallthreads = 1;
62 SYSCTL_INT(_kern, OID_AUTO, ps_showallprocs, CTLFLAG_RW,
63     &ps_showallprocs, 0, "");
64 SYSCTL_INT(_kern, OID_AUTO, ps_showallthreads, CTLFLAG_RW,
65     &ps_showallthreads, 0, "");
66 
67 static void pgdelete	(struct pgrp *);
68 
69 static void	orphanpg (struct pgrp *pg);
70 
71 /*
72  * Other process lists
73  */
74 struct pidhashhead *pidhashtbl;
75 u_long pidhash;
76 struct pgrphashhead *pgrphashtbl;
77 u_long pgrphash;
78 struct proclist allproc;
79 struct proclist zombproc;
80 vm_zone_t proc_zone;
81 vm_zone_t thread_zone;
82 
83 /*
84  * Initialize global process hashing structures.
85  */
86 void
87 procinit()
88 {
89 
90 	LIST_INIT(&allproc);
91 	LIST_INIT(&zombproc);
92 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
93 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
94 	proc_zone = zinit("PROC", sizeof (struct proc), 0, 0, 5);
95 	thread_zone = zinit("THREAD", sizeof (struct thread), 0, 0, 5);
96 	uihashinit();
97 }
98 
99 /*
100  * Is p an inferior of the current process?
101  */
102 int
103 inferior(p)
104 	struct proc *p;
105 {
106 
107 	for (; p != curproc; p = p->p_pptr)
108 		if (p->p_pid == 0)
109 			return (0);
110 	return (1);
111 }
112 
113 /*
114  * Locate a process by number
115  */
116 struct proc *
117 pfind(pid)
118 	pid_t pid;
119 {
120 	struct proc *p;
121 
122 	LIST_FOREACH(p, PIDHASH(pid), p_hash)
123 		if (p->p_pid == pid)
124 			return (p);
125 	return (NULL);
126 }
127 
128 /*
129  * Locate a process group by number
130  */
131 struct pgrp *
132 pgfind(pgid)
133 	pid_t pgid;
134 {
135 	struct pgrp *pgrp;
136 
137 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash)
138 		if (pgrp->pg_id == pgid)
139 			return (pgrp);
140 	return (NULL);
141 }
142 
143 /*
144  * Move p to a new or existing process group (and session)
145  */
146 int
147 enterpgrp(p, pgid, mksess)
148 	struct proc *p;
149 	pid_t pgid;
150 	int mksess;
151 {
152 	struct pgrp *pgrp = pgfind(pgid);
153 
154 	KASSERT(pgrp == NULL || !mksess,
155 	    ("enterpgrp: setsid into non-empty pgrp"));
156 	KASSERT(!SESS_LEADER(p),
157 	    ("enterpgrp: session leader attempted setpgrp"));
158 
159 	if (pgrp == NULL) {
160 		pid_t savepid = p->p_pid;
161 		struct proc *np;
162 		/*
163 		 * new process group
164 		 */
165 		KASSERT(p->p_pid == pgid,
166 		    ("enterpgrp: new pgrp and pid != pgid"));
167 		if ((np = pfind(savepid)) == NULL || np != p)
168 			return (ESRCH);
169 		MALLOC(pgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP,
170 		    M_WAITOK);
171 		if (mksess) {
172 			struct session *sess;
173 
174 			/*
175 			 * new session
176 			 */
177 			MALLOC(sess, struct session *, sizeof(struct session),
178 			    M_SESSION, M_WAITOK);
179 			sess->s_leader = p;
180 			sess->s_sid = p->p_pid;
181 			sess->s_count = 1;
182 			sess->s_ttyvp = NULL;
183 			sess->s_ttyp = NULL;
184 			bcopy(p->p_session->s_login, sess->s_login,
185 			    sizeof(sess->s_login));
186 			p->p_flag &= ~P_CONTROLT;
187 			pgrp->pg_session = sess;
188 			KASSERT(p == curproc,
189 			    ("enterpgrp: mksession and p != curproc"));
190 		} else {
191 			pgrp->pg_session = p->p_session;
192 			sess_hold(pgrp->pg_session);
193 		}
194 		pgrp->pg_id = pgid;
195 		LIST_INIT(&pgrp->pg_members);
196 		LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
197 		pgrp->pg_jobc = 0;
198 		SLIST_INIT(&pgrp->pg_sigiolst);
199 	} else if (pgrp == p->p_pgrp)
200 		return (0);
201 
202 	/*
203 	 * Adjust eligibility of affected pgrps to participate in job control.
204 	 * Increment eligibility counts before decrementing, otherwise we
205 	 * could reach 0 spuriously during the first call.
206 	 */
207 	fixjobc(p, pgrp, 1);
208 	fixjobc(p, p->p_pgrp, 0);
209 
210 	LIST_REMOVE(p, p_pglist);
211 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
212 		pgdelete(p->p_pgrp);
213 	p->p_pgrp = pgrp;
214 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
215 	return (0);
216 }
217 
218 /*
219  * remove process from process group
220  */
221 int
222 leavepgrp(p)
223 	struct proc *p;
224 {
225 
226 	LIST_REMOVE(p, p_pglist);
227 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
228 		pgdelete(p->p_pgrp);
229 	p->p_pgrp = 0;
230 	return (0);
231 }
232 
233 /*
234  * delete a process group
235  */
236 static void
237 pgdelete(pgrp)
238 	struct pgrp *pgrp;
239 {
240 
241 	/*
242 	 * Reset any sigio structures pointing to us as a result of
243 	 * F_SETOWN with our pgid.
244 	 */
245 	funsetownlst(&pgrp->pg_sigiolst);
246 
247 	if (pgrp->pg_session->s_ttyp != NULL &&
248 	    pgrp->pg_session->s_ttyp->t_pgrp == pgrp)
249 		pgrp->pg_session->s_ttyp->t_pgrp = NULL;
250 	LIST_REMOVE(pgrp, pg_hash);
251 	sess_rele(pgrp->pg_session);
252 	free(pgrp, M_PGRP);
253 }
254 
255 /*
256  * Adjust the ref count on a session structure.  When the ref count falls to
257  * zero the tty is disassociated from the session and the session structure
258  * is freed.  Note that tty assocation is not itself ref-counted.
259  */
260 void
261 sess_hold(struct session *sp)
262 {
263 	++sp->s_count;
264 }
265 
266 void
267 sess_rele(struct session *sp)
268 {
269 	KKASSERT(sp->s_count > 0);
270 	if (--sp->s_count == 0) {
271 		if (sp->s_ttyp && sp->s_ttyp->t_session) {
272 #ifdef TTY_DO_FULL_CLOSE
273 			/* FULL CLOSE, see ttyclearsession() */
274 			KKASSERT(sp->s_ttyp->t_session == sp);
275 			sp->s_ttyp->t_session = NULL;
276 #else
277 			/* HALF CLOSE, see ttyclearsession() */
278 			if (sp->s_ttyp->t_session == sp)
279 				sp->s_ttyp->t_session = NULL;
280 #endif
281 		}
282 		free(sp, M_SESSION);
283 	}
284 }
285 
286 /*
287  * Adjust pgrp jobc counters when specified process changes process group.
288  * We count the number of processes in each process group that "qualify"
289  * the group for terminal job control (those with a parent in a different
290  * process group of the same session).  If that count reaches zero, the
291  * process group becomes orphaned.  Check both the specified process'
292  * process group and that of its children.
293  * entering == 0 => p is leaving specified group.
294  * entering == 1 => p is entering specified group.
295  */
296 void
297 fixjobc(p, pgrp, entering)
298 	struct proc *p;
299 	struct pgrp *pgrp;
300 	int entering;
301 {
302 	struct pgrp *hispgrp;
303 	struct session *mysession = pgrp->pg_session;
304 
305 	/*
306 	 * Check p's parent to see whether p qualifies its own process
307 	 * group; if so, adjust count for p's process group.
308 	 */
309 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
310 	    hispgrp->pg_session == mysession) {
311 		if (entering)
312 			pgrp->pg_jobc++;
313 		else if (--pgrp->pg_jobc == 0)
314 			orphanpg(pgrp);
315 	}
316 
317 	/*
318 	 * Check this process' children to see whether they qualify
319 	 * their process groups; if so, adjust counts for children's
320 	 * process groups.
321 	 */
322 	LIST_FOREACH(p, &p->p_children, p_sibling)
323 		if ((hispgrp = p->p_pgrp) != pgrp &&
324 		    hispgrp->pg_session == mysession &&
325 		    p->p_stat != SZOMB) {
326 			if (entering)
327 				hispgrp->pg_jobc++;
328 			else if (--hispgrp->pg_jobc == 0)
329 				orphanpg(hispgrp);
330 		}
331 }
332 
333 /*
334  * A process group has become orphaned;
335  * if there are any stopped processes in the group,
336  * hang-up all process in that group.
337  */
338 static void
339 orphanpg(pg)
340 	struct pgrp *pg;
341 {
342 	struct proc *p;
343 
344 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
345 		if (p->p_stat == SSTOP) {
346 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
347 				psignal(p, SIGHUP);
348 				psignal(p, SIGCONT);
349 			}
350 			return;
351 		}
352 	}
353 }
354 
355 #include "opt_ddb.h"
356 #ifdef DDB
357 #include <ddb/ddb.h>
358 
359 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
360 {
361 	struct pgrp *pgrp;
362 	struct proc *p;
363 	int i;
364 
365 	for (i = 0; i <= pgrphash; i++) {
366 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
367 			printf("\tindx %d\n", i);
368 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
369 				printf(
370 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
371 				    (void *)pgrp, (long)pgrp->pg_id,
372 				    (void *)pgrp->pg_session,
373 				    pgrp->pg_session->s_count,
374 				    (void *)LIST_FIRST(&pgrp->pg_members));
375 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
376 					printf("\t\tpid %ld addr %p pgrp %p\n",
377 					    (long)p->p_pid, (void *)p,
378 					    (void *)p->p_pgrp);
379 				}
380 			}
381 		}
382 	}
383 }
384 #endif /* DDB */
385 
386 /*
387  * Fill in an eproc structure for the specified thread.
388  */
389 void
390 fill_eproc_td(thread_t td, struct eproc *ep, struct proc *xp)
391 {
392 	bzero(ep, sizeof(*ep));
393 
394 	ep->e_uticks = td->td_uticks;
395 	ep->e_sticks = td->td_sticks;
396 	ep->e_iticks = td->td_iticks;
397 	ep->e_tdev = NOUDEV;
398 	ep->e_cpuid = td->td_gd->gd_cpuid;
399 	if (td->td_wmesg) {
400 		strncpy(ep->e_wmesg, td->td_wmesg, WMESGLEN);
401 		ep->e_wmesg[WMESGLEN] = 0;
402 	}
403 
404 	/*
405 	 * Fake up portions of the proc structure copied out by the sysctl
406 	 * to return useful information.  Note that using td_pri directly
407 	 * is messy because it includes critial section data so we fake
408 	 * up an rtprio.prio for threads.
409 	 */
410 	if (xp) {
411 		*xp = *initproc;
412 		xp->p_rtprio.type = RTP_PRIO_THREAD;
413 		xp->p_rtprio.prio = td->td_pri & TDPRI_MASK;
414 		xp->p_pid = -1;
415 	}
416 }
417 
418 /*
419  * Fill in an eproc structure for the specified process.
420  */
421 void
422 fill_eproc(struct proc *p, struct eproc *ep)
423 {
424 	struct tty *tp;
425 
426 	fill_eproc_td(p->p_thread, ep, NULL);
427 
428 	ep->e_paddr = p;
429 	if (p->p_ucred) {
430 		ep->e_ucred = *p->p_ucred;
431 	}
432 	if (p->p_procsig) {
433 		ep->e_procsig = *p->p_procsig;
434 	}
435 	if (p->p_stat != SIDL && p->p_stat != SZOMB && p->p_vmspace != NULL) {
436 		struct vmspace *vm = p->p_vmspace;
437 		ep->e_vm = *vm;
438 		ep->e_vm.vm_rssize = vmspace_resident_count(vm); /*XXX*/
439 	}
440 	if ((p->p_flag & P_INMEM) && p->p_stats)
441 		ep->e_stats = *p->p_stats;
442 	if (p->p_pptr)
443 		ep->e_ppid = p->p_pptr->p_pid;
444 	if (p->p_pgrp) {
445 		ep->e_pgid = p->p_pgrp->pg_id;
446 		ep->e_jobc = p->p_pgrp->pg_jobc;
447 		ep->e_sess = p->p_pgrp->pg_session;
448 
449 		if (ep->e_sess) {
450 			bcopy(ep->e_sess->s_login, ep->e_login, sizeof(ep->e_login));
451 			if (ep->e_sess->s_ttyvp)
452 				ep->e_flag = EPROC_CTTY;
453 			if (p->p_session && SESS_LEADER(p))
454 				ep->e_flag |= EPROC_SLEADER;
455 		}
456 	}
457 	if ((p->p_flag & P_CONTROLT) &&
458 	    (ep->e_sess != NULL) &&
459 	    ((tp = ep->e_sess->s_ttyp) != NULL)) {
460 		ep->e_tdev = dev2udev(tp->t_dev);
461 		ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
462 		ep->e_tsess = tp->t_session;
463 	} else {
464 		ep->e_tdev = NOUDEV;
465 	}
466 }
467 
468 struct proc *
469 zpfind(pid_t pid)
470 {
471 	struct proc *p;
472 
473 	LIST_FOREACH(p, &zombproc, p_list)
474 		if (p->p_pid == pid)
475 			return (p);
476 	return (NULL);
477 }
478 
479 static int
480 sysctl_out_proc(struct proc *p, struct thread *td, struct sysctl_req *req, int doingzomb)
481 {
482 	struct eproc eproc;
483 	struct proc xproc;
484 	int error;
485 #if 0
486 	pid_t pid = p->p_pid;
487 #endif
488 
489 	if (p) {
490 		td = p->p_thread;
491 		fill_eproc(p, &eproc);
492 		xproc = *p;
493 
494 		/*
495 		 * Fixup p_stat from SRUN to SSLEEP if the LWKT thread is
496 		 * in a thread-blocked state.
497 		 *
498 		 * XXX temporary fix which might become permanent (I'd rather
499 		 * not pollute the thread scheduler with knowlege about
500 		 * processes).
501 		 */
502 		if (p->p_stat == SRUN && td && (td->td_flags & TDF_BLOCKED)) {
503 			xproc.p_stat = SSLEEP;
504 		}
505 	} else if (td) {
506 		fill_eproc_td(td, &eproc, &xproc);
507 	}
508 	error = SYSCTL_OUT(req,(caddr_t)&xproc, sizeof(struct proc));
509 	if (error)
510 		return (error);
511 	error = SYSCTL_OUT(req,(caddr_t)&eproc, sizeof(eproc));
512 	if (error)
513 		return (error);
514 	error = SYSCTL_OUT(req,(caddr_t)td, sizeof(struct thread));
515 	if (error)
516 		return (error);
517 #if 0
518 	if (!doingzomb && pid && (pfind(pid) != p))
519 		return EAGAIN;
520 	if (doingzomb && zpfind(pid) != p)
521 		return EAGAIN;
522 #endif
523 	return (0);
524 }
525 
526 static int
527 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
528 {
529 	int *name = (int*) arg1;
530 	u_int namelen = arg2;
531 	struct proc *p;
532 	struct thread *td;
533 	int doingzomb;
534 	int error = 0;
535 	int n;
536 	int origcpu;
537 	struct ucred *cr1 = curproc->p_ucred;
538 
539 	if (oidp->oid_number == KERN_PROC_PID) {
540 		if (namelen != 1)
541 			return (EINVAL);
542 		p = pfind((pid_t)name[0]);
543 		if (!p)
544 			return (0);
545 		if (!PRISON_CHECK(cr1, p->p_ucred))
546 			return (0);
547 		error = sysctl_out_proc(p, NULL, req, 0);
548 		return (error);
549 	}
550 	if (oidp->oid_number == KERN_PROC_ALL && !namelen)
551 		;
552 	else if (oidp->oid_number != KERN_PROC_ALL && namelen == 1)
553 		;
554 	else
555 		return (EINVAL);
556 
557 	if (!req->oldptr) {
558 		/* overestimate by 5 procs */
559 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
560 		if (error)
561 			return (error);
562 	}
563 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
564 		if (!doingzomb)
565 			p = LIST_FIRST(&allproc);
566 		else
567 			p = LIST_FIRST(&zombproc);
568 		for (; p != 0; p = LIST_NEXT(p, p_list)) {
569 			/*
570 			 * Show a user only their processes.
571 			 */
572 			if ((!ps_showallprocs) && p_trespass(cr1, p->p_ucred))
573 				continue;
574 			/*
575 			 * Skip embryonic processes.
576 			 */
577 			if (p->p_stat == SIDL)
578 				continue;
579 			/*
580 			 * TODO - make more efficient (see notes below).
581 			 * do by session.
582 			 */
583 			switch (oidp->oid_number) {
584 			case KERN_PROC_PGRP:
585 				/* could do this by traversing pgrp */
586 				if (p->p_pgrp == NULL ||
587 				    p->p_pgrp->pg_id != (pid_t)name[0])
588 					continue;
589 				break;
590 
591 			case KERN_PROC_TTY:
592 				if ((p->p_flag & P_CONTROLT) == 0 ||
593 				    p->p_session == NULL ||
594 				    p->p_session->s_ttyp == NULL ||
595 				    dev2udev(p->p_session->s_ttyp->t_dev) !=
596 					(udev_t)name[0])
597 					continue;
598 				break;
599 
600 			case KERN_PROC_UID:
601 				if (p->p_ucred == NULL ||
602 				    p->p_ucred->cr_uid != (uid_t)name[0])
603 					continue;
604 				break;
605 
606 			case KERN_PROC_RUID:
607 				if (p->p_ucred == NULL ||
608 				    p->p_ucred->cr_ruid != (uid_t)name[0])
609 					continue;
610 				break;
611 			}
612 
613 			if (!PRISON_CHECK(cr1, p->p_ucred))
614 				continue;
615 			PHOLD(p);
616 			error = sysctl_out_proc(p, NULL, req, doingzomb);
617 			PRELE(p);
618 			if (error)
619 				return (error);
620 		}
621 	}
622 
623 	/*
624 	 * Iterate over all active cpus and scan their thread list.  Start
625 	 * with the next logical cpu and end with our original cpu.  We
626 	 * migrate our own thread to each target cpu in order to safely scan
627 	 * its thread list.  In the last loop we migrate back to our original
628 	 * cpu.
629 	 */
630 	origcpu = mycpu->gd_cpuid;
631 	for (n = 1; ps_showallthreads && n <= ncpus; ++n) {
632 		globaldata_t rgd;
633 		int nid;
634 
635 		nid = (origcpu + n) % ncpus;
636 		if ((smp_active_mask & (1 << nid)) == 0)
637 			continue;
638 		rgd = globaldata_find(nid);
639 		lwkt_setcpu_self(rgd);
640 		cpu_mb1();	/* CURRENT CPU HAS CHANGED */
641 
642 		TAILQ_FOREACH(td, &mycpu->gd_tdallq, td_allq) {
643 			if (td->td_proc)
644 				continue;
645 			switch (oidp->oid_number) {
646 			case KERN_PROC_PGRP:
647 			case KERN_PROC_TTY:
648 			case KERN_PROC_UID:
649 			case KERN_PROC_RUID:
650 				continue;
651 			default:
652 				break;
653 			}
654 			lwkt_hold(td);
655 			error = sysctl_out_proc(NULL, td, req, doingzomb);
656 			lwkt_rele(td);
657 			if (error)
658 				return (error);
659 		}
660 	}
661 	return (0);
662 }
663 
664 /*
665  * This sysctl allows a process to retrieve the argument list or process
666  * title for another process without groping around in the address space
667  * of the other process.  It also allow a process to set its own "process
668  * title to a string of its own choice.
669  */
670 static int
671 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
672 {
673 	int *name = (int*) arg1;
674 	u_int namelen = arg2;
675 	struct proc *p;
676 	struct pargs *pa;
677 	int error = 0;
678 	struct ucred *cr1 = curproc->p_ucred;
679 
680 	if (namelen != 1)
681 		return (EINVAL);
682 
683 	p = pfind((pid_t)name[0]);
684 	if (!p)
685 		return (0);
686 
687 	if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred))
688 		return (0);
689 
690 	if (req->newptr && curproc != p)
691 		return (EPERM);
692 
693 	if (req->oldptr && p->p_args != NULL)
694 		error = SYSCTL_OUT(req, p->p_args->ar_args, p->p_args->ar_length);
695 	if (req->newptr == NULL)
696 		return (error);
697 
698 	if (p->p_args && --p->p_args->ar_ref == 0)
699 		FREE(p->p_args, M_PARGS);
700 	p->p_args = NULL;
701 
702 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
703 		return (error);
704 
705 	MALLOC(pa, struct pargs *, sizeof(struct pargs) + req->newlen,
706 	    M_PARGS, M_WAITOK);
707 	pa->ar_ref = 1;
708 	pa->ar_length = req->newlen;
709 	error = SYSCTL_IN(req, pa->ar_args, req->newlen);
710 	if (!error)
711 		p->p_args = pa;
712 	else
713 		FREE(pa, M_PARGS);
714 	return (error);
715 }
716 
717 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
718 
719 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT,
720 	0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
721 
722 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD,
723 	sysctl_kern_proc, "Process table");
724 
725 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD,
726 	sysctl_kern_proc, "Process table");
727 
728 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD,
729 	sysctl_kern_proc, "Process table");
730 
731 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD,
732 	sysctl_kern_proc, "Process table");
733 
734 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD,
735 	sysctl_kern_proc, "Process table");
736 
737 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY,
738 	sysctl_kern_proc_args, "Process argument list");
739