xref: /dragonfly/sys/kern/kern_proc.c (revision d8d5b238)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/sysctl.h>
34 #include <sys/malloc.h>
35 #include <sys/proc.h>
36 #include <sys/vnode.h>
37 #include <sys/jail.h>
38 #include <sys/filedesc.h>
39 #include <sys/tty.h>
40 #include <sys/dsched.h>
41 #include <sys/signalvar.h>
42 #include <sys/spinlock.h>
43 #include <sys/random.h>
44 #include <sys/exec.h>
45 #include <vm/vm.h>
46 #include <sys/lock.h>
47 #include <sys/kinfo.h>
48 #include <vm/pmap.h>
49 #include <vm/vm_map.h>
50 #include <machine/smp.h>
51 
52 #include <sys/refcount.h>
53 #include <sys/spinlock2.h>
54 
55 /*
56  * Hash table size must be a power of two and is not currently dynamically
57  * sized.  There is a trade-off between the linear scans which must iterate
58  * all HSIZE elements and the number of elements which might accumulate
59  * within each hash chain.
60  */
61 #define ALLPROC_HSIZE	256
62 #define ALLPROC_HMASK	(ALLPROC_HSIZE - 1)
63 #define ALLPROC_HASH(pid)	(pid & ALLPROC_HMASK)
64 #define PGRP_HASH(pid)	(pid & ALLPROC_HMASK)
65 #define SESS_HASH(pid)	(pid & ALLPROC_HMASK)
66 
67 /*
68  * pid_doms[] management, used to control how quickly a PID can be recycled.
69  * Must be a multiple of ALLPROC_HSIZE for the proc_makepid() inner loops.
70  *
71  * WARNING! PIDDOM_DELAY should not be defined > 20 or so unless you change
72  *	    the array from int8_t's to int16_t's.
73  */
74 #define PIDDOM_COUNT	10	/* 10 pids per domain - reduce array size */
75 #define PIDDOM_DELAY	10	/* min 10 seconds after exit before reuse */
76 #define PIDDOM_SCALE	10	/* (10,000*SCALE)/sec performance guarantee */
77 #define PIDSEL_DOMAINS	rounddown(PID_MAX * PIDDOM_SCALE / PIDDOM_COUNT, ALLPROC_HSIZE)
78 
79 /* Used by libkvm */
80 int allproc_hsize = ALLPROC_HSIZE;
81 
82 LIST_HEAD(pidhashhead, proc);
83 
84 static MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
85 MALLOC_DEFINE(M_SESSION, "session", "session header");
86 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
87 MALLOC_DEFINE(M_LWP, "lwp", "lwp structures");
88 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
89 
90 int ps_showallprocs = 1;
91 static int ps_showallthreads = 1;
92 SYSCTL_INT(_security, OID_AUTO, ps_showallprocs, CTLFLAG_RW,
93     &ps_showallprocs, 0,
94     "Unprivileged processes can see processes with different UID/GID");
95 SYSCTL_INT(_security, OID_AUTO, ps_showallthreads, CTLFLAG_RW,
96     &ps_showallthreads, 0,
97     "Unprivileged processes can see kernel threads");
98 static u_int pid_domain_skips;
99 SYSCTL_UINT(_kern, OID_AUTO, pid_domain_skips, CTLFLAG_RW,
100     &pid_domain_skips, 0,
101     "Number of pid_doms[] skipped");
102 static u_int pid_inner_skips;
103 SYSCTL_UINT(_kern, OID_AUTO, pid_inner_skips, CTLFLAG_RW,
104     &pid_inner_skips, 0,
105     "Number of pid_doms[] skipped");
106 
107 static void orphanpg(struct pgrp *pg);
108 static void proc_makepid(struct proc *p, int random_offset);
109 
110 /*
111  * Process related lists (for proc_token, allproc, allpgrp, and allsess)
112  */
113 typedef struct procglob procglob_t;
114 
115 static procglob_t	procglob[ALLPROC_HSIZE];
116 
117 /*
118  * We try our best to avoid recycling a PID too quickly.  We do this by
119  * storing (uint8_t)time_second in the related pid domain on-reap and then
120  * using that to skip-over the domain on-allocate.
121  *
122  * This array has to be fairly large to support a high fork/exec rate.
123  * A ~100,000 entry array will support a 10-second reuse latency at
124  * 10,000 execs/second, worst case.  Best-case multiply by PIDDOM_COUNT
125  * (approximately 100,000 execs/second).
126  *
127  * Currently we allocate around a megabyte, making the worst-case fork
128  * rate around 100,000/second.
129  */
130 static uint8_t *pid_doms;
131 
132 /*
133  * Random component to nextpid generation.  We mix in a random factor to make
134  * it a little harder to predict.  We sanity check the modulus value to avoid
135  * doing it in critical paths.  Don't let it be too small or we pointlessly
136  * waste randomness entropy, and don't let it be impossibly large.  Using a
137  * modulus that is too big causes a LOT more process table scans and slows
138  * down fork processing as the pidchecked caching is defeated.
139  */
140 static int randompid = 0;
141 
142 static __inline
143 struct ucred *
144 pcredcache(struct ucred *cr, struct proc *p)
145 {
146 	if (cr != p->p_ucred) {
147 		if (cr)
148 			crfree(cr);
149 		spin_lock(&p->p_spin);
150 		if ((cr = p->p_ucred) != NULL)
151 			crhold(cr);
152 		spin_unlock(&p->p_spin);
153 	}
154 	return cr;
155 }
156 
157 /*
158  * No requirements.
159  */
160 static int
161 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
162 {
163 	int error, pid;
164 
165 	pid = randompid;
166 	error = sysctl_handle_int(oidp, &pid, 0, req);
167 	if (error || !req->newptr)
168 		return (error);
169 	if (pid < 0 || pid > PID_MAX - 100)     /* out of range */
170 		pid = PID_MAX - 100;
171 	else if (pid < 2)                       /* NOP */
172 		pid = 0;
173 	else if (pid < 100)                     /* Make it reasonable */
174 		pid = 100;
175 	randompid = pid;
176 	return (error);
177 }
178 
179 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
180 	    0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
181 
182 /*
183  * Initialize global process hashing structures.
184  *
185  * These functions are ONLY called from the low level boot code and do
186  * not lock their operations.
187  */
188 void
189 procinit(void)
190 {
191 	u_long i;
192 
193 	/*
194 	 * Allocate dynamically.  This array can be large (~1MB) so don't
195 	 * waste boot loader space.
196 	 */
197 	pid_doms = kmalloc(sizeof(pid_doms[0]) * PIDSEL_DOMAINS,
198 			   M_PROC, M_WAITOK | M_ZERO);
199 
200 	/*
201 	 * Avoid unnecessary stalls due to pid_doms[] values all being
202 	 * the same.  Make sure that the allocation of pid 1 and pid 2
203 	 * succeeds.
204 	 */
205 	for (i = 0; i < PIDSEL_DOMAINS; ++i)
206 		pid_doms[i] = (int8_t)i - (int8_t)(PIDDOM_DELAY + 1);
207 
208 	/*
209 	 * Other misc init.
210 	 */
211 	for (i = 0; i < ALLPROC_HSIZE; ++i) {
212 		procglob_t *prg = &procglob[i];
213 		LIST_INIT(&prg->allproc);
214 		LIST_INIT(&prg->allsess);
215 		LIST_INIT(&prg->allpgrp);
216 		lwkt_token_init(&prg->proc_token, "allproc");
217 	}
218 	uihashinit();
219 }
220 
221 void
222 procinsertinit(struct proc *p)
223 {
224 	LIST_INSERT_HEAD(&procglob[ALLPROC_HASH(p->p_pid)].allproc,
225 			 p, p_list);
226 }
227 
228 void
229 pgrpinsertinit(struct pgrp *pg)
230 {
231 	LIST_INSERT_HEAD(&procglob[ALLPROC_HASH(pg->pg_id)].allpgrp,
232 			 pg, pg_list);
233 }
234 
235 void
236 sessinsertinit(struct session *sess)
237 {
238 	LIST_INSERT_HEAD(&procglob[ALLPROC_HASH(sess->s_sid)].allsess,
239 			 sess, s_list);
240 }
241 
242 /*
243  * Process hold/release support functions.  Called via the PHOLD(),
244  * PRELE(), and PSTALL() macros.
245  *
246  * p->p_lock is a simple hold count with a waiting interlock.  No wakeup()
247  * is issued unless someone is actually waiting for the process.
248  *
249  * Most holds are short-term, allowing a process scan or other similar
250  * operation to access a proc structure without it getting ripped out from
251  * under us.  procfs and process-list sysctl ops also use the hold function
252  * interlocked with various p_flags to keep the vmspace intact when reading
253  * or writing a user process's address space.
254  *
255  * There are two situations where a hold count can be longer.  Exiting lwps
256  * hold the process until the lwp is reaped, and the parent will hold the
257  * child during vfork()/exec() sequences while the child is marked P_PPWAIT.
258  *
259  * The kernel waits for the hold count to drop to 0 (or 1 in some cases) at
260  * various critical points in the fork/exec and exit paths before proceeding.
261  */
262 #define PLOCK_ZOMB	0x20000000
263 #define PLOCK_WAITING	0x40000000
264 #define PLOCK_MASK	0x1FFFFFFF
265 
266 void
267 pstall(struct proc *p, const char *wmesg, int count)
268 {
269 	int o;
270 	int n;
271 
272 	for (;;) {
273 		o = p->p_lock;
274 		cpu_ccfence();
275 		if ((o & PLOCK_MASK) <= count)
276 			break;
277 		n = o | PLOCK_WAITING;
278 		tsleep_interlock(&p->p_lock, 0);
279 
280 		/*
281 		 * If someone is trying to single-step the process during
282 		 * an exec or an exit they can deadlock us because procfs
283 		 * sleeps with the process held.
284 		 */
285 		if (p->p_stops) {
286 			if (p->p_flags & P_INEXEC) {
287 				wakeup(&p->p_stype);
288 			} else if (p->p_flags & P_POSTEXIT) {
289 				spin_lock(&p->p_spin);
290 				p->p_stops = 0;
291 				p->p_step = 0;
292 				spin_unlock(&p->p_spin);
293 				wakeup(&p->p_stype);
294 			}
295 		}
296 
297 		if (atomic_cmpset_int(&p->p_lock, o, n)) {
298 			tsleep(&p->p_lock, PINTERLOCKED, wmesg, 0);
299 		}
300 	}
301 }
302 
303 void
304 phold(struct proc *p)
305 {
306 	atomic_add_int(&p->p_lock, 1);
307 }
308 
309 /*
310  * WARNING!  On last release (p) can become instantly invalid due to
311  *	     MP races.
312  */
313 void
314 prele(struct proc *p)
315 {
316 	int o;
317 	int n;
318 
319 	/*
320 	 * Fast path
321 	 */
322 	if (atomic_cmpset_int(&p->p_lock, 1, 0))
323 		return;
324 
325 	/*
326 	 * Slow path
327 	 */
328 	for (;;) {
329 		o = p->p_lock;
330 		KKASSERT((o & PLOCK_MASK) > 0);
331 		cpu_ccfence();
332 		n = (o - 1) & ~PLOCK_WAITING;
333 		if (atomic_cmpset_int(&p->p_lock, o, n)) {
334 			if (o & PLOCK_WAITING)
335 				wakeup(&p->p_lock);
336 			break;
337 		}
338 	}
339 }
340 
341 /*
342  * Hold and flag serialized for zombie reaping purposes.
343  *
344  * This function will fail if it has to block, returning non-zero with
345  * neither the flag set or the hold count bumped.  Note that (p) may
346  * not be valid in this case if the caller does not have some other
347  * reference on (p).
348  *
349  * This function does not block on other PHOLD()s, only on other
350  * PHOLDZOMB()s.
351  *
352  * Zero is returned on success.  The hold count will be incremented and
353  * the serialization flag acquired.  Note that serialization is only against
354  * other pholdzomb() calls, not against phold() calls.
355  */
356 int
357 pholdzomb(struct proc *p)
358 {
359 	int o;
360 	int n;
361 
362 	/*
363 	 * Fast path
364 	 */
365 	if (atomic_cmpset_int(&p->p_lock, 0, PLOCK_ZOMB | 1))
366 		return(0);
367 
368 	/*
369 	 * Slow path
370 	 */
371 	for (;;) {
372 		o = p->p_lock;
373 		cpu_ccfence();
374 		if ((o & PLOCK_ZOMB) == 0) {
375 			n = (o + 1) | PLOCK_ZOMB;
376 			if (atomic_cmpset_int(&p->p_lock, o, n))
377 				return(0);
378 		} else {
379 			KKASSERT((o & PLOCK_MASK) > 0);
380 			n = o | PLOCK_WAITING;
381 			tsleep_interlock(&p->p_lock, 0);
382 			if (atomic_cmpset_int(&p->p_lock, o, n)) {
383 				tsleep(&p->p_lock, PINTERLOCKED, "phldz", 0);
384 				/* (p) can be ripped out at this point */
385 				return(1);
386 			}
387 		}
388 	}
389 }
390 
391 /*
392  * Release PLOCK_ZOMB and the hold count, waking up any waiters.
393  *
394  * WARNING!  On last release (p) can become instantly invalid due to
395  *	     MP races.
396  */
397 void
398 prelezomb(struct proc *p)
399 {
400 	int o;
401 	int n;
402 
403 	/*
404 	 * Fast path
405 	 */
406 	if (atomic_cmpset_int(&p->p_lock, PLOCK_ZOMB | 1, 0))
407 		return;
408 
409 	/*
410 	 * Slow path
411 	 */
412 	KKASSERT(p->p_lock & PLOCK_ZOMB);
413 	for (;;) {
414 		o = p->p_lock;
415 		KKASSERT((o & PLOCK_MASK) > 0);
416 		cpu_ccfence();
417 		n = (o - 1) & ~(PLOCK_ZOMB | PLOCK_WAITING);
418 		if (atomic_cmpset_int(&p->p_lock, o, n)) {
419 			if (o & PLOCK_WAITING)
420 				wakeup(&p->p_lock);
421 			break;
422 		}
423 	}
424 }
425 
426 /*
427  * Is p an inferior of the current process?
428  *
429  * No requirements.
430  */
431 int
432 inferior(struct proc *p)
433 {
434 	struct proc *p2;
435 
436 	PHOLD(p);
437 	lwkt_gettoken_shared(&p->p_token);
438 	while (p != curproc) {
439 		if (p->p_pid == 0) {
440 			lwkt_reltoken(&p->p_token);
441 			return (0);
442 		}
443 		p2 = p->p_pptr;
444 		PHOLD(p2);
445 		lwkt_reltoken(&p->p_token);
446 		PRELE(p);
447 		lwkt_gettoken_shared(&p2->p_token);
448 		p = p2;
449 	}
450 	lwkt_reltoken(&p->p_token);
451 	PRELE(p);
452 
453 	return (1);
454 }
455 
456 /*
457  * Locate a process by number.  The returned process will be referenced and
458  * must be released with PRELE().
459  *
460  * No requirements.
461  */
462 struct proc *
463 pfind(pid_t pid)
464 {
465 	struct proc *p = curproc;
466 	procglob_t *prg;
467 	int n;
468 
469 	/*
470 	 * Shortcut the current process
471 	 */
472 	if (p && p->p_pid == pid) {
473 		PHOLD(p);
474 		return (p);
475 	}
476 
477 	/*
478 	 * Otherwise find it in the hash table.
479 	 */
480 	n = ALLPROC_HASH(pid);
481 	prg = &procglob[n];
482 
483 	lwkt_gettoken_shared(&prg->proc_token);
484 	LIST_FOREACH(p, &prg->allproc, p_list) {
485 		if (p->p_stat == SZOMB)
486 			continue;
487 		if (p->p_pid == pid) {
488 			PHOLD(p);
489 			lwkt_reltoken(&prg->proc_token);
490 			return (p);
491 		}
492 	}
493 	lwkt_reltoken(&prg->proc_token);
494 
495 	return (NULL);
496 }
497 
498 /*
499  * Locate a process by number.  The returned process is NOT referenced.
500  * The result will not be stable and is typically only used to validate
501  * against a process that the caller has in-hand.
502  *
503  * No requirements.
504  */
505 struct proc *
506 pfindn(pid_t pid)
507 {
508 	struct proc *p = curproc;
509 	procglob_t *prg;
510 	int n;
511 
512 	/*
513 	 * Shortcut the current process
514 	 */
515 	if (p && p->p_pid == pid)
516 		return (p);
517 
518 	/*
519 	 * Otherwise find it in the hash table.
520 	 */
521 	n = ALLPROC_HASH(pid);
522 	prg = &procglob[n];
523 
524 	lwkt_gettoken_shared(&prg->proc_token);
525 	LIST_FOREACH(p, &prg->allproc, p_list) {
526 		if (p->p_stat == SZOMB)
527 			continue;
528 		if (p->p_pid == pid) {
529 			lwkt_reltoken(&prg->proc_token);
530 			return (p);
531 		}
532 	}
533 	lwkt_reltoken(&prg->proc_token);
534 
535 	return (NULL);
536 }
537 
538 /*
539  * Locate a process on the zombie list.  Return a process or NULL.
540  * The returned process will be referenced and the caller must release
541  * it with PRELE().
542  *
543  * No other requirements.
544  */
545 struct proc *
546 zpfind(pid_t pid)
547 {
548 	struct proc *p = curproc;
549 	procglob_t *prg;
550 	int n;
551 
552 	/*
553 	 * Shortcut the current process
554 	 */
555 	if (p && p->p_pid == pid) {
556 		PHOLD(p);
557 		return (p);
558 	}
559 
560 	/*
561 	 * Otherwise find it in the hash table.
562 	 */
563 	n = ALLPROC_HASH(pid);
564 	prg = &procglob[n];
565 
566 	lwkt_gettoken_shared(&prg->proc_token);
567 	LIST_FOREACH(p, &prg->allproc, p_list) {
568 		if (p->p_stat != SZOMB)
569 			continue;
570 		if (p->p_pid == pid) {
571 			PHOLD(p);
572 			lwkt_reltoken(&prg->proc_token);
573 			return (p);
574 		}
575 	}
576 	lwkt_reltoken(&prg->proc_token);
577 
578 	return (NULL);
579 }
580 
581 
582 void
583 pgref(struct pgrp *pgrp)
584 {
585 	refcount_acquire(&pgrp->pg_refs);
586 }
587 
588 void
589 pgrel(struct pgrp *pgrp)
590 {
591 	procglob_t *prg;
592 	int count;
593 	int n;
594 
595 	n = PGRP_HASH(pgrp->pg_id);
596 	prg = &procglob[n];
597 
598 	for (;;) {
599 		count = pgrp->pg_refs;
600 		cpu_ccfence();
601 		KKASSERT(count > 0);
602 		if (count == 1) {
603 			lwkt_gettoken(&prg->proc_token);
604 			if (atomic_cmpset_int(&pgrp->pg_refs, 1, 0))
605 				break;
606 			lwkt_reltoken(&prg->proc_token);
607 			/* retry */
608 		} else {
609 			if (atomic_cmpset_int(&pgrp->pg_refs, count, count - 1))
610 				return;
611 			/* retry */
612 		}
613 	}
614 
615 	/*
616 	 * Successful 1->0 transition, pghash_spin is held.
617 	 */
618 	LIST_REMOVE(pgrp, pg_list);
619 	if (pid_doms[pgrp->pg_id % PIDSEL_DOMAINS] != (uint8_t)time_second)
620 		pid_doms[pgrp->pg_id % PIDSEL_DOMAINS] = (uint8_t)time_second;
621 
622 	/*
623 	 * Reset any sigio structures pointing to us as a result of
624 	 * F_SETOWN with our pgid.
625 	 */
626 	funsetownlst(&pgrp->pg_sigiolst);
627 
628 	if (pgrp->pg_session->s_ttyp != NULL &&
629 	    pgrp->pg_session->s_ttyp->t_pgrp == pgrp) {
630 		pgrp->pg_session->s_ttyp->t_pgrp = NULL;
631 	}
632 	lwkt_reltoken(&prg->proc_token);
633 
634 	sess_rele(pgrp->pg_session);
635 	kfree(pgrp, M_PGRP);
636 }
637 
638 /*
639  * Locate a process group by number.  The returned process group will be
640  * referenced w/pgref() and must be released with pgrel() (or assigned
641  * somewhere if you wish to keep the reference).
642  *
643  * No requirements.
644  */
645 struct pgrp *
646 pgfind(pid_t pgid)
647 {
648 	struct pgrp *pgrp;
649 	procglob_t *prg;
650 	int n;
651 
652 	n = PGRP_HASH(pgid);
653 	prg = &procglob[n];
654 	lwkt_gettoken_shared(&prg->proc_token);
655 
656 	LIST_FOREACH(pgrp, &prg->allpgrp, pg_list) {
657 		if (pgrp->pg_id == pgid) {
658 			refcount_acquire(&pgrp->pg_refs);
659 			lwkt_reltoken(&prg->proc_token);
660 			return (pgrp);
661 		}
662 	}
663 	lwkt_reltoken(&prg->proc_token);
664 	return (NULL);
665 }
666 
667 /*
668  * Move p to a new or existing process group (and session)
669  *
670  * No requirements.
671  */
672 int
673 enterpgrp(struct proc *p, pid_t pgid, int mksess)
674 {
675 	struct pgrp *pgrp;
676 	struct pgrp *opgrp;
677 	int error;
678 
679 	pgrp = pgfind(pgid);
680 
681 	KASSERT(pgrp == NULL || !mksess,
682 		("enterpgrp: setsid into non-empty pgrp"));
683 	KASSERT(!SESS_LEADER(p),
684 		("enterpgrp: session leader attempted setpgrp"));
685 
686 	if (pgrp == NULL) {
687 		pid_t savepid = p->p_pid;
688 		struct proc *np;
689 		procglob_t *prg;
690 		int n;
691 
692 		/*
693 		 * new process group
694 		 */
695 		KASSERT(p->p_pid == pgid,
696 			("enterpgrp: new pgrp and pid != pgid"));
697 		pgrp = kmalloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
698 		pgrp->pg_id = pgid;
699 		LIST_INIT(&pgrp->pg_members);
700 		pgrp->pg_jobc = 0;
701 		SLIST_INIT(&pgrp->pg_sigiolst);
702 		lwkt_token_init(&pgrp->pg_token, "pgrp_token");
703 		refcount_init(&pgrp->pg_refs, 1);
704 		lockinit(&pgrp->pg_lock, "pgwt", 0, 0);
705 
706 		n = PGRP_HASH(pgid);
707 		prg = &procglob[n];
708 
709 		if ((np = pfindn(savepid)) == NULL || np != p) {
710 			lwkt_reltoken(&prg->proc_token);
711 			error = ESRCH;
712 			kfree(pgrp, M_PGRP);
713 			goto fatal;
714 		}
715 
716 		lwkt_gettoken(&prg->proc_token);
717 		if (mksess) {
718 			struct session *sess;
719 
720 			/*
721 			 * new session
722 			 */
723 			sess = kmalloc(sizeof(struct session), M_SESSION,
724 				       M_WAITOK | M_ZERO);
725 			lwkt_gettoken(&p->p_token);
726 			sess->s_prg = prg;
727 			sess->s_leader = p;
728 			sess->s_sid = p->p_pid;
729 			sess->s_count = 1;
730 			sess->s_ttyvp = NULL;
731 			sess->s_ttyp = NULL;
732 			bcopy(p->p_session->s_login, sess->s_login,
733 			      sizeof(sess->s_login));
734 			pgrp->pg_session = sess;
735 			KASSERT(p == curproc,
736 				("enterpgrp: mksession and p != curproc"));
737 			p->p_flags &= ~P_CONTROLT;
738 			LIST_INSERT_HEAD(&prg->allsess, sess, s_list);
739 			lwkt_reltoken(&p->p_token);
740 		} else {
741 			lwkt_gettoken(&p->p_token);
742 			pgrp->pg_session = p->p_session;
743 			sess_hold(pgrp->pg_session);
744 			lwkt_reltoken(&p->p_token);
745 		}
746 		LIST_INSERT_HEAD(&prg->allpgrp, pgrp, pg_list);
747 
748 		lwkt_reltoken(&prg->proc_token);
749 	} else if (pgrp == p->p_pgrp) {
750 		pgrel(pgrp);
751 		goto done;
752 	} /* else pgfind() referenced the pgrp */
753 
754 	lwkt_gettoken(&pgrp->pg_token);
755 	lwkt_gettoken(&p->p_token);
756 
757 	/*
758 	 * Replace p->p_pgrp, handling any races that occur.
759 	 */
760 	while ((opgrp = p->p_pgrp) != NULL) {
761 		pgref(opgrp);
762 		lwkt_gettoken(&opgrp->pg_token);
763 		if (opgrp != p->p_pgrp) {
764 			lwkt_reltoken(&opgrp->pg_token);
765 			pgrel(opgrp);
766 			continue;
767 		}
768 		LIST_REMOVE(p, p_pglist);
769 		break;
770 	}
771 	p->p_pgrp = pgrp;
772 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
773 
774 	/*
775 	 * Adjust eligibility of affected pgrps to participate in job control.
776 	 * Increment eligibility counts before decrementing, otherwise we
777 	 * could reach 0 spuriously during the first call.
778 	 */
779 	fixjobc(p, pgrp, 1);
780 	if (opgrp) {
781 		fixjobc(p, opgrp, 0);
782 		lwkt_reltoken(&opgrp->pg_token);
783 		pgrel(opgrp);	/* manual pgref */
784 		pgrel(opgrp);	/* p->p_pgrp ref */
785 	}
786 	lwkt_reltoken(&p->p_token);
787 	lwkt_reltoken(&pgrp->pg_token);
788 done:
789 	error = 0;
790 fatal:
791 	return (error);
792 }
793 
794 /*
795  * Remove process from process group
796  *
797  * No requirements.
798  */
799 int
800 leavepgrp(struct proc *p)
801 {
802 	struct pgrp *pg = p->p_pgrp;
803 
804 	lwkt_gettoken(&p->p_token);
805 	while ((pg = p->p_pgrp) != NULL) {
806 		pgref(pg);
807 		lwkt_gettoken(&pg->pg_token);
808 		if (p->p_pgrp != pg) {
809 			lwkt_reltoken(&pg->pg_token);
810 			pgrel(pg);
811 			continue;
812 		}
813 		p->p_pgrp = NULL;
814 		LIST_REMOVE(p, p_pglist);
815 		lwkt_reltoken(&pg->pg_token);
816 		pgrel(pg);	/* manual pgref */
817 		pgrel(pg);	/* p->p_pgrp ref */
818 		break;
819 	}
820 	lwkt_reltoken(&p->p_token);
821 
822 	return (0);
823 }
824 
825 /*
826  * Adjust the ref count on a session structure.  When the ref count falls to
827  * zero the tty is disassociated from the session and the session structure
828  * is freed.  Note that tty assocation is not itself ref-counted.
829  *
830  * No requirements.
831  */
832 void
833 sess_hold(struct session *sp)
834 {
835 	atomic_add_int(&sp->s_count, 1);
836 }
837 
838 /*
839  * No requirements.
840  */
841 void
842 sess_rele(struct session *sess)
843 {
844 	procglob_t *prg;
845 	struct tty *tp;
846 	int count;
847 	int n;
848 
849 	n = SESS_HASH(sess->s_sid);
850 	prg = &procglob[n];
851 
852 	for (;;) {
853 		count = sess->s_count;
854 		cpu_ccfence();
855 		KKASSERT(count > 0);
856 		if (count == 1) {
857 			lwkt_gettoken(&prg->proc_token);
858 			if (atomic_cmpset_int(&sess->s_count, 1, 0))
859 				break;
860 			lwkt_reltoken(&prg->proc_token);
861 			/* retry */
862 		} else {
863 			if (atomic_cmpset_int(&sess->s_count, count, count - 1))
864 				return;
865 			/* retry */
866 		}
867 	}
868 
869 	/*
870 	 * Successful 1->0 transition and prg->proc_token is held.
871 	 */
872 	LIST_REMOVE(sess, s_list);
873 	if (pid_doms[sess->s_sid % PIDSEL_DOMAINS] != (uint8_t)time_second)
874 		pid_doms[sess->s_sid % PIDSEL_DOMAINS] = (uint8_t)time_second;
875 
876 	if (sess->s_ttyp && sess->s_ttyp->t_session) {
877 #ifdef TTY_DO_FULL_CLOSE
878 		/* FULL CLOSE, see ttyclearsession() */
879 		KKASSERT(sess->s_ttyp->t_session == sess);
880 		sess->s_ttyp->t_session = NULL;
881 #else
882 		/* HALF CLOSE, see ttyclearsession() */
883 		if (sess->s_ttyp->t_session == sess)
884 			sess->s_ttyp->t_session = NULL;
885 #endif
886 	}
887 	if ((tp = sess->s_ttyp) != NULL) {
888 		sess->s_ttyp = NULL;
889 		ttyunhold(tp);
890 	}
891 	lwkt_reltoken(&prg->proc_token);
892 
893 	kfree(sess, M_SESSION);
894 }
895 
896 /*
897  * Adjust pgrp jobc counters when specified process changes process group.
898  * We count the number of processes in each process group that "qualify"
899  * the group for terminal job control (those with a parent in a different
900  * process group of the same session).  If that count reaches zero, the
901  * process group becomes orphaned.  Check both the specified process'
902  * process group and that of its children.
903  * entering == 0 => p is leaving specified group.
904  * entering == 1 => p is entering specified group.
905  *
906  * No requirements.
907  */
908 void
909 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
910 {
911 	struct pgrp *hispgrp;
912 	struct session *mysession;
913 	struct proc *np;
914 
915 	/*
916 	 * Check p's parent to see whether p qualifies its own process
917 	 * group; if so, adjust count for p's process group.
918 	 */
919 	lwkt_gettoken(&p->p_token);	/* p_children scan */
920 	lwkt_gettoken(&pgrp->pg_token);
921 
922 	mysession = pgrp->pg_session;
923 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
924 	    hispgrp->pg_session == mysession) {
925 		if (entering)
926 			pgrp->pg_jobc++;
927 		else if (--pgrp->pg_jobc == 0)
928 			orphanpg(pgrp);
929 	}
930 
931 	/*
932 	 * Check this process' children to see whether they qualify
933 	 * their process groups; if so, adjust counts for children's
934 	 * process groups.
935 	 */
936 	LIST_FOREACH(np, &p->p_children, p_sibling) {
937 		PHOLD(np);
938 		lwkt_gettoken(&np->p_token);
939 		if ((hispgrp = np->p_pgrp) != pgrp &&
940 		    hispgrp->pg_session == mysession &&
941 		    np->p_stat != SZOMB) {
942 			pgref(hispgrp);
943 			lwkt_gettoken(&hispgrp->pg_token);
944 			if (entering)
945 				hispgrp->pg_jobc++;
946 			else if (--hispgrp->pg_jobc == 0)
947 				orphanpg(hispgrp);
948 			lwkt_reltoken(&hispgrp->pg_token);
949 			pgrel(hispgrp);
950 		}
951 		lwkt_reltoken(&np->p_token);
952 		PRELE(np);
953 	}
954 	KKASSERT(pgrp->pg_refs > 0);
955 	lwkt_reltoken(&pgrp->pg_token);
956 	lwkt_reltoken(&p->p_token);
957 }
958 
959 /*
960  * A process group has become orphaned;
961  * if there are any stopped processes in the group,
962  * hang-up all process in that group.
963  *
964  * The caller must hold pg_token.
965  */
966 static void
967 orphanpg(struct pgrp *pg)
968 {
969 	struct proc *p;
970 
971 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
972 		if (p->p_stat == SSTOP) {
973 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
974 				ksignal(p, SIGHUP);
975 				ksignal(p, SIGCONT);
976 			}
977 			return;
978 		}
979 	}
980 }
981 
982 /*
983  * Add a new process to the allproc list and the PID hash.  This
984  * also assigns a pid to the new process.
985  *
986  * No requirements.
987  */
988 void
989 proc_add_allproc(struct proc *p)
990 {
991 	int random_offset;
992 
993 	if ((random_offset = randompid) != 0) {
994 		read_random(&random_offset, sizeof(random_offset));
995 		random_offset = (random_offset & 0x7FFFFFFF) % randompid;
996 	}
997 	proc_makepid(p, random_offset);
998 }
999 
1000 /*
1001  * Calculate a new process pid.  This function is integrated into
1002  * proc_add_allproc() to guarentee that the new pid is not reused before
1003  * the new process can be added to the allproc list.
1004  *
1005  * p_pid is assigned and the process is added to the allproc hash table
1006  *
1007  * WARNING! We need to allocate PIDs sequentially during early boot.
1008  *	    In particular, init needs to have a pid of 1.
1009  */
1010 static
1011 void
1012 proc_makepid(struct proc *p, int random_offset)
1013 {
1014 	static pid_t nextpid = 1;	/* heuristic, allowed to race */
1015 	procglob_t *prg;
1016 	struct pgrp *pg;
1017 	struct proc *ps;
1018 	struct session *sess;
1019 	pid_t base;
1020 	int8_t delta8;
1021 	int retries;
1022 	int n;
1023 
1024 	/*
1025 	 * Select the next pid base candidate.
1026 	 *
1027 	 * Check cyclement, do not allow a pid < 100.
1028 	 */
1029 	retries = 0;
1030 retry:
1031 	base = atomic_fetchadd_int(&nextpid, 1) + random_offset;
1032 	if (base <= 0 || base >= PID_MAX) {
1033 		base = base % PID_MAX;
1034 		if (base < 0)
1035 			base = 100;
1036 		if (base < 100)
1037 			base += 100;
1038 		nextpid = base;		/* reset (SMP race ok) */
1039 	}
1040 
1041 	/*
1042 	 * Do not allow a base pid to be selected from a domain that has
1043 	 * recently seen a pid/pgid/sessid reap.  Sleep a little if we looped
1044 	 * through all available domains.
1045 	 *
1046 	 * WARNING: We want the early pids to be allocated linearly,
1047 	 *	    particularly pid 1 and pid 2.
1048 	 */
1049 	if (++retries >= PIDSEL_DOMAINS)
1050 		tsleep(&nextpid, 0, "makepid", 1);
1051 	if (base >= 100) {
1052 		delta8 = (int8_t)time_second -
1053 			 (int8_t)pid_doms[base % PIDSEL_DOMAINS];
1054 		if (delta8 >= 0 && delta8 <= PIDDOM_DELAY) {
1055 			++pid_domain_skips;
1056 			goto retry;
1057 		}
1058 	}
1059 
1060 	/*
1061 	 * Calculate a hash index and find an unused process id within
1062 	 * the table, looping if we cannot find one.
1063 	 *
1064 	 * The inner loop increments by ALLPROC_HSIZE which keeps the
1065 	 * PID at the same pid_doms[] index as well as the same hash index.
1066 	 */
1067 	n = ALLPROC_HASH(base);
1068 	prg = &procglob[n];
1069 	lwkt_gettoken(&prg->proc_token);
1070 
1071 restart1:
1072 	LIST_FOREACH(ps, &prg->allproc, p_list) {
1073 		if (ps->p_pid == base) {
1074 			base += ALLPROC_HSIZE;
1075 			if (base >= PID_MAX) {
1076 				lwkt_reltoken(&prg->proc_token);
1077 				goto retry;
1078 			}
1079 			++pid_inner_skips;
1080 			goto restart1;
1081 		}
1082 	}
1083 	LIST_FOREACH(pg, &prg->allpgrp, pg_list) {
1084 		if (pg->pg_id == base) {
1085 			base += ALLPROC_HSIZE;
1086 			if (base >= PID_MAX) {
1087 				lwkt_reltoken(&prg->proc_token);
1088 				goto retry;
1089 			}
1090 			++pid_inner_skips;
1091 			goto restart1;
1092 		}
1093 	}
1094 	LIST_FOREACH(sess, &prg->allsess, s_list) {
1095 		if (sess->s_sid == base) {
1096 			base += ALLPROC_HSIZE;
1097 			if (base >= PID_MAX) {
1098 				lwkt_reltoken(&prg->proc_token);
1099 				goto retry;
1100 			}
1101 			++pid_inner_skips;
1102 			goto restart1;
1103 		}
1104 	}
1105 
1106 	/*
1107 	 * Assign the pid and insert the process.
1108 	 */
1109 	p->p_pid = base;
1110 	LIST_INSERT_HEAD(&prg->allproc, p, p_list);
1111 	lwkt_reltoken(&prg->proc_token);
1112 }
1113 
1114 /*
1115  * Called from exit1 to place the process into a zombie state.
1116  * The process is removed from the pid hash and p_stat is set
1117  * to SZOMB.  Normal pfind[n]() calls will not find it any more.
1118  *
1119  * Caller must hold p->p_token.  We are required to wait until p_lock
1120  * becomes zero before we can manipulate the list, allowing allproc
1121  * scans to guarantee consistency during a list scan.
1122  */
1123 void
1124 proc_move_allproc_zombie(struct proc *p)
1125 {
1126 	procglob_t *prg;
1127 	int n;
1128 
1129 	n = ALLPROC_HASH(p->p_pid);
1130 	prg = &procglob[n];
1131 	PSTALL(p, "reap1", 0);
1132 	lwkt_gettoken(&prg->proc_token);
1133 
1134 	PSTALL(p, "reap1a", 0);
1135 	p->p_stat = SZOMB;
1136 
1137 	lwkt_reltoken(&prg->proc_token);
1138 	dsched_exit_proc(p);
1139 }
1140 
1141 /*
1142  * This routine is called from kern_wait() and will remove the process
1143  * from the zombie list and the sibling list.  This routine will block
1144  * if someone has a lock on the proces (p_lock).
1145  *
1146  * Caller must hold p->p_token.  We are required to wait until p_lock
1147  * becomes one before we can manipulate the list, allowing allproc
1148  * scans to guarantee consistency during a list scan.
1149  *
1150  * Assumes caller has one ref.
1151  */
1152 void
1153 proc_remove_zombie(struct proc *p)
1154 {
1155 	procglob_t *prg;
1156 	int n;
1157 
1158 	n = ALLPROC_HASH(p->p_pid);
1159 	prg = &procglob[n];
1160 
1161 	PSTALL(p, "reap2", 1);
1162 	lwkt_gettoken(&prg->proc_token);
1163 	PSTALL(p, "reap2a", 1);
1164 	LIST_REMOVE(p, p_list);		/* from remove master list */
1165 	LIST_REMOVE(p, p_sibling);	/* and from sibling list */
1166 	p->p_pptr = NULL;
1167 	p->p_ppid = 0;
1168 	if (pid_doms[p->p_pid % PIDSEL_DOMAINS] != (uint8_t)time_second)
1169 		pid_doms[p->p_pid % PIDSEL_DOMAINS] = (uint8_t)time_second;
1170 	lwkt_reltoken(&prg->proc_token);
1171 }
1172 
1173 /*
1174  * Handle various requirements prior to returning to usermode.  Called from
1175  * platform trap and system call code.
1176  */
1177 void
1178 lwpuserret(struct lwp *lp)
1179 {
1180 	struct proc *p = lp->lwp_proc;
1181 
1182 	if (lp->lwp_mpflags & LWP_MP_VNLRU) {
1183 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_VNLRU);
1184 		allocvnode_gc();
1185 	}
1186 	if (lp->lwp_mpflags & LWP_MP_WEXIT) {
1187 		lwkt_gettoken(&p->p_token);
1188 		lwp_exit(0, NULL);
1189 		lwkt_reltoken(&p->p_token);     /* NOT REACHED */
1190 	}
1191 }
1192 
1193 /*
1194  * Kernel threads run from user processes can also accumulate deferred
1195  * actions which need to be acted upon.  Callers include:
1196  *
1197  * nfsd		- Can allocate lots of vnodes
1198  */
1199 void
1200 lwpkthreaddeferred(void)
1201 {
1202 	struct lwp *lp = curthread->td_lwp;
1203 
1204 	if (lp) {
1205 		if (lp->lwp_mpflags & LWP_MP_VNLRU) {
1206 			atomic_clear_int(&lp->lwp_mpflags, LWP_MP_VNLRU);
1207 			allocvnode_gc();
1208 		}
1209 	}
1210 }
1211 
1212 void
1213 proc_usermap(struct proc *p, int invfork)
1214 {
1215 	struct sys_upmap *upmap;
1216 
1217 	lwkt_gettoken(&p->p_token);
1218 	upmap = kmalloc(roundup2(sizeof(*upmap), PAGE_SIZE), M_PROC,
1219 			M_WAITOK | M_ZERO);
1220 	if (p->p_upmap == NULL) {
1221 		upmap->header[0].type = UKPTYPE_VERSION;
1222 		upmap->header[0].offset = offsetof(struct sys_upmap, version);
1223 		upmap->header[1].type = UPTYPE_RUNTICKS;
1224 		upmap->header[1].offset = offsetof(struct sys_upmap, runticks);
1225 		upmap->header[2].type = UPTYPE_FORKID;
1226 		upmap->header[2].offset = offsetof(struct sys_upmap, forkid);
1227 		upmap->header[3].type = UPTYPE_PID;
1228 		upmap->header[3].offset = offsetof(struct sys_upmap, pid);
1229 		upmap->header[4].type = UPTYPE_PROC_TITLE;
1230 		upmap->header[4].offset = offsetof(struct sys_upmap,proc_title);
1231 		upmap->header[5].type = UPTYPE_INVFORK;
1232 		upmap->header[5].offset = offsetof(struct sys_upmap, invfork);
1233 
1234 		upmap->version = UPMAP_VERSION;
1235 		upmap->pid = p->p_pid;
1236 		upmap->forkid = p->p_forkid;
1237 		upmap->invfork = invfork;
1238 		p->p_upmap = upmap;
1239 	} else {
1240 		kfree(upmap, M_PROC);
1241 	}
1242 	lwkt_reltoken(&p->p_token);
1243 }
1244 
1245 void
1246 proc_userunmap(struct proc *p)
1247 {
1248 	struct sys_upmap *upmap;
1249 
1250 	lwkt_gettoken(&p->p_token);
1251 	if ((upmap = p->p_upmap) != NULL) {
1252 		p->p_upmap = NULL;
1253 		kfree(upmap, M_PROC);
1254 	}
1255 	lwkt_reltoken(&p->p_token);
1256 }
1257 
1258 /*
1259  * Scan all processes on the allproc list.  The process is automatically
1260  * held for the callback.  A return value of -1 terminates the loop.
1261  * Zombie procs are skipped.
1262  *
1263  * The callback is made with the process held and proc_token held.
1264  *
1265  * We limit the scan to the number of processes as-of the start of
1266  * the scan so as not to get caught up in an endless loop if new processes
1267  * are created more quickly than we can scan the old ones.  Add a little
1268  * slop to try to catch edge cases since nprocs can race.
1269  *
1270  * No requirements.
1271  */
1272 void
1273 allproc_scan(int (*callback)(struct proc *, void *), void *data, int segmented)
1274 {
1275 	int limit = nprocs + ncpus;
1276 	struct proc *p;
1277 	int ns;
1278 	int ne;
1279 	int r;
1280 	int n;
1281 
1282 	if (segmented) {
1283 		int id = mycpu->gd_cpuid;
1284 		ns = id * ALLPROC_HSIZE / ncpus;
1285 		ne = (id + 1) * ALLPROC_HSIZE / ncpus;
1286 	} else {
1287 		ns = 0;
1288 		ne = ALLPROC_HSIZE;
1289 	}
1290 
1291 	/*
1292 	 * prg->proc_token protects the allproc list and PHOLD() prevents the
1293 	 * process from being removed from the allproc list or the zombproc
1294 	 * list.
1295 	 */
1296 	for (n = ns; n < ne; ++n) {
1297 		procglob_t *prg = &procglob[n];
1298 		if (LIST_FIRST(&prg->allproc) == NULL)
1299 			continue;
1300 		lwkt_gettoken(&prg->proc_token);
1301 		LIST_FOREACH(p, &prg->allproc, p_list) {
1302 			if (p->p_stat == SZOMB)
1303 				continue;
1304 			PHOLD(p);
1305 			r = callback(p, data);
1306 			PRELE(p);
1307 			if (r < 0)
1308 				break;
1309 			if (--limit < 0)
1310 				break;
1311 		}
1312 		lwkt_reltoken(&prg->proc_token);
1313 
1314 		/*
1315 		 * Check if asked to stop early
1316 		 */
1317 		if (p)
1318 			break;
1319 	}
1320 }
1321 
1322 /*
1323  * Scan all lwps of processes on the allproc list.  The lwp is automatically
1324  * held for the callback.  A return value of -1 terminates the loop.
1325  *
1326  * The callback is made with the proces and lwp both held, and proc_token held.
1327  *
1328  * No requirements.
1329  */
1330 void
1331 alllwp_scan(int (*callback)(struct lwp *, void *), void *data, int segmented)
1332 {
1333 	struct proc *p;
1334 	struct lwp *lp;
1335 	int ns;
1336 	int ne;
1337 	int r = 0;
1338 	int n;
1339 
1340 	if (segmented) {
1341 		int id = mycpu->gd_cpuid;
1342 		ns = id * ALLPROC_HSIZE / ncpus;
1343 		ne = (id + 1) * ALLPROC_HSIZE / ncpus;
1344 	} else {
1345 		ns = 0;
1346 		ne = ALLPROC_HSIZE;
1347 	}
1348 
1349 	for (n = ns; n < ne; ++n) {
1350 		procglob_t *prg = &procglob[n];
1351 
1352 		if (LIST_FIRST(&prg->allproc) == NULL)
1353 			continue;
1354 		lwkt_gettoken(&prg->proc_token);
1355 		LIST_FOREACH(p, &prg->allproc, p_list) {
1356 			if (p->p_stat == SZOMB)
1357 				continue;
1358 			PHOLD(p);
1359 			lwkt_gettoken(&p->p_token);
1360 			FOREACH_LWP_IN_PROC(lp, p) {
1361 				LWPHOLD(lp);
1362 				r = callback(lp, data);
1363 				LWPRELE(lp);
1364 			}
1365 			lwkt_reltoken(&p->p_token);
1366 			PRELE(p);
1367 			if (r < 0)
1368 				break;
1369 		}
1370 		lwkt_reltoken(&prg->proc_token);
1371 
1372 		/*
1373 		 * Asked to exit early
1374 		 */
1375 		if (p)
1376 			break;
1377 	}
1378 }
1379 
1380 /*
1381  * Scan all processes on the zombproc list.  The process is automatically
1382  * held for the callback.  A return value of -1 terminates the loop.
1383  *
1384  * No requirements.
1385  * The callback is made with the proces held and proc_token held.
1386  */
1387 void
1388 zombproc_scan(int (*callback)(struct proc *, void *), void *data)
1389 {
1390 	struct proc *p;
1391 	int r;
1392 	int n;
1393 
1394 	/*
1395 	 * prg->proc_token protects the allproc list and PHOLD() prevents the
1396 	 * process from being removed from the allproc list or the zombproc
1397 	 * list.
1398 	 */
1399 	for (n = 0; n < ALLPROC_HSIZE; ++n) {
1400 		procglob_t *prg = &procglob[n];
1401 
1402 		if (LIST_FIRST(&prg->allproc) == NULL)
1403 			continue;
1404 		lwkt_gettoken(&prg->proc_token);
1405 		LIST_FOREACH(p, &prg->allproc, p_list) {
1406 			if (p->p_stat != SZOMB)
1407 				continue;
1408 			PHOLD(p);
1409 			r = callback(p, data);
1410 			PRELE(p);
1411 			if (r < 0)
1412 				break;
1413 		}
1414 		lwkt_reltoken(&prg->proc_token);
1415 
1416 		/*
1417 		 * Check if asked to stop early
1418 		 */
1419 		if (p)
1420 			break;
1421 	}
1422 }
1423 
1424 #include "opt_ddb.h"
1425 #ifdef DDB
1426 #include <ddb/ddb.h>
1427 
1428 /*
1429  * Debugging only
1430  */
1431 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
1432 {
1433 	struct pgrp *pgrp;
1434 	struct proc *p;
1435 	procglob_t *prg;
1436 	int i;
1437 
1438 	for (i = 0; i < ALLPROC_HSIZE; ++i) {
1439 		prg = &procglob[i];
1440 
1441 		if (LIST_EMPTY(&prg->allpgrp))
1442 			continue;
1443 		kprintf("\tindx %d\n", i);
1444 		LIST_FOREACH(pgrp, &prg->allpgrp, pg_list) {
1445 			kprintf("\tpgrp %p, pgid %ld, sess %p, "
1446 				"sesscnt %d, mem %p\n",
1447 				(void *)pgrp, (long)pgrp->pg_id,
1448 				(void *)pgrp->pg_session,
1449 				pgrp->pg_session->s_count,
1450 				(void *)LIST_FIRST(&pgrp->pg_members));
1451 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1452 				kprintf("\t\tpid %ld addr %p pgrp %p\n",
1453 					(long)p->p_pid, (void *)p,
1454 					(void *)p->p_pgrp);
1455 			}
1456 		}
1457 	}
1458 }
1459 #endif /* DDB */
1460 
1461 /*
1462  * The caller must hold proc_token.
1463  */
1464 static int
1465 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1466 {
1467 	struct kinfo_proc ki;
1468 	struct lwp *lp;
1469 	int skp = 0, had_output = 0;
1470 	int error;
1471 
1472 	bzero(&ki, sizeof(ki));
1473 	lwkt_gettoken_shared(&p->p_token);
1474 	fill_kinfo_proc(p, &ki);
1475 	if ((flags & KERN_PROC_FLAG_LWP) == 0)
1476 		skp = 1;
1477 	error = 0;
1478 	FOREACH_LWP_IN_PROC(lp, p) {
1479 		LWPHOLD(lp);
1480 		fill_kinfo_lwp(lp, &ki.kp_lwp);
1481 		had_output = 1;
1482 		if (skp == 0) {
1483 			error = SYSCTL_OUT(req, &ki, sizeof(ki));
1484 			bzero(&ki.kp_lwp, sizeof(ki.kp_lwp));
1485 		}
1486 		LWPRELE(lp);
1487 		if (error)
1488 			break;
1489 	}
1490 	lwkt_reltoken(&p->p_token);
1491 
1492 	/*
1493 	 * If aggregating threads, set the tid field to -1.
1494 	 */
1495 	if (skp)
1496 		ki.kp_lwp.kl_tid = -1;
1497 
1498 	/*
1499 	 * We need to output at least the proc, even if there is no lwp.
1500 	 * If skp is non-zero we aggregated the lwps and need to output
1501 	 * the result.
1502 	 */
1503 	if (had_output == 0 || skp) {
1504 		error = SYSCTL_OUT(req, &ki, sizeof(ki));
1505 	}
1506 	return (error);
1507 }
1508 
1509 /*
1510  * The caller must hold proc_token.
1511  */
1512 static int
1513 sysctl_out_proc_kthread(struct thread *td, struct sysctl_req *req)
1514 {
1515 	struct kinfo_proc ki;
1516 	int error;
1517 
1518 	fill_kinfo_proc_kthread(td, &ki);
1519 	error = SYSCTL_OUT(req, &ki, sizeof(ki));
1520 	if (error)
1521 		return error;
1522 	return(0);
1523 }
1524 
1525 /*
1526  * No requirements.
1527  */
1528 static int
1529 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1530 {
1531 	int *name = (int *)arg1;
1532 	int oid = oidp->oid_number;
1533 	u_int namelen = arg2;
1534 	struct proc *p;
1535 	struct thread *td;
1536 	struct thread *marker;
1537 	int flags = 0;
1538 	int error = 0;
1539 	int n;
1540 	int origcpu;
1541 	struct ucred *cr1 = curproc->p_ucred;
1542 	struct ucred *crcache = NULL;
1543 
1544 	flags = oid & KERN_PROC_FLAGMASK;
1545 	oid &= ~KERN_PROC_FLAGMASK;
1546 
1547 	if ((oid == KERN_PROC_ALL && namelen != 0) ||
1548 	    (oid != KERN_PROC_ALL && namelen != 1)) {
1549 		return (EINVAL);
1550 	}
1551 
1552 	/*
1553 	 * proc_token protects the allproc list and PHOLD() prevents the
1554 	 * process from being removed from the allproc list or the zombproc
1555 	 * list.
1556 	 */
1557 	if (oid == KERN_PROC_PID) {
1558 		p = pfind((pid_t)name[0]);
1559 		if (p) {
1560 			crcache = pcredcache(crcache, p);
1561 			if (PRISON_CHECK(cr1, crcache))
1562 				error = sysctl_out_proc(p, req, flags);
1563 			PRELE(p);
1564 		}
1565 		goto post_threads;
1566 	}
1567 	p = NULL;
1568 
1569 	if (!req->oldptr) {
1570 		/* overestimate by 5 procs */
1571 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1572 		if (error)
1573 			goto post_threads;
1574 	}
1575 
1576 	for (n = 0; n < ALLPROC_HSIZE; ++n) {
1577 		procglob_t *prg = &procglob[n];
1578 
1579 		if (LIST_EMPTY(&prg->allproc))
1580 			continue;
1581 		lwkt_gettoken_shared(&prg->proc_token);
1582 		LIST_FOREACH(p, &prg->allproc, p_list) {
1583 			/*
1584 			 * Show a user only their processes.
1585 			 */
1586 			if (ps_showallprocs == 0) {
1587 				crcache = pcredcache(crcache, p);
1588 				if (crcache == NULL ||
1589 				    p_trespass(cr1, crcache)) {
1590 					continue;
1591 				}
1592 			}
1593 
1594 			/*
1595 			 * Skip embryonic processes.
1596 			 */
1597 			if (p->p_stat == SIDL)
1598 				continue;
1599 			/*
1600 			 * TODO - make more efficient (see notes below).
1601 			 * do by session.
1602 			 */
1603 			switch (oid) {
1604 			case KERN_PROC_PGRP:
1605 				/* could do this by traversing pgrp */
1606 				if (p->p_pgrp == NULL ||
1607 				    p->p_pgrp->pg_id != (pid_t)name[0])
1608 					continue;
1609 				break;
1610 
1611 			case KERN_PROC_TTY:
1612 				if ((p->p_flags & P_CONTROLT) == 0 ||
1613 				    p->p_session == NULL ||
1614 				    p->p_session->s_ttyp == NULL ||
1615 				    dev2udev(p->p_session->s_ttyp->t_dev) !=
1616 					(udev_t)name[0])
1617 					continue;
1618 				break;
1619 
1620 			case KERN_PROC_UID:
1621 				crcache = pcredcache(crcache, p);
1622 				if (crcache == NULL ||
1623 				    crcache->cr_uid != (uid_t)name[0]) {
1624 					continue;
1625 				}
1626 				break;
1627 
1628 			case KERN_PROC_RUID:
1629 				crcache = pcredcache(crcache, p);
1630 				if (crcache == NULL ||
1631 				    crcache->cr_ruid != (uid_t)name[0]) {
1632 					continue;
1633 				}
1634 				break;
1635 			}
1636 
1637 			crcache = pcredcache(crcache, p);
1638 			if (!PRISON_CHECK(cr1, crcache))
1639 				continue;
1640 			PHOLD(p);
1641 			error = sysctl_out_proc(p, req, flags);
1642 			PRELE(p);
1643 			if (error) {
1644 				lwkt_reltoken(&prg->proc_token);
1645 				goto post_threads;
1646 			}
1647 		}
1648 		lwkt_reltoken(&prg->proc_token);
1649 	}
1650 
1651 	/*
1652 	 * Iterate over all active cpus and scan their thread list.  Start
1653 	 * with the next logical cpu and end with our original cpu.  We
1654 	 * migrate our own thread to each target cpu in order to safely scan
1655 	 * its thread list.  In the last loop we migrate back to our original
1656 	 * cpu.
1657 	 */
1658 	origcpu = mycpu->gd_cpuid;
1659 	if (!ps_showallthreads || jailed(cr1))
1660 		goto post_threads;
1661 
1662 	marker = kmalloc(sizeof(struct thread), M_TEMP, M_WAITOK|M_ZERO);
1663 	marker->td_flags = TDF_MARKER;
1664 	error = 0;
1665 
1666 	for (n = 1; n <= ncpus; ++n) {
1667 		globaldata_t rgd;
1668 		int nid;
1669 
1670 		nid = (origcpu + n) % ncpus;
1671 		if (CPUMASK_TESTBIT(smp_active_mask, nid) == 0)
1672 			continue;
1673 		rgd = globaldata_find(nid);
1674 		lwkt_setcpu_self(rgd);
1675 
1676 		crit_enter();
1677 		TAILQ_INSERT_TAIL(&rgd->gd_tdallq, marker, td_allq);
1678 
1679 		while ((td = TAILQ_PREV(marker, lwkt_queue, td_allq)) != NULL) {
1680 			TAILQ_REMOVE(&rgd->gd_tdallq, marker, td_allq);
1681 			TAILQ_INSERT_BEFORE(td, marker, td_allq);
1682 			if (td->td_flags & TDF_MARKER)
1683 				continue;
1684 			if (td->td_proc)
1685 				continue;
1686 
1687 			lwkt_hold(td);
1688 			crit_exit();
1689 
1690 			switch (oid) {
1691 			case KERN_PROC_PGRP:
1692 			case KERN_PROC_TTY:
1693 			case KERN_PROC_UID:
1694 			case KERN_PROC_RUID:
1695 				break;
1696 			default:
1697 				error = sysctl_out_proc_kthread(td, req);
1698 				break;
1699 			}
1700 			lwkt_rele(td);
1701 			crit_enter();
1702 			if (error)
1703 				break;
1704 		}
1705 		TAILQ_REMOVE(&rgd->gd_tdallq, marker, td_allq);
1706 		crit_exit();
1707 
1708 		if (error)
1709 			break;
1710 	}
1711 
1712 	/*
1713 	 * Userland scheduler expects us to return on the same cpu we
1714 	 * started on.
1715 	 */
1716 	if (mycpu->gd_cpuid != origcpu)
1717 		lwkt_setcpu_self(globaldata_find(origcpu));
1718 
1719 	kfree(marker, M_TEMP);
1720 
1721 post_threads:
1722 	if (crcache)
1723 		crfree(crcache);
1724 	return (error);
1725 }
1726 
1727 /*
1728  * This sysctl allows a process to retrieve the argument list or process
1729  * title for another process without groping around in the address space
1730  * of the other process.  It also allow a process to set its own "process
1731  * title to a string of its own choice.
1732  *
1733  * No requirements.
1734  */
1735 static int
1736 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1737 {
1738 	int *name = (int*) arg1;
1739 	u_int namelen = arg2;
1740 	struct proc *p;
1741 	struct pargs *opa;
1742 	struct pargs *pa;
1743 	int error = 0;
1744 	struct ucred *cr1 = curproc->p_ucred;
1745 
1746 	if (namelen != 1)
1747 		return (EINVAL);
1748 
1749 	p = pfind((pid_t)name[0]);
1750 	if (p == NULL)
1751 		goto done;
1752 	lwkt_gettoken(&p->p_token);
1753 
1754 	if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred))
1755 		goto done;
1756 
1757 	if (req->newptr && curproc != p) {
1758 		error = EPERM;
1759 		goto done;
1760 	}
1761 	if (req->oldptr) {
1762 		if (p->p_upmap != NULL && p->p_upmap->proc_title[0]) {
1763 			/*
1764 			 * Args set via writable user process mmap.
1765 			 * We must calculate the string length manually
1766 			 * because the user data can change at any time.
1767 			 */
1768 			size_t n;
1769 			char *base;
1770 
1771 			base = p->p_upmap->proc_title;
1772 			for (n = 0; n < UPMAP_MAXPROCTITLE - 1; ++n) {
1773 				if (base[n] == 0)
1774 					break;
1775 			}
1776 			error = SYSCTL_OUT(req, base, n);
1777 			if (error == 0)
1778 				error = SYSCTL_OUT(req, "", 1);
1779 		} else if ((pa = p->p_args) != NULL) {
1780 			/*
1781 			 * Args set by setproctitle() sysctl.
1782 			 */
1783 			refcount_acquire(&pa->ar_ref);
1784 			error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1785 			if (refcount_release(&pa->ar_ref))
1786 				kfree(pa, M_PARGS);
1787 		}
1788 	}
1789 	if (req->newptr == NULL)
1790 		goto done;
1791 
1792 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) {
1793 		goto done;
1794 	}
1795 
1796 	pa = kmalloc(sizeof(struct pargs) + req->newlen, M_PARGS, M_WAITOK);
1797 	refcount_init(&pa->ar_ref, 1);
1798 	pa->ar_length = req->newlen;
1799 	error = SYSCTL_IN(req, pa->ar_args, req->newlen);
1800 	if (error) {
1801 		kfree(pa, M_PARGS);
1802 		goto done;
1803 	}
1804 
1805 
1806 	/*
1807 	 * Replace p_args with the new pa.  p_args may have previously
1808 	 * been NULL.
1809 	 */
1810 	opa = p->p_args;
1811 	p->p_args = pa;
1812 
1813 	if (opa) {
1814 		KKASSERT(opa->ar_ref > 0);
1815 		if (refcount_release(&opa->ar_ref)) {
1816 			kfree(opa, M_PARGS);
1817 			/* opa = NULL; */
1818 		}
1819 	}
1820 done:
1821 	if (p) {
1822 		lwkt_reltoken(&p->p_token);
1823 		PRELE(p);
1824 	}
1825 	return (error);
1826 }
1827 
1828 static int
1829 sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)
1830 {
1831 	int *name = (int*) arg1;
1832 	u_int namelen = arg2;
1833 	struct proc *p;
1834 	int error = 0;
1835 	char *fullpath, *freepath;
1836 	struct ucred *cr1 = curproc->p_ucred;
1837 
1838 	if (namelen != 1)
1839 		return (EINVAL);
1840 
1841 	p = pfind((pid_t)name[0]);
1842 	if (p == NULL)
1843 		goto done;
1844 	lwkt_gettoken_shared(&p->p_token);
1845 
1846 	/*
1847 	 * If we are not allowed to see other args, we certainly shouldn't
1848 	 * get the cwd either. Also check the usual trespassing.
1849 	 */
1850 	if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred))
1851 		goto done;
1852 
1853 	if (req->oldptr && p->p_fd != NULL && p->p_fd->fd_ncdir.ncp) {
1854 		struct nchandle nch;
1855 
1856 		cache_copy(&p->p_fd->fd_ncdir, &nch);
1857 		error = cache_fullpath(p, &nch, NULL,
1858 				       &fullpath, &freepath, 0);
1859 		cache_drop(&nch);
1860 		if (error)
1861 			goto done;
1862 		error = SYSCTL_OUT(req, fullpath, strlen(fullpath) + 1);
1863 		kfree(freepath, M_TEMP);
1864 	}
1865 
1866 done:
1867 	if (p) {
1868 		lwkt_reltoken(&p->p_token);
1869 		PRELE(p);
1870 	}
1871 	return (error);
1872 }
1873 
1874 /*
1875  * This sysctl allows a process to retrieve the path of the executable for
1876  * itself or another process.
1877  */
1878 static int
1879 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1880 {
1881 	pid_t *pidp = (pid_t *)arg1;
1882 	unsigned int arglen = arg2;
1883 	struct proc *p;
1884 	char *retbuf, *freebuf;
1885 	int error = 0;
1886 	struct nchandle nch;
1887 
1888 	if (arglen != 1)
1889 		return (EINVAL);
1890 	if (*pidp == -1) {	/* -1 means this process */
1891 		p = curproc;
1892 	} else {
1893 		p = pfind(*pidp);
1894 		if (p == NULL)
1895 			return (ESRCH);
1896 	}
1897 
1898 	cache_copy(&p->p_textnch, &nch);
1899 	error = cache_fullpath(p, &nch, NULL, &retbuf, &freebuf, 0);
1900 	cache_drop(&nch);
1901 	if (error)
1902 		goto done;
1903 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1904 	kfree(freebuf, M_TEMP);
1905 done:
1906 	if (*pidp != -1)
1907 		PRELE(p);
1908 
1909 	return (error);
1910 }
1911 
1912 static int
1913 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
1914 {
1915         /*int *name = (int *)arg1;*/
1916         u_int namelen = arg2;
1917         struct kinfo_sigtramp kst;
1918         const struct sysentvec *sv;
1919         int error;
1920 
1921         if (namelen > 1)
1922                 return (EINVAL);
1923         /* ignore pid if passed in (freebsd compatibility) */
1924 
1925         sv = curproc->p_sysent;
1926         bzero(&kst, sizeof(kst));
1927         if (sv->sv_szsigcode) {
1928 		intptr_t sigbase;
1929 
1930 		sigbase = trunc_page64((intptr_t)PS_STRINGS -
1931 				       *sv->sv_szsigcode);
1932 		sigbase -= SZSIGCODE_EXTRA_BYTES;
1933 
1934                 kst.ksigtramp_start = (void *)sigbase;
1935                 kst.ksigtramp_end = (void *)(sigbase + *sv->sv_szsigcode);
1936         }
1937         error = SYSCTL_OUT(req, &kst, sizeof(kst));
1938 
1939         return (error);
1940 }
1941 
1942 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1943 
1944 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all,
1945 	CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_NOLOCK,
1946 	0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
1947 
1948 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp,
1949 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1950 	sysctl_kern_proc, "Process table");
1951 
1952 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty,
1953 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1954 	sysctl_kern_proc, "Process table");
1955 
1956 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid,
1957 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1958 	sysctl_kern_proc, "Process table");
1959 
1960 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid,
1961 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1962 	sysctl_kern_proc, "Process table");
1963 
1964 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid,
1965 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1966 	sysctl_kern_proc, "Process table");
1967 
1968 SYSCTL_NODE(_kern_proc, (KERN_PROC_ALL | KERN_PROC_FLAG_LWP), all_lwp,
1969 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1970 	sysctl_kern_proc, "Process table");
1971 
1972 SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_FLAG_LWP), pgrp_lwp,
1973 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1974 	sysctl_kern_proc, "Process table");
1975 
1976 SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_FLAG_LWP), tty_lwp,
1977 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1978 	sysctl_kern_proc, "Process table");
1979 
1980 SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_FLAG_LWP), uid_lwp,
1981 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1982 	sysctl_kern_proc, "Process table");
1983 
1984 SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_FLAG_LWP), ruid_lwp,
1985 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1986 	sysctl_kern_proc, "Process table");
1987 
1988 SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_FLAG_LWP), pid_lwp,
1989 	CTLFLAG_RD | CTLFLAG_NOLOCK,
1990 	sysctl_kern_proc, "Process table");
1991 
1992 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
1993 	CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_NOLOCK,
1994 	sysctl_kern_proc_args, "Process argument list");
1995 
1996 SYSCTL_NODE(_kern_proc, KERN_PROC_CWD, cwd,
1997 	CTLFLAG_RD | CTLFLAG_ANYBODY | CTLFLAG_NOLOCK,
1998 	sysctl_kern_proc_cwd, "Process argument list");
1999 
2000 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname,
2001 	CTLFLAG_RD | CTLFLAG_NOLOCK,
2002 	sysctl_kern_proc_pathname, "Process executable path");
2003 
2004 SYSCTL_PROC(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp,
2005 	CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_NOLOCK,
2006         0, 0, sysctl_kern_proc_sigtramp, "S,sigtramp",
2007         "Return sigtramp address range");
2008