xref: /dragonfly/sys/kern/kern_sig.c (revision 3d33658b)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  * $FreeBSD: src/sys/kern/kern_sig.c,v 1.72.2.17 2003/05/16 16:34:34 obrien Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/sysproto.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vnode.h>
47 #include <sys/event.h>
48 #include <sys/proc.h>
49 #include <sys/nlookup.h>
50 #include <sys/pioctl.h>
51 #include <sys/acct.h>
52 #include <sys/fcntl.h>
53 #include <sys/lock.h>
54 #include <sys/wait.h>
55 #include <sys/ktrace.h>
56 #include <sys/syslog.h>
57 #include <sys/stat.h>
58 #include <sys/sysent.h>
59 #include <sys/sysctl.h>
60 #include <sys/malloc.h>
61 #include <sys/interrupt.h>
62 #include <sys/unistd.h>
63 #include <sys/kern_syscall.h>
64 #include <sys/vkernel.h>
65 
66 #include <sys/signal2.h>
67 #include <sys/thread2.h>
68 #include <sys/spinlock2.h>
69 
70 #include <machine/cpu.h>
71 #include <machine/smp.h>
72 
73 static int	coredump(struct lwp *, int);
74 static char	*expand_name(const char *, uid_t, pid_t);
75 static int	dokillpg(int sig, int pgid, int all);
76 static int	sig_ffs(sigset_t *set);
77 static int	sigprop(int sig);
78 static void	lwp_signotify(struct lwp *lp);
79 static void	lwp_signotify_remote(void *arg);
80 static int	kern_sigtimedwait(sigset_t set, siginfo_t *info,
81 		    struct timespec *timeout);
82 static void	proc_stopwait(struct proc *p);
83 
84 static int	filt_sigattach(struct knote *kn);
85 static void	filt_sigdetach(struct knote *kn);
86 static int	filt_signal(struct knote *kn, long hint);
87 
88 struct filterops sig_filtops =
89 	{ FILTEROP_MPSAFE, filt_sigattach, filt_sigdetach, filt_signal };
90 
91 static int	kern_logsigexit = 1;
92 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
93     &kern_logsigexit, 0,
94     "Log processes quitting on abnormal signals to syslog(3)");
95 
96 /*
97  * Can process p send the signal sig to process q?  Only processes within
98  * the current reaper or children of the current reaper can be signaled.
99  * Normally the reaper itself cannot be signalled, unless initok is set.
100  */
101 #define CANSIGNAL(q, sig, initok)				\
102 	((!p_trespass(curproc->p_ucred, (q)->p_ucred) &&	\
103 	reaper_sigtest(curproc, p, initok)) ||			\
104 	((sig) == SIGCONT && (q)->p_session == curproc->p_session))
105 
106 /*
107  * Policy -- Can real uid ruid with ucred uc send a signal to process q?
108  */
109 #define CANSIGIO(ruid, uc, q) \
110 	((uc)->cr_uid == 0 || \
111 	    (ruid) == (q)->p_ucred->cr_ruid || \
112 	    (uc)->cr_uid == (q)->p_ucred->cr_ruid || \
113 	    (ruid) == (q)->p_ucred->cr_uid || \
114 	    (uc)->cr_uid == (q)->p_ucred->cr_uid)
115 
116 int sugid_coredump;
117 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
118 	&sugid_coredump, 0, "Enable coredumping set user/group ID processes");
119 
120 static int	do_coredump = 1;
121 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
122 	&do_coredump, 0, "Enable/Disable coredumps");
123 
124 /*
125  * Signal properties and actions.
126  * The array below categorizes the signals and their default actions
127  * according to the following properties:
128  */
129 #define	SA_KILL		0x01		/* terminates process by default */
130 #define	SA_CORE		0x02		/* ditto and coredumps */
131 #define	SA_STOP		0x04		/* suspend process */
132 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
133 #define	SA_IGNORE	0x10		/* ignore by default */
134 #define	SA_CONT		0x20		/* continue if suspended */
135 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
136 #define SA_CKPT         0x80            /* checkpoint process */
137 
138 
139 static int sigproptbl[NSIG] = {
140         SA_KILL,                /* SIGHUP */
141         SA_KILL,                /* SIGINT */
142         SA_KILL|SA_CORE,        /* SIGQUIT */
143         SA_KILL|SA_CORE,        /* SIGILL */
144         SA_KILL|SA_CORE,        /* SIGTRAP */
145         SA_KILL|SA_CORE,        /* SIGABRT */
146         SA_KILL|SA_CORE,        /* SIGEMT */
147         SA_KILL|SA_CORE,        /* SIGFPE */
148         SA_KILL,                /* SIGKILL */
149         SA_KILL|SA_CORE,        /* SIGBUS */
150         SA_KILL|SA_CORE,        /* SIGSEGV */
151         SA_KILL|SA_CORE,        /* SIGSYS */
152         SA_KILL,                /* SIGPIPE */
153         SA_KILL,                /* SIGALRM */
154         SA_KILL,                /* SIGTERM */
155         SA_IGNORE,              /* SIGURG */
156         SA_STOP,                /* SIGSTOP */
157         SA_STOP|SA_TTYSTOP,     /* SIGTSTP */
158         SA_IGNORE|SA_CONT,      /* SIGCONT */
159         SA_IGNORE,              /* SIGCHLD */
160         SA_STOP|SA_TTYSTOP,     /* SIGTTIN */
161         SA_STOP|SA_TTYSTOP,     /* SIGTTOU */
162         SA_IGNORE,              /* SIGIO */
163         SA_KILL,                /* SIGXCPU */
164         SA_KILL,                /* SIGXFSZ */
165         SA_KILL,                /* SIGVTALRM */
166         SA_KILL,                /* SIGPROF */
167         SA_IGNORE,              /* SIGWINCH  */
168         SA_IGNORE,              /* SIGINFO */
169         SA_KILL,                /* SIGUSR1 */
170         SA_KILL,                /* SIGUSR2 */
171 	SA_IGNORE,              /* SIGTHR */
172 	SA_CKPT,                /* SIGCKPT */
173 	SA_KILL|SA_CKPT,        /* SIGCKPTEXIT */
174 	SA_IGNORE,
175 	SA_IGNORE,
176 	SA_IGNORE,
177 	SA_IGNORE,
178 	SA_IGNORE,
179 	SA_IGNORE,
180 	SA_IGNORE,
181 	SA_IGNORE,
182 	SA_IGNORE,
183 	SA_IGNORE,
184 	SA_IGNORE,
185 	SA_IGNORE,
186 	SA_IGNORE,
187 	SA_IGNORE,
188 	SA_IGNORE,
189 	SA_IGNORE,
190 	SA_IGNORE,
191 	SA_IGNORE,
192 	SA_IGNORE,
193 	SA_IGNORE,
194 	SA_IGNORE,
195 	SA_IGNORE,
196 	SA_IGNORE,
197 	SA_IGNORE,
198 	SA_IGNORE,
199 	SA_IGNORE,
200 	SA_IGNORE,
201 	SA_IGNORE,
202 	SA_IGNORE,
203 	SA_IGNORE,
204 
205 };
206 
207 static __inline int
208 sigprop(int sig)
209 {
210 
211 	if (sig > 0 && sig < NSIG)
212 		return (sigproptbl[_SIG_IDX(sig)]);
213 	return (0);
214 }
215 
216 static __inline int
217 sig_ffs(sigset_t *set)
218 {
219 	int i;
220 
221 	for (i = 0; i < _SIG_WORDS; i++)
222 		if (set->__bits[i])
223 			return (ffs(set->__bits[i]) + (i * 32));
224 	return (0);
225 }
226 
227 /*
228  * Allows us to populate siginfo->si_pid and si_uid in the target process
229  * (p) from the originating thread (td).  This function must work properly
230  * even if a kernel thread is sending the signal.
231  *
232  * NOTE: Signals are not queued, so if multiple signals are received the
233  *	 signal handler will only see the most recent pid and uid for any
234  *	 given signal number.
235  */
236 static __inline void
237 sigsetfrompid(thread_t td, struct proc *p, int sig)
238 {
239 	struct sigacts *sap;
240 
241 	if ((sap = p->p_sigacts) == NULL)
242 		return;
243 	if (td->td_proc) {
244 		sap->ps_frominfo[sig].pid = td->td_proc->p_pid;
245 		sap->ps_frominfo[sig].uid = td->td_ucred->cr_uid;
246 	} else {
247 		sap->ps_frominfo[sig].pid = 0;
248 		sap->ps_frominfo[sig].uid = 0;
249 	}
250 }
251 
252 /*
253  * No requirements.
254  */
255 int
256 kern_sigaction(int sig, struct sigaction *act, struct sigaction *oact)
257 {
258 	struct thread *td = curthread;
259 	struct proc *p = td->td_proc;
260 	struct lwp *lp;
261 	struct sigacts *ps = p->p_sigacts;
262 
263 	if (sig <= 0 || sig > _SIG_MAXSIG)
264 		return (EINVAL);
265 
266 	lwkt_gettoken(&p->p_token);
267 
268 	if (oact) {
269 		oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
270 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
271 		oact->sa_flags = 0;
272 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
273 			oact->sa_flags |= SA_ONSTACK;
274 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
275 			oact->sa_flags |= SA_RESTART;
276 		if (SIGISMEMBER(ps->ps_sigreset, sig))
277 			oact->sa_flags |= SA_RESETHAND;
278 		if (SIGISMEMBER(ps->ps_signodefer, sig))
279 			oact->sa_flags |= SA_NODEFER;
280 		if (SIGISMEMBER(ps->ps_siginfo, sig))
281 			oact->sa_flags |= SA_SIGINFO;
282 		if (sig == SIGCHLD && p->p_sigacts->ps_flag & PS_NOCLDSTOP)
283 			oact->sa_flags |= SA_NOCLDSTOP;
284 		if (sig == SIGCHLD && p->p_sigacts->ps_flag & PS_NOCLDWAIT)
285 			oact->sa_flags |= SA_NOCLDWAIT;
286 	}
287 	if (act) {
288 		/*
289 		 * Check for invalid requests.  KILL and STOP cannot be
290 		 * caught.
291 		 */
292 		if (sig == SIGKILL || sig == SIGSTOP) {
293 			if (act->sa_handler != SIG_DFL) {
294 				lwkt_reltoken(&p->p_token);
295 				return (EINVAL);
296 			}
297 		}
298 
299 		/*
300 		 * Change setting atomically.
301 		 */
302 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
303 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
304 		if (act->sa_flags & SA_SIGINFO) {
305 			ps->ps_sigact[_SIG_IDX(sig)] =
306 			    (__sighandler_t *)act->sa_sigaction;
307 			SIGADDSET(ps->ps_siginfo, sig);
308 		} else {
309 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
310 			SIGDELSET(ps->ps_siginfo, sig);
311 		}
312 		if (!(act->sa_flags & SA_RESTART))
313 			SIGADDSET(ps->ps_sigintr, sig);
314 		else
315 			SIGDELSET(ps->ps_sigintr, sig);
316 		if (act->sa_flags & SA_ONSTACK)
317 			SIGADDSET(ps->ps_sigonstack, sig);
318 		else
319 			SIGDELSET(ps->ps_sigonstack, sig);
320 		if (act->sa_flags & SA_RESETHAND)
321 			SIGADDSET(ps->ps_sigreset, sig);
322 		else
323 			SIGDELSET(ps->ps_sigreset, sig);
324 		if (act->sa_flags & SA_NODEFER)
325 			SIGADDSET(ps->ps_signodefer, sig);
326 		else
327 			SIGDELSET(ps->ps_signodefer, sig);
328 		if (sig == SIGCHLD) {
329 			if (act->sa_flags & SA_NOCLDSTOP)
330 				p->p_sigacts->ps_flag |= PS_NOCLDSTOP;
331 			else
332 				p->p_sigacts->ps_flag &= ~PS_NOCLDSTOP;
333 			if (act->sa_flags & SA_NOCLDWAIT) {
334 				/*
335 				 * Paranoia: since SA_NOCLDWAIT is implemented
336 				 * by reparenting the dying child to PID 1 (and
337 				 * trust it to reap the zombie), PID 1 itself
338 				 * is forbidden to set SA_NOCLDWAIT.
339 				 */
340 				if (p->p_pid == 1)
341 					p->p_sigacts->ps_flag &= ~PS_NOCLDWAIT;
342 				else
343 					p->p_sigacts->ps_flag |= PS_NOCLDWAIT;
344 			} else {
345 				p->p_sigacts->ps_flag &= ~PS_NOCLDWAIT;
346 			}
347 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
348 				ps->ps_flag |= PS_CLDSIGIGN;
349 			else
350 				ps->ps_flag &= ~PS_CLDSIGIGN;
351 		}
352 		/*
353 		 * Set bit in p_sigignore for signals that are set to SIG_IGN,
354 		 * and for signals set to SIG_DFL where the default is to
355 		 * ignore. However, don't put SIGCONT in p_sigignore, as we
356 		 * have to restart the process.
357 		 *
358 		 * Also remove the signal from the process and lwp signal
359 		 * list.
360 		 */
361 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
362 		    (sigprop(sig) & SA_IGNORE &&
363 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
364 			SIGDELSET_ATOMIC(p->p_siglist, sig);
365 			FOREACH_LWP_IN_PROC(lp, p) {
366 				spin_lock(&lp->lwp_spin);
367 				SIGDELSET(lp->lwp_siglist, sig);
368 				spin_unlock(&lp->lwp_spin);
369 			}
370 			if (sig != SIGCONT) {
371 				/* easier in ksignal */
372 				SIGADDSET(p->p_sigignore, sig);
373 			}
374 			SIGDELSET(p->p_sigcatch, sig);
375 		} else {
376 			SIGDELSET(p->p_sigignore, sig);
377 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
378 				SIGDELSET(p->p_sigcatch, sig);
379 			else
380 				SIGADDSET(p->p_sigcatch, sig);
381 		}
382 	}
383 	lwkt_reltoken(&p->p_token);
384 	return (0);
385 }
386 
387 int
388 sys_sigaction(struct sigaction_args *uap)
389 {
390 	struct sigaction act, oact;
391 	struct sigaction *actp, *oactp;
392 	int error;
393 
394 	actp = (uap->act != NULL) ? &act : NULL;
395 	oactp = (uap->oact != NULL) ? &oact : NULL;
396 	if (actp) {
397 		error = copyin(uap->act, actp, sizeof(act));
398 		if (error)
399 			return (error);
400 	}
401 	error = kern_sigaction(uap->sig, actp, oactp);
402 	if (oactp && !error) {
403 		error = copyout(oactp, uap->oact, sizeof(oact));
404 	}
405 	return (error);
406 }
407 
408 /*
409  * Initialize signal state for process 0;
410  * set to ignore signals that are ignored by default.
411  */
412 void
413 siginit(struct proc *p)
414 {
415 	int i;
416 
417 	for (i = 1; i <= NSIG; i++)
418 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
419 			SIGADDSET(p->p_sigignore, i);
420 }
421 
422 /*
423  * Reset signals for an exec of the specified process.
424  */
425 void
426 execsigs(struct proc *p)
427 {
428 	struct sigacts *ps = p->p_sigacts;
429 	struct lwp *lp;
430 	int sig;
431 
432 	lp = ONLY_LWP_IN_PROC(p);
433 
434 	/*
435 	 * Reset caught signals.  Held signals remain held
436 	 * through p_sigmask (unless they were caught,
437 	 * and are now ignored by default).
438 	 */
439 	while (SIGNOTEMPTY(p->p_sigcatch)) {
440 		sig = sig_ffs(&p->p_sigcatch);
441 		SIGDELSET(p->p_sigcatch, sig);
442 		if (sigprop(sig) & SA_IGNORE) {
443 			if (sig != SIGCONT)
444 				SIGADDSET(p->p_sigignore, sig);
445 			SIGDELSET_ATOMIC(p->p_siglist, sig);
446 			/* don't need spinlock */
447 			SIGDELSET(lp->lwp_siglist, sig);
448 		}
449 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
450 	}
451 
452 	/*
453 	 * Reset stack state to the user stack.
454 	 * Clear set of signals caught on the signal stack.
455 	 */
456 	lp->lwp_sigstk.ss_flags = SS_DISABLE;
457 	lp->lwp_sigstk.ss_size = 0;
458 	lp->lwp_sigstk.ss_sp = NULL;
459 	lp->lwp_flags &= ~LWP_ALTSTACK;
460 	/*
461 	 * Reset no zombies if child dies flag as Solaris does.
462 	 */
463 	p->p_sigacts->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
464 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
465 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
466 }
467 
468 /*
469  * kern_sigprocmask() - MP SAFE ONLY IF p == curproc
470  *
471  *	Manipulate signal mask.  This routine is MP SAFE *ONLY* if
472  *	p == curproc.
473  */
474 int
475 kern_sigprocmask(int how, sigset_t *set, sigset_t *oset)
476 {
477 	struct thread *td = curthread;
478 	struct lwp *lp = td->td_lwp;
479 	struct proc *p = td->td_proc;
480 	int error;
481 
482 	lwkt_gettoken(&p->p_token);
483 
484 	if (oset != NULL)
485 		*oset = lp->lwp_sigmask;
486 
487 	error = 0;
488 	if (set != NULL) {
489 		switch (how) {
490 		case SIG_BLOCK:
491 			SIG_CANTMASK(*set);
492 			SIGSETOR(lp->lwp_sigmask, *set);
493 			break;
494 		case SIG_UNBLOCK:
495 			SIGSETNAND(lp->lwp_sigmask, *set);
496 			break;
497 		case SIG_SETMASK:
498 			SIG_CANTMASK(*set);
499 			lp->lwp_sigmask = *set;
500 			break;
501 		default:
502 			error = EINVAL;
503 			break;
504 		}
505 	}
506 
507 	lwkt_reltoken(&p->p_token);
508 
509 	return (error);
510 }
511 
512 /*
513  * sigprocmask()
514  *
515  * MPSAFE
516  */
517 int
518 sys_sigprocmask(struct sigprocmask_args *uap)
519 {
520 	sigset_t set, oset;
521 	sigset_t *setp, *osetp;
522 	int error;
523 
524 	setp = (uap->set != NULL) ? &set : NULL;
525 	osetp = (uap->oset != NULL) ? &oset : NULL;
526 	if (setp) {
527 		error = copyin(uap->set, setp, sizeof(set));
528 		if (error)
529 			return (error);
530 	}
531 	error = kern_sigprocmask(uap->how, setp, osetp);
532 	if (osetp && !error) {
533 		error = copyout(osetp, uap->oset, sizeof(oset));
534 	}
535 	return (error);
536 }
537 
538 /*
539  * MPSAFE
540  */
541 int
542 kern_sigpending(sigset_t *set)
543 {
544 	struct lwp *lp = curthread->td_lwp;
545 
546 	*set = lwp_sigpend(lp);
547 
548 	return (0);
549 }
550 
551 /*
552  * MPSAFE
553  */
554 int
555 sys_sigpending(struct sigpending_args *uap)
556 {
557 	sigset_t set;
558 	int error;
559 
560 	error = kern_sigpending(&set);
561 
562 	if (error == 0)
563 		error = copyout(&set, uap->set, sizeof(set));
564 	return (error);
565 }
566 
567 /*
568  * Suspend process until signal, providing mask to be set
569  * in the meantime.
570  *
571  * MPSAFE
572  */
573 int
574 kern_sigsuspend(sigset_t *set)
575 {
576 	struct thread *td = curthread;
577 	struct lwp *lp = td->td_lwp;
578 	struct proc *p = td->td_proc;
579 	struct sigacts *ps = p->p_sigacts;
580 
581 	/*
582 	 * When returning from sigsuspend, we want
583 	 * the old mask to be restored after the
584 	 * signal handler has finished.  Thus, we
585 	 * save it here and mark the sigacts structure
586 	 * to indicate this.
587 	 */
588 	lp->lwp_oldsigmask = lp->lwp_sigmask;
589 	lp->lwp_flags |= LWP_OLDMASK;
590 
591 	SIG_CANTMASK(*set);
592 	lp->lwp_sigmask = *set;
593 	while (tsleep(ps, PCATCH, "pause", 0) == 0)
594 		/* void */;
595 	/* always return EINTR rather than ERESTART... */
596 	return (EINTR);
597 }
598 
599 /*
600  * Note nonstandard calling convention: libc stub passes mask, not
601  * pointer, to save a copyin.
602  *
603  * MPSAFE
604  */
605 int
606 sys_sigsuspend(struct sigsuspend_args *uap)
607 {
608 	sigset_t mask;
609 	int error;
610 
611 	error = copyin(uap->sigmask, &mask, sizeof(mask));
612 	if (error)
613 		return (error);
614 
615 	error = kern_sigsuspend(&mask);
616 
617 	return (error);
618 }
619 
620 /*
621  * MPSAFE
622  */
623 int
624 kern_sigaltstack(stack_t *ss, stack_t *oss)
625 {
626 	struct thread *td = curthread;
627 	struct lwp *lp = td->td_lwp;
628 	struct proc *p = td->td_proc;
629 
630 	if ((lp->lwp_flags & LWP_ALTSTACK) == 0)
631 		lp->lwp_sigstk.ss_flags |= SS_DISABLE;
632 
633 	if (oss)
634 		*oss = lp->lwp_sigstk;
635 
636 	if (ss) {
637 		if (ss->ss_flags & ~SS_DISABLE)
638 			return (EINVAL);
639 		if (ss->ss_flags & SS_DISABLE) {
640 			if (lp->lwp_sigstk.ss_flags & SS_ONSTACK)
641 				return (EPERM);
642 			lp->lwp_flags &= ~LWP_ALTSTACK;
643 			lp->lwp_sigstk.ss_flags = ss->ss_flags;
644 		} else {
645 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
646 				return (ENOMEM);
647 			lp->lwp_flags |= LWP_ALTSTACK;
648 			lp->lwp_sigstk = *ss;
649 		}
650 	}
651 
652 	return (0);
653 }
654 
655 /*
656  * MPSAFE
657  */
658 int
659 sys_sigaltstack(struct sigaltstack_args *uap)
660 {
661 	stack_t ss, oss;
662 	int error;
663 
664 	if (uap->ss) {
665 		error = copyin(uap->ss, &ss, sizeof(ss));
666 		if (error)
667 			return (error);
668 	}
669 
670 	error = kern_sigaltstack(uap->ss ? &ss : NULL, uap->oss ? &oss : NULL);
671 
672 	if (error == 0 && uap->oss)
673 		error = copyout(&oss, uap->oss, sizeof(*uap->oss));
674 	return (error);
675 }
676 
677 /*
678  * Common code for kill process group/broadcast kill.
679  * cp is calling process.
680  */
681 struct killpg_info {
682 	int nfound;
683 	int sig;
684 };
685 
686 static int killpg_all_callback(struct proc *p, void *data);
687 
688 static int
689 dokillpg(int sig, int pgid, int all)
690 {
691 	struct killpg_info info;
692 	struct proc *cp = curproc;
693 	struct proc *p;
694 	struct pgrp *pgrp;
695 
696 	info.nfound = 0;
697 	info.sig = sig;
698 
699 	if (all) {
700 		/*
701 		 * broadcast
702 		 */
703 		allproc_scan(killpg_all_callback, &info, 0);
704 	} else {
705 		if (pgid == 0) {
706 			/*
707 			 * zero pgid means send to my process group.
708 			 */
709 			pgrp = cp->p_pgrp;
710 			pgref(pgrp);
711 		} else {
712 			pgrp = pgfind(pgid);
713 			if (pgrp == NULL)
714 				return (ESRCH);
715 		}
716 
717 		/*
718 		 * Must interlock all signals against fork
719 		 */
720 		lockmgr(&pgrp->pg_lock, LK_EXCLUSIVE);
721 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
722 			if (p->p_pid <= 1 ||
723 			    p->p_stat == SZOMB ||
724 			    (p->p_flags & P_SYSTEM) ||
725 			    !CANSIGNAL(p, sig, 0)) {
726 				continue;
727 			}
728 			++info.nfound;
729 			if (sig)
730 				ksignal(p, sig);
731 		}
732 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
733 		pgrel(pgrp);
734 	}
735 	return (info.nfound ? 0 : ESRCH);
736 }
737 
738 static int
739 killpg_all_callback(struct proc *p, void *data)
740 {
741 	struct killpg_info *info = data;
742 
743 	if (p->p_pid <= 1 || (p->p_flags & P_SYSTEM) ||
744 	    p == curproc || !CANSIGNAL(p, info->sig, 0)) {
745 		return (0);
746 	}
747 	++info->nfound;
748 	if (info->sig)
749 		ksignal(p, info->sig);
750 	return(0);
751 }
752 
753 /*
754  * Send a general signal to a process or LWPs within that process.
755  *
756  * Note that new signals cannot be sent if a process is exiting or already
757  * a zombie, but we return success anyway as userland is likely to not handle
758  * the race properly.
759  *
760  * No requirements.
761  */
762 int
763 kern_kill(int sig, pid_t pid, lwpid_t tid)
764 {
765 	int t;
766 
767 	if ((u_int)sig > _SIG_MAXSIG)
768 		return (EINVAL);
769 
770 	if (pid > 0) {
771 		struct proc *p;
772 		struct lwp *lp = NULL;
773 
774 		/*
775 		 * Send a signal to a single process.  If the kill() is
776 		 * racing an exiting process which has not yet been reaped
777 		 * act as though the signal was delivered successfully but
778 		 * don't actually try to deliver the signal.
779 		 */
780 		if ((p = pfind(pid)) == NULL) {
781 			if ((p = zpfind(pid)) == NULL)
782 				return (ESRCH);
783 			PRELE(p);
784 			return (0);
785 		}
786 		if (p != curproc) {
787 			lwkt_gettoken_shared(&p->p_token);
788 			if (!CANSIGNAL(p, sig, 1)) {
789 				lwkt_reltoken(&p->p_token);
790 				PRELE(p);
791 				return (EPERM);
792 			}
793 			lwkt_reltoken(&p->p_token);
794 		}
795 
796 		/*
797 		 * NOP if the process is exiting.  Note that lwpsignal() is
798 		 * called directly with P_WEXIT set to kill individual LWPs
799 		 * during exit, which is allowed.
800 		 */
801 		if (p->p_flags & P_WEXIT) {
802 			PRELE(p);
803 			return (0);
804 		}
805 		if (tid != -1) {
806 			lwkt_gettoken_shared(&p->p_token);
807 			lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, tid);
808 			if (lp == NULL) {
809 				lwkt_reltoken(&p->p_token);
810 				PRELE(p);
811 				return (ESRCH);
812 			}
813 			LWPHOLD(lp);
814 			lwkt_reltoken(&p->p_token);
815 		}
816 		if (sig)
817 			lwpsignal(p, lp, sig);
818 		if (lp)
819 			LWPRELE(lp);
820 		PRELE(p);
821 
822 		return (0);
823 	}
824 
825 	/*
826 	 * If we come here, pid is a special broadcast pid.
827 	 * This doesn't mix with a tid.
828 	 */
829 	if (tid != -1)
830 		return (EINVAL);
831 
832 	switch (pid) {
833 	case -1:		/* broadcast signal */
834 		t = (dokillpg(sig, 0, 1));
835 		break;
836 	case 0:			/* signal own process group */
837 		t = (dokillpg(sig, 0, 0));
838 		break;
839 	default:		/* negative explicit process group */
840 		t = (dokillpg(sig, -pid, 0));
841 		break;
842 	}
843 	return t;
844 }
845 
846 int
847 sys_kill(struct kill_args *uap)
848 {
849 	int error;
850 
851 	error = kern_kill(uap->signum, uap->pid, -1);
852 	return (error);
853 }
854 
855 int
856 sys_lwp_kill(struct lwp_kill_args *uap)
857 {
858 	int error;
859 	pid_t pid = uap->pid;
860 
861 	/*
862 	 * A tid is mandatory for lwp_kill(), otherwise
863 	 * you could simply use kill().
864 	 */
865 	if (uap->tid == -1)
866 		return (EINVAL);
867 
868 	/*
869 	 * To save on a getpid() function call for intra-process
870 	 * signals, pid == -1 means current process.
871 	 */
872 	if (pid == -1)
873 		pid = curproc->p_pid;
874 
875 	error = kern_kill(uap->signum, pid, uap->tid);
876 	return (error);
877 }
878 
879 /*
880  * Send a signal to a process group.
881  */
882 void
883 gsignal(int pgid, int sig)
884 {
885 	struct pgrp *pgrp;
886 
887 	if (pgid && (pgrp = pgfind(pgid)))
888 		pgsignal(pgrp, sig, 0);
889 }
890 
891 /*
892  * Send a signal to a process group.  If checktty is 1,
893  * limit to members which have a controlling terminal.
894  *
895  * pg_lock interlocks against a fork that might be in progress, to
896  * ensure that the new child process picks up the signal.
897  */
898 void
899 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
900 {
901 	struct proc *p;
902 
903 	/*
904 	 * Must interlock all signals against fork
905 	 */
906 	if (pgrp) {
907 		pgref(pgrp);
908 		lockmgr(&pgrp->pg_lock, LK_EXCLUSIVE);
909 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
910 			if (checkctty == 0 || p->p_flags & P_CONTROLT)
911 				ksignal(p, sig);
912 		}
913 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
914 		pgrel(pgrp);
915 	}
916 }
917 
918 /*
919  * Send a signal caused by a trap to the current lwp.  If it will be caught
920  * immediately, deliver it with correct code.  Otherwise, post it normally.
921  *
922  * These signals may ONLY be delivered to the specified lwp and may never
923  * be delivered to the process generically.
924  */
925 void
926 trapsignal(struct lwp *lp, int sig, u_long code)
927 {
928 	struct proc *p = lp->lwp_proc;
929 	struct sigacts *ps = p->p_sigacts;
930 
931 	/*
932 	 * If we are a virtual kernel running an emulated user process
933 	 * context, switch back to the virtual kernel context before
934 	 * trying to post the signal.
935 	 */
936 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
937 		struct trapframe *tf = lp->lwp_md.md_regs;
938 		tf->tf_trapno = 0;
939 		vkernel_trap(lp, tf);
940 	}
941 
942 	if ((p->p_flags & P_TRACED) == 0 && SIGISMEMBER(p->p_sigcatch, sig) &&
943 	    !SIGISMEMBER(lp->lwp_sigmask, sig)) {
944 		lp->lwp_ru.ru_nsignals++;
945 #ifdef KTRACE
946 		if (KTRPOINT(lp->lwp_thread, KTR_PSIG))
947 			ktrpsig(lp, sig, ps->ps_sigact[_SIG_IDX(sig)],
948 				&lp->lwp_sigmask, code);
949 #endif
950 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)], sig,
951 						&lp->lwp_sigmask, code);
952 		SIGSETOR(lp->lwp_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
953 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
954 			SIGADDSET(lp->lwp_sigmask, sig);
955 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
956 			/*
957 			 * See kern_sigaction() for origin of this code.
958 			 */
959 			SIGDELSET(p->p_sigcatch, sig);
960 			if (sig != SIGCONT &&
961 			    sigprop(sig) & SA_IGNORE)
962 				SIGADDSET(p->p_sigignore, sig);
963 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
964 		}
965 	} else {
966 		lp->lwp_code = code;	/* XXX for core dump/debugger */
967 		lp->lwp_sig = sig;	/* XXX to verify code */
968 		lwpsignal(p, lp, sig);
969 	}
970 }
971 
972 /*
973  * Find a suitable lwp to deliver the signal to.  Returns NULL if all
974  * lwps hold the signal blocked.
975  *
976  * Caller must hold p->p_token.
977  *
978  * Returns a lp or NULL.  If non-NULL the lp is held and its token is
979  * acquired.
980  */
981 static struct lwp *
982 find_lwp_for_signal(struct proc *p, int sig)
983 {
984 	struct lwp *lp;
985 	struct lwp *run, *sleep, *stop;
986 
987 	/*
988 	 * If the running/preempted thread belongs to the proc to which
989 	 * the signal is being delivered and this thread does not block
990 	 * the signal, then we can avoid a context switch by delivering
991 	 * the signal to this thread, because it will return to userland
992 	 * soon anyways.
993 	 */
994 	lp = lwkt_preempted_proc();
995 	if (lp != NULL && lp->lwp_proc == p) {
996 		LWPHOLD(lp);
997 		lwkt_gettoken(&lp->lwp_token);
998 		if (!SIGISMEMBER(lp->lwp_sigmask, sig)) {
999 			/* return w/ token held */
1000 			return (lp);
1001 		}
1002 		lwkt_reltoken(&lp->lwp_token);
1003 		LWPRELE(lp);
1004 	}
1005 
1006 	run = sleep = stop = NULL;
1007 	FOREACH_LWP_IN_PROC(lp, p) {
1008 		/*
1009 		 * If the signal is being blocked by the lwp, then this
1010 		 * lwp is not eligible for receiving the signal.
1011 		 */
1012 		LWPHOLD(lp);
1013 		lwkt_gettoken(&lp->lwp_token);
1014 
1015 		if (SIGISMEMBER(lp->lwp_sigmask, sig)) {
1016 			lwkt_reltoken(&lp->lwp_token);
1017 			LWPRELE(lp);
1018 			continue;
1019 		}
1020 
1021 		switch (lp->lwp_stat) {
1022 		case LSRUN:
1023 			if (sleep) {
1024 				lwkt_token_swap();
1025 				lwkt_reltoken(&sleep->lwp_token);
1026 				LWPRELE(sleep);
1027 				sleep = NULL;
1028 				run = lp;
1029 			} else if (stop) {
1030 				lwkt_token_swap();
1031 				lwkt_reltoken(&stop->lwp_token);
1032 				LWPRELE(stop);
1033 				stop = NULL;
1034 				run = lp;
1035 			} else {
1036 				run = lp;
1037 			}
1038 			break;
1039 		case LSSLEEP:
1040 			if (lp->lwp_flags & LWP_SINTR) {
1041 				if (sleep) {
1042 					lwkt_reltoken(&lp->lwp_token);
1043 					LWPRELE(lp);
1044 				} else if (stop) {
1045 					lwkt_token_swap();
1046 					lwkt_reltoken(&stop->lwp_token);
1047 					LWPRELE(stop);
1048 					stop = NULL;
1049 					sleep = lp;
1050 				} else {
1051 					sleep = lp;
1052 				}
1053 			} else {
1054 				lwkt_reltoken(&lp->lwp_token);
1055 				LWPRELE(lp);
1056 			}
1057 			break;
1058 		case LSSTOP:
1059 			if (sleep) {
1060 				lwkt_reltoken(&lp->lwp_token);
1061 				LWPRELE(lp);
1062 			} else if (stop) {
1063 				lwkt_reltoken(&lp->lwp_token);
1064 				LWPRELE(lp);
1065 			} else {
1066 				stop = lp;
1067 			}
1068 			break;
1069 		}
1070 		if (run)
1071 			break;
1072 	}
1073 
1074 	if (run != NULL)
1075 		return (run);
1076 	else if (sleep != NULL)
1077 		return (sleep);
1078 	else
1079 		return (stop);
1080 }
1081 
1082 /*
1083  * Send the signal to the process.  If the signal has an action, the action
1084  * is usually performed by the target process rather than the caller; we add
1085  * the signal to the set of pending signals for the process.
1086  *
1087  * Exceptions:
1088  *   o When a stop signal is sent to a sleeping process that takes the
1089  *     default action, the process is stopped without awakening it.
1090  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1091  *     regardless of the signal action (eg, blocked or ignored).
1092  *
1093  * Other ignored signals are discarded immediately.
1094  *
1095  * If the caller wishes to call this function from a hard code section the
1096  * caller must already hold p->p_token (see kern_clock.c).
1097  *
1098  * No requirements.
1099  */
1100 void
1101 ksignal(struct proc *p, int sig)
1102 {
1103 	lwpsignal(p, NULL, sig);
1104 }
1105 
1106 /*
1107  * The core for ksignal.  lp may be NULL, then a suitable thread
1108  * will be chosen.  If not, lp MUST be a member of p.
1109  *
1110  * If the caller wishes to call this function from a hard code section the
1111  * caller must already hold p->p_token.
1112  *
1113  * No requirements.
1114  */
1115 void
1116 lwpsignal(struct proc *p, struct lwp *lp, int sig)
1117 {
1118 	struct proc *q;
1119 	sig_t action;
1120 	int prop;
1121 
1122 	if (sig > _SIG_MAXSIG || sig <= 0) {
1123 		kprintf("lwpsignal: signal %d\n", sig);
1124 		panic("lwpsignal signal number");
1125 	}
1126 
1127 	KKASSERT(lp == NULL || lp->lwp_proc == p);
1128 
1129 	/*
1130 	 * We don't want to race... well, all sorts of things.  Get appropriate
1131 	 * tokens.
1132 	 *
1133 	 * Don't try to deliver a generic signal to an exiting process,
1134 	 * the signal structures could be in flux.  We check the LWP later
1135 	 * on.
1136 	 */
1137 	PHOLD(p);
1138 	if (lp) {
1139 		LWPHOLD(lp);
1140 		lwkt_gettoken(&lp->lwp_token);
1141 	} else {
1142 		lwkt_gettoken(&p->p_token);
1143 		if (p->p_flags & P_WEXIT)
1144 			goto out;
1145 	}
1146 
1147 	prop = sigprop(sig);
1148 
1149 	/*
1150 	 * If proc is traced, always give parent a chance;
1151 	 * if signal event is tracked by procfs, give *that*
1152 	 * a chance, as well.
1153 	 */
1154 	if ((p->p_flags & P_TRACED) || (p->p_stops & S_SIG)) {
1155 		action = SIG_DFL;
1156 	} else {
1157 		/*
1158 		 * Do not try to deliver signals to an exiting lwp other
1159 		 * than SIGKILL.  Note that we must still deliver the signal
1160 		 * if P_WEXIT is set in the process flags.
1161 		 */
1162 		if (lp && (lp->lwp_mpflags & LWP_MP_WEXIT) && sig != SIGKILL) {
1163 			lwkt_reltoken(&lp->lwp_token);
1164 			LWPRELE(lp);
1165 			PRELE(p);
1166 			return;
1167 		}
1168 
1169 		/*
1170 		 * If the signal is being ignored, then we forget about
1171 		 * it immediately.  NOTE: We don't set SIGCONT in p_sigignore,
1172 		 * and if it is set to SIG_IGN, action will be SIG_DFL here.
1173 		 */
1174 		if (SIGISMEMBER(p->p_sigignore, sig)) {
1175 			/*
1176 			 * Even if a signal is set SIG_IGN, it may still be
1177 			 * lurking in a kqueue.
1178 			 */
1179 			KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
1180 			if (lp) {
1181 				lwkt_reltoken(&lp->lwp_token);
1182 				LWPRELE(lp);
1183 			} else {
1184 				lwkt_reltoken(&p->p_token);
1185 			}
1186 			PRELE(p);
1187 			return;
1188 		}
1189 		if (SIGISMEMBER(p->p_sigcatch, sig))
1190 			action = SIG_CATCH;
1191 		else
1192 			action = SIG_DFL;
1193 	}
1194 
1195 	/*
1196 	 * If continuing, clear any pending STOP signals for the whole
1197 	 * process.
1198 	 */
1199 	if (prop & SA_CONT) {
1200 		lwkt_gettoken(&p->p_token);
1201 		SIG_STOPSIGMASK_ATOMIC(p->p_siglist);
1202 		lwkt_reltoken(&p->p_token);
1203 	}
1204 
1205 	if (prop & SA_STOP) {
1206 		/*
1207 		 * If sending a tty stop signal to a member of an orphaned
1208 		 * process group, discard the signal here if the action
1209 		 * is default; don't stop the process below if sleeping,
1210 		 * and don't clear any pending SIGCONT.
1211 		 */
1212 		if ((prop & SA_TTYSTOP) && p->p_pgrp->pg_jobc == 0 &&
1213 		    action == SIG_DFL) {
1214 			if (lp) {
1215 				lwkt_reltoken(&lp->lwp_token);
1216 				LWPRELE(lp);
1217 			} else {
1218 				lwkt_reltoken(&p->p_token);
1219 			}
1220 			PRELE(p);
1221 		        return;
1222 		}
1223 		lwkt_gettoken(&p->p_token);
1224 		SIG_CONTSIGMASK_ATOMIC(p->p_siglist);
1225 		p->p_flags &= ~P_CONTINUED;
1226 		lwkt_reltoken(&p->p_token);
1227 	}
1228 
1229 	if (p->p_stat == SSTOP) {
1230 		/*
1231 		 * Nobody can handle this signal, add it to the lwp or
1232 		 * process pending list
1233 		 */
1234 		lwkt_gettoken(&p->p_token);
1235 		if (p->p_stat != SSTOP) {
1236 			lwkt_reltoken(&p->p_token);
1237 			goto not_stopped;
1238 		}
1239 		sigsetfrompid(curthread, p, sig);
1240 		if (lp) {
1241 			spin_lock(&lp->lwp_spin);
1242 			SIGADDSET(lp->lwp_siglist, sig);
1243 			spin_unlock(&lp->lwp_spin);
1244 		} else {
1245 			SIGADDSET_ATOMIC(p->p_siglist, sig);
1246 		}
1247 
1248 		/*
1249 		 * If the process is stopped and is being traced, then no
1250 		 * further action is necessary.
1251 		 */
1252 		if (p->p_flags & P_TRACED) {
1253 			lwkt_reltoken(&p->p_token);
1254 			goto out;
1255 		}
1256 
1257 		/*
1258 		 * If the process is stopped and receives a KILL signal,
1259 		 * make the process runnable.
1260 		 */
1261 		if (sig == SIGKILL) {
1262 			proc_unstop(p, SSTOP);
1263 			lwkt_reltoken(&p->p_token);
1264 			goto active_process;
1265 		}
1266 
1267 		/*
1268 		 * If the process is stopped and receives a CONT signal,
1269 		 * then try to make the process runnable again.
1270 		 */
1271 		if (prop & SA_CONT) {
1272 			/*
1273 			 * If SIGCONT is default (or ignored), we continue the
1274 			 * process but don't leave the signal in p_siglist, as
1275 			 * it has no further action.  If SIGCONT is held, we
1276 			 * continue the process and leave the signal in
1277 			 * p_siglist.  If the process catches SIGCONT, let it
1278 			 * handle the signal itself.
1279 			 *
1280 			 * XXX what if the signal is being held blocked?
1281 			 *
1282 			 * Token required to interlock kern_wait().
1283 			 * Reparenting can also cause a race so we have to
1284 			 * hold (q).
1285 			 */
1286 			q = p->p_pptr;
1287 			PHOLD(q);
1288 			lwkt_gettoken(&q->p_token);
1289 			p->p_flags |= P_CONTINUED;
1290 			wakeup(q);
1291 			if (action == SIG_DFL)
1292 				SIGDELSET_ATOMIC(p->p_siglist, sig);
1293 			proc_unstop(p, SSTOP);
1294 			lwkt_reltoken(&q->p_token);
1295 			PRELE(q);
1296 			lwkt_reltoken(&p->p_token);
1297 			if (action == SIG_CATCH)
1298 				goto active_process;
1299 			goto out;
1300 		}
1301 
1302 		/*
1303 		 * If the process is stopped and receives another STOP
1304 		 * signal, we do not need to stop it again.  If we did
1305 		 * the shell could get confused.
1306 		 *
1307 		 * However, if the current/preempted lwp is part of the
1308 		 * process receiving the signal, we need to keep it,
1309 		 * so that this lwp can stop in issignal() later, as
1310 		 * we don't want to wait until it reaches userret!
1311 		 */
1312 		if (prop & SA_STOP) {
1313 			if (lwkt_preempted_proc() == NULL ||
1314 			    lwkt_preempted_proc()->lwp_proc != p) {
1315 				SIGDELSET_ATOMIC(p->p_siglist, sig);
1316 			}
1317 		}
1318 
1319 		/*
1320 		 * Otherwise the process is stopped and it received some
1321 		 * signal, which does not change its stopped state.  When
1322 		 * the process is continued a wakeup(p) will be issued which
1323 		 * will wakeup any threads sleeping in tstop().
1324 		 */
1325 		lwkt_reltoken(&p->p_token);
1326 		goto out;
1327 		/* NOTREACHED */
1328 	}
1329 not_stopped:
1330 	;
1331 	/* else not stopped */
1332 active_process:
1333 
1334 	/*
1335 	 * Never deliver a lwp-specific signal to a random lwp.
1336 	 */
1337 	if (lp == NULL) {
1338 		/* NOTE: returns lp w/ token held */
1339 		lp = find_lwp_for_signal(p, sig);
1340 		if (lp) {
1341 			if (SIGISMEMBER(lp->lwp_sigmask, sig)) {
1342 				lwkt_reltoken(&lp->lwp_token);
1343 				LWPRELE(lp);
1344 				lp = NULL;
1345 				/* maintain proc token */
1346 			} else {
1347 				lwkt_token_swap();
1348 				lwkt_reltoken(&p->p_token);
1349 				/* maintain lp token */
1350 			}
1351 		}
1352 	}
1353 
1354 	/*
1355 	 * Deliver to the process generically if (1) the signal is being
1356 	 * sent to any thread or (2) we could not find a thread to deliver
1357 	 * it to.
1358 	 */
1359 	if (lp == NULL) {
1360 		sigsetfrompid(curthread, p, sig);
1361 		KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
1362 		SIGADDSET_ATOMIC(p->p_siglist, sig);
1363 		goto out;
1364 	}
1365 
1366 	/*
1367 	 * Deliver to a specific LWP whether it masks it or not.  It will
1368 	 * not be dispatched if masked but we must still deliver it.
1369 	 */
1370 	if (p->p_nice > NZERO && action == SIG_DFL && (prop & SA_KILL) &&
1371 	    (p->p_flags & P_TRACED) == 0) {
1372 		lwkt_gettoken(&p->p_token);
1373 		p->p_nice = NZERO;
1374 		lwkt_reltoken(&p->p_token);
1375 	}
1376 
1377 	/*
1378 	 * If the process receives a STOP signal which indeed needs to
1379 	 * stop the process, do so.  If the process chose to catch the
1380 	 * signal, it will be treated like any other signal.
1381 	 */
1382 	if ((prop & SA_STOP) && action == SIG_DFL) {
1383 		/*
1384 		 * If a child holding parent blocked, stopping
1385 		 * could cause deadlock.  Take no action at this
1386 		 * time.
1387 		 */
1388 		lwkt_gettoken(&p->p_token);
1389 		if (p->p_flags & P_PPWAIT) {
1390 			sigsetfrompid(curthread, p, sig);
1391 			SIGADDSET_ATOMIC(p->p_siglist, sig);
1392 			lwkt_reltoken(&p->p_token);
1393 			goto out;
1394 		}
1395 
1396 		/*
1397 		 * Do not actually try to manipulate the process, but simply
1398 		 * stop it.  Lwps will stop as soon as they safely can.
1399 		 *
1400 		 * Ignore stop if the process is exiting.
1401 		 */
1402 		if ((p->p_flags & P_WEXIT) == 0) {
1403 			p->p_xstat = sig;
1404 			proc_stop(p, SSTOP);
1405 		}
1406 		lwkt_reltoken(&p->p_token);
1407 		goto out;
1408 	}
1409 
1410 	/*
1411 	 * If it is a CONT signal with default action, just ignore it.
1412 	 */
1413 	if ((prop & SA_CONT) && action == SIG_DFL)
1414 		goto out;
1415 
1416 	/*
1417 	 * Mark signal pending at this specific thread.
1418 	 */
1419 	sigsetfrompid(curthread, p, sig);
1420 	spin_lock(&lp->lwp_spin);
1421 	SIGADDSET(lp->lwp_siglist, sig);
1422 	spin_unlock(&lp->lwp_spin);
1423 
1424 	lwp_signotify(lp);
1425 
1426 out:
1427 	if (lp) {
1428 		lwkt_reltoken(&lp->lwp_token);
1429 		LWPRELE(lp);
1430 	} else {
1431 		lwkt_reltoken(&p->p_token);
1432 	}
1433 	PRELE(p);
1434 }
1435 
1436 /*
1437  * Notify the LWP that a signal has arrived.  The LWP does not have to be
1438  * sleeping on the current cpu.
1439  *
1440  * p->p_token and lp->lwp_token must be held on call.
1441  *
1442  * We can only safely schedule the thread on its current cpu and only if
1443  * one of the SINTR flags is set.  If an SINTR flag is set AND we are on
1444  * the correct cpu we are properly interlocked, otherwise we could be
1445  * racing other thread transition states (or the lwp is on the user scheduler
1446  * runq but not scheduled) and must not do anything.
1447  *
1448  * Since we hold the lwp token we know the lwp cannot be ripped out from
1449  * under us so we can safely hold it to prevent it from being ripped out
1450  * from under us if we are forced to IPI another cpu to make the local
1451  * checks there.
1452  *
1453  * Adjustment of lp->lwp_stat can only occur when we hold the lwp_token,
1454  * which we won't in an IPI so any fixups have to be done here, effectively
1455  * replicating part of what setrunnable() does.
1456  */
1457 static void
1458 lwp_signotify(struct lwp *lp)
1459 {
1460 	thread_t dtd;
1461 
1462 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1463 	dtd = lp->lwp_thread;
1464 
1465 	crit_enter();
1466 	if (lp == lwkt_preempted_proc()) {
1467 		/*
1468 		 * lwp is on the current cpu AND it is currently running
1469 		 * (we preempted it).
1470 		 */
1471 		signotify();
1472 	} else if (lp->lwp_flags & LWP_SINTR) {
1473 		/*
1474 		 * lwp is sitting in tsleep() with PCATCH set
1475 		 */
1476 		if (dtd->td_gd == mycpu) {
1477 			setrunnable(lp);
1478 		} else {
1479 			/*
1480 			 * We can only adjust lwp_stat while we hold the
1481 			 * lwp_token, and we won't in the IPI function.
1482 			 */
1483 			LWPHOLD(lp);
1484 			if (lp->lwp_stat == LSSTOP)
1485 				lp->lwp_stat = LSSLEEP;
1486 			lwkt_send_ipiq(dtd->td_gd, lwp_signotify_remote, lp);
1487 		}
1488 	} else if (dtd->td_flags & TDF_SINTR) {
1489 		/*
1490 		 * lwp is sitting in lwkt_sleep() with PCATCH set.
1491 		 */
1492 		if (dtd->td_gd == mycpu) {
1493 			setrunnable(lp);
1494 		} else {
1495 			/*
1496 			 * We can only adjust lwp_stat while we hold the
1497 			 * lwp_token, and we won't in the IPI function.
1498 			 */
1499 			LWPHOLD(lp);
1500 			if (lp->lwp_stat == LSSTOP)
1501 				lp->lwp_stat = LSSLEEP;
1502 			lwkt_send_ipiq(dtd->td_gd, lwp_signotify_remote, lp);
1503 		}
1504 	} else {
1505 		/*
1506 		 * Otherwise the lwp is either in some uninterruptible state
1507 		 * or it is on the userland scheduler's runqueue waiting to
1508 		 * be scheduled to a cpu, or it is running in userland.  We
1509 		 * generally want to send an IPI so a running target gets the
1510 		 * signal ASAP, otherwise a scheduler-tick worth of latency
1511 		 * will occur.
1512 		 *
1513 		 * Issue an IPI to the remote cpu to knock it into the kernel,
1514 		 * remote cpu will issue the cpu-local signotify() if the IPI
1515 		 * preempts the desired thread.
1516 		 */
1517 		if (dtd->td_gd != mycpu) {
1518 			LWPHOLD(lp);
1519 			lwkt_send_ipiq(dtd->td_gd, lwp_signotify_remote, lp);
1520 		}
1521 	}
1522 	crit_exit();
1523 }
1524 
1525 /*
1526  * This function is called via an IPI so we cannot call setrunnable() here
1527  * (because while we hold the lp we don't own its token, and can't get it
1528  * from an IPI).
1529  *
1530  * We are interlocked by virtue of being on the same cpu as the target.  If
1531  * we still are and LWP_SINTR or TDF_SINTR is set we can safely schedule
1532  * the target thread.
1533  */
1534 static void
1535 lwp_signotify_remote(void *arg)
1536 {
1537 	struct lwp *lp = arg;
1538 	thread_t td = lp->lwp_thread;
1539 
1540 	if (lp == lwkt_preempted_proc()) {
1541 		signotify();
1542 		LWPRELE(lp);
1543 	} else if (td->td_gd == mycpu) {
1544 		if ((lp->lwp_flags & LWP_SINTR) ||
1545 		    (td->td_flags & TDF_SINTR)) {
1546 			lwkt_schedule(td);
1547 		}
1548 		LWPRELE(lp);
1549 	} else {
1550 		lwkt_send_ipiq(td->td_gd, lwp_signotify_remote, lp);
1551 		/* LWPHOLD() is forwarded to the target cpu */
1552 	}
1553 }
1554 
1555 /*
1556  * Caller must hold p->p_token
1557  */
1558 void
1559 proc_stop(struct proc *p, int sig)
1560 {
1561 	struct proc *q;
1562 	struct lwp *lp;
1563 
1564 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
1565 
1566 	/*
1567 	 * If somebody raced us, be happy with it.  SCORE overrides SSTOP.
1568 	 */
1569 	if (sig == SCORE) {
1570 		if (p->p_stat == SCORE || p->p_stat == SZOMB)
1571 			return;
1572 	} else {
1573 		if (p->p_stat == SSTOP || p->p_stat == SCORE ||
1574 		    p->p_stat == SZOMB) {
1575 			return;
1576 		}
1577 	}
1578 	p->p_stat = sig;
1579 
1580 	FOREACH_LWP_IN_PROC(lp, p) {
1581 		LWPHOLD(lp);
1582 		lwkt_gettoken(&lp->lwp_token);
1583 
1584 		switch (lp->lwp_stat) {
1585 		case LSSTOP:
1586 			/*
1587 			 * Do nothing, we are already counted in
1588 			 * p_nstopped.
1589 			 */
1590 			break;
1591 
1592 		case LSSLEEP:
1593 			/*
1594 			 * We're sleeping, but we will stop before
1595 			 * returning to userspace, so count us
1596 			 * as stopped as well.  We set LWP_MP_WSTOP
1597 			 * to signal the lwp that it should not
1598 			 * increase p_nstopped when reaching tstop().
1599 			 *
1600 			 * LWP_MP_WSTOP is protected by lp->lwp_token.
1601 			 */
1602 			if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1603 				atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1604 				++p->p_nstopped;
1605 			}
1606 			break;
1607 
1608 		case LSRUN:
1609 			/*
1610 			 * We might notify ourself, but that's not
1611 			 * a problem.
1612 			 */
1613 			lwp_signotify(lp);
1614 			break;
1615 		}
1616 		lwkt_reltoken(&lp->lwp_token);
1617 		LWPRELE(lp);
1618 	}
1619 
1620 	if (p->p_nstopped == p->p_nthreads) {
1621 		/*
1622 		 * Token required to interlock kern_wait().  Reparenting can
1623 		 * also cause a race so we have to hold (q).
1624 		 */
1625 		q = p->p_pptr;
1626 		PHOLD(q);
1627 		lwkt_gettoken(&q->p_token);
1628 		p->p_flags &= ~P_WAITED;
1629 		wakeup(q);
1630 		if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1631 			ksignal(p->p_pptr, SIGCHLD);
1632 		lwkt_reltoken(&q->p_token);
1633 		PRELE(q);
1634 	}
1635 }
1636 
1637 /*
1638  * Caller must hold p_token
1639  */
1640 void
1641 proc_unstop(struct proc *p, int sig)
1642 {
1643 	struct lwp *lp;
1644 
1645 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
1646 
1647 	if (p->p_stat != sig)
1648 		return;
1649 
1650 	p->p_stat = SACTIVE;
1651 
1652 	FOREACH_LWP_IN_PROC(lp, p) {
1653 		LWPHOLD(lp);
1654 		lwkt_gettoken(&lp->lwp_token);
1655 
1656 		switch (lp->lwp_stat) {
1657 		case LSRUN:
1658 			/*
1659 			 * Uh?  Not stopped?  Well, I guess that's okay.
1660 			 */
1661 			if (bootverbose)
1662 				kprintf("proc_unstop: lwp %d/%d not sleeping\n",
1663 					p->p_pid, lp->lwp_tid);
1664 			break;
1665 
1666 		case LSSLEEP:
1667 			/*
1668 			 * Still sleeping.  Don't bother waking it up.
1669 			 * However, if this thread was counted as
1670 			 * stopped, undo this.
1671 			 *
1672 			 * Nevertheless we call setrunnable() so that it
1673 			 * will wake up in case a signal or timeout arrived
1674 			 * in the meantime.
1675 			 *
1676 			 * LWP_MP_WSTOP is protected by lp->lwp_token.
1677 			 */
1678 			if (lp->lwp_mpflags & LWP_MP_WSTOP) {
1679 				atomic_clear_int(&lp->lwp_mpflags,
1680 						 LWP_MP_WSTOP);
1681 				--p->p_nstopped;
1682 			} else {
1683 				if (bootverbose)
1684 					kprintf("proc_unstop: lwp %d/%d sleeping, not stopped\n",
1685 						p->p_pid, lp->lwp_tid);
1686 			}
1687 			/* FALLTHROUGH */
1688 
1689 		case LSSTOP:
1690 			/*
1691 			 * This handles any lwp's waiting in a tsleep with
1692 			 * SIGCATCH.
1693 			 */
1694 			lwp_signotify(lp);
1695 			break;
1696 
1697 		}
1698 		lwkt_reltoken(&lp->lwp_token);
1699 		LWPRELE(lp);
1700 	}
1701 
1702 	/*
1703 	 * This handles any lwp's waiting in tstop().  We have interlocked
1704 	 * the setting of p_stat by acquiring and releasing each lpw's
1705 	 * token.
1706 	 */
1707 	wakeup(p);
1708 }
1709 
1710 /*
1711  * Wait for all threads except the current thread to stop.
1712  */
1713 static void
1714 proc_stopwait(struct proc *p)
1715 {
1716 	while ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1717 	       p->p_nstopped < p->p_nthreads - 1) {
1718 		tsleep_interlock(&p->p_nstopped, 0);
1719 		if (p->p_nstopped < p->p_nthreads - 1) {
1720 			tsleep(&p->p_nstopped, PINTERLOCKED, "stopwt", hz);
1721 		}
1722 	}
1723 }
1724 
1725 /*
1726  * No requirements.
1727  */
1728 static int
1729 kern_sigtimedwait(sigset_t waitset, siginfo_t *info, struct timespec *timeout)
1730 {
1731 	sigset_t savedmask, set;
1732 	struct proc *p = curproc;
1733 	struct lwp *lp = curthread->td_lwp;
1734 	int error, sig, hz, timevalid = 0;
1735 	struct timespec rts, ets, ts;
1736 	struct timeval tv;
1737 
1738 	error = 0;
1739 	sig = 0;
1740 	ets.tv_sec = 0;		/* silence compiler warning */
1741 	ets.tv_nsec = 0;	/* silence compiler warning */
1742 	SIG_CANTMASK(waitset);
1743 	savedmask = lp->lwp_sigmask;
1744 
1745 	if (timeout) {
1746 		if (timeout->tv_sec >= 0 && timeout->tv_nsec >= 0 &&
1747 		    timeout->tv_nsec < 1000000000) {
1748 			timevalid = 1;
1749 			getnanouptime(&rts);
1750 			timespecadd(&rts, timeout, &ets);
1751 		}
1752 	}
1753 
1754 	for (;;) {
1755 		set = lwp_sigpend(lp);
1756 		SIGSETAND(set, waitset);
1757 		if ((sig = sig_ffs(&set)) != 0) {
1758 			SIGFILLSET(lp->lwp_sigmask);
1759 			SIGDELSET(lp->lwp_sigmask, sig);
1760 			SIG_CANTMASK(lp->lwp_sigmask);
1761 			sig = issignal(lp, 1, 0);
1762 			/*
1763 			 * It may be a STOP signal, in the case, issignal
1764 			 * returns 0, because we may stop there, and new
1765 			 * signal can come in, we should restart if we got
1766 			 * nothing.
1767 			 */
1768 			if (sig == 0)
1769 				continue;
1770 			else
1771 				break;
1772 		}
1773 
1774 		/*
1775 		 * Previous checking got nothing, and we retried but still
1776 		 * got nothing, we should return the error status.
1777 		 */
1778 		if (error)
1779 			break;
1780 
1781 		/*
1782 		 * POSIX says this must be checked after looking for pending
1783 		 * signals.
1784 		 */
1785 		if (timeout) {
1786 			if (timevalid == 0) {
1787 				error = EINVAL;
1788 				break;
1789 			}
1790 			getnanouptime(&rts);
1791 			if (timespeccmp(&rts, &ets, >=)) {
1792 				error = EAGAIN;
1793 				break;
1794 			}
1795 			timespecsub(&ets, &rts, &ts);
1796 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1797 			hz = tvtohz_high(&tv);
1798 		} else {
1799 			hz = 0;
1800 		}
1801 
1802 		lp->lwp_sigmask = savedmask;
1803 		SIGSETNAND(lp->lwp_sigmask, waitset);
1804 		/*
1805 		 * We won't ever be woken up.  Instead, our sleep will
1806 		 * be broken in lwpsignal().
1807 		 */
1808 		error = tsleep(&p->p_sigacts, PCATCH, "sigwt", hz);
1809 		if (timeout) {
1810 			if (error == ERESTART) {
1811 				/* can not restart a timeout wait. */
1812 				error = EINTR;
1813 			} else if (error == EAGAIN) {
1814 				/* will calculate timeout by ourself. */
1815 				error = 0;
1816 			}
1817 		}
1818 		/* Retry ... */
1819 	}
1820 
1821 	lp->lwp_sigmask = savedmask;
1822 	if (sig) {
1823 		error = 0;
1824 		bzero(info, sizeof(*info));
1825 		info->si_signo = sig;
1826 		spin_lock(&lp->lwp_spin);
1827 		lwp_delsig(lp, sig, 1);	/* take the signal! */
1828 		spin_unlock(&lp->lwp_spin);
1829 
1830 		if (sig == SIGKILL) {
1831 			sigexit(lp, sig);
1832 			/* NOT REACHED */
1833 		}
1834 	}
1835 
1836 	return (error);
1837 }
1838 
1839 /*
1840  * MPALMOSTSAFE
1841  */
1842 int
1843 sys_sigtimedwait(struct sigtimedwait_args *uap)
1844 {
1845 	struct timespec ts;
1846 	struct timespec *timeout;
1847 	sigset_t set;
1848 	siginfo_t info;
1849 	int error;
1850 
1851 	if (uap->timeout) {
1852 		error = copyin(uap->timeout, &ts, sizeof(ts));
1853 		if (error)
1854 			return (error);
1855 		timeout = &ts;
1856 	} else {
1857 		timeout = NULL;
1858 	}
1859 	error = copyin(uap->set, &set, sizeof(set));
1860 	if (error)
1861 		return (error);
1862 	error = kern_sigtimedwait(set, &info, timeout);
1863 	if (error)
1864 		return (error);
1865 	if (uap->info)
1866 		error = copyout(&info, uap->info, sizeof(info));
1867 	/* Repost if we got an error. */
1868 	/*
1869 	 * XXX lwp
1870 	 *
1871 	 * This could transform a thread-specific signal to another
1872 	 * thread / process pending signal.
1873 	 */
1874 	if (error) {
1875 		ksignal(curproc, info.si_signo);
1876 	} else {
1877 		uap->sysmsg_result = info.si_signo;
1878 	}
1879 	return (error);
1880 }
1881 
1882 /*
1883  * MPALMOSTSAFE
1884  */
1885 int
1886 sys_sigwaitinfo(struct sigwaitinfo_args *uap)
1887 {
1888 	siginfo_t info;
1889 	sigset_t set;
1890 	int error;
1891 
1892 	error = copyin(uap->set, &set, sizeof(set));
1893 	if (error)
1894 		return (error);
1895 	error = kern_sigtimedwait(set, &info, NULL);
1896 	if (error)
1897 		return (error);
1898 	if (uap->info)
1899 		error = copyout(&info, uap->info, sizeof(info));
1900 	/* Repost if we got an error. */
1901 	/*
1902 	 * XXX lwp
1903 	 *
1904 	 * This could transform a thread-specific signal to another
1905 	 * thread / process pending signal.
1906 	 */
1907 	if (error) {
1908 		ksignal(curproc, info.si_signo);
1909 	} else {
1910 		uap->sysmsg_result = info.si_signo;
1911 	}
1912 	return (error);
1913 }
1914 
1915 /*
1916  * If the current process has received a signal that would interrupt a
1917  * system call, return EINTR or ERESTART as appropriate.
1918  */
1919 int
1920 iscaught(struct lwp *lp)
1921 {
1922 	struct proc *p = lp->lwp_proc;
1923 	int sig;
1924 
1925 	if (p) {
1926 		if ((sig = CURSIG(lp)) != 0) {
1927 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
1928 				return (EINTR);
1929 			return (ERESTART);
1930 		}
1931 	}
1932 	return(EWOULDBLOCK);
1933 }
1934 
1935 /*
1936  * If the current lwp/proc has received a signal (should be caught or cause
1937  * termination, should interrupt current syscall), return the signal number.
1938  * Stop signals with default action are processed immediately, then cleared;
1939  * they aren't returned.  This is checked after each entry to the system for
1940  * a syscall or trap (though this can usually be done without calling issignal
1941  * by checking the pending signal masks in the CURSIG macro).
1942  *
1943  * This routine is called via CURSIG/__cursig.  We will acquire and release
1944  * p->p_token but if the caller needs to interlock the test the caller must
1945  * also hold p->p_token.
1946  *
1947  *	while (sig = CURSIG(curproc))
1948  *		postsig(sig);
1949  */
1950 int
1951 issignal(struct lwp *lp, int maytrace, int *ptokp)
1952 {
1953 	struct proc *p = lp->lwp_proc;
1954 	sigset_t mask;
1955 	int sig, prop;
1956 	int haveptok;
1957 
1958 	for (;;) {
1959 		int traced = (p->p_flags & P_TRACED) || (p->p_stops & S_SIG);
1960 
1961 		haveptok = 0;
1962 
1963 		/*
1964 		 * NOTE: Do not tstop here.  Issue the proc_stop()
1965 		 *	 so other parties see that we know we need
1966 		 *	 to stop, but don't block here.  Locks might
1967 		 *	 be held.
1968 		 *
1969 		 * XXX If this process is supposed to stop, stop this thread.
1970 		 *     removed.
1971 		 */
1972 #if 0
1973 		if (STOPLWP(p, lp)) {
1974 			lwkt_gettoken(&p->p_token);
1975 			tstop();
1976 			lwkt_reltoken(&p->p_token);
1977 		}
1978 #endif
1979 
1980 		/*
1981 		 * Quick check without token
1982 		 */
1983 		mask = lwp_sigpend(lp);
1984 		SIGSETNAND(mask, lp->lwp_sigmask);
1985 		if (p->p_flags & P_PPWAIT)
1986 			SIG_STOPSIGMASK(mask);
1987 		if (SIGISEMPTY(mask)) 		/* no signal to send */
1988 			return (0);
1989 
1990 		/*
1991 		 * If the signal is a member of the process signal set
1992 		 * we need p_token (even if it is also a member of the
1993 		 * lwp signal set).
1994 		 */
1995 		sig = sig_ffs(&mask);
1996 		if (SIGISMEMBER(p->p_siglist, sig)) {
1997 			/*
1998 			 * Recheck with token
1999 			 */
2000 			haveptok = 1;
2001 			lwkt_gettoken(&p->p_token);
2002 
2003 			mask = lwp_sigpend(lp);
2004 			SIGSETNAND(mask, lp->lwp_sigmask);
2005 			if (p->p_flags & P_PPWAIT)
2006 				SIG_STOPSIGMASK(mask);
2007 			if (SIGISEMPTY(mask)) {		/* no signal to send */
2008 				/* haveptok is TRUE */
2009 				lwkt_reltoken(&p->p_token);
2010 				return (0);
2011 			}
2012 			sig = sig_ffs(&mask);
2013 		}
2014 
2015 		STOPEVENT(p, S_SIG, sig);
2016 
2017 		/*
2018 		 * We should see pending but ignored signals
2019 		 * only if P_TRACED was on when they were posted.
2020 		 */
2021 		if (SIGISMEMBER(p->p_sigignore, sig) && (traced == 0)) {
2022 			spin_lock(&lp->lwp_spin);
2023 			lwp_delsig(lp, sig, haveptok);
2024 			spin_unlock(&lp->lwp_spin);
2025 			if (haveptok)
2026 				lwkt_reltoken(&p->p_token);
2027 			continue;
2028 		}
2029 		if (maytrace &&
2030 		    (p->p_flags & P_TRACED) &&
2031 		    (p->p_flags & P_PPWAIT) == 0) {
2032 			/*
2033 			 * If traced, always stop, and stay stopped until
2034 			 * released by the parent.
2035 			 *
2036 			 * NOTE: SSTOP may get cleared during the loop, but
2037 			 *	 we do not re-notify the parent if we have
2038 			 *	 to loop several times waiting for the parent
2039 			 *	 to let us continue.  XXX not sure if this is
2040 			 * 	 still true
2041 			 *
2042 			 * NOTE: Do not tstop here.  Issue the proc_stop()
2043 			 *	 so other parties see that we know we need
2044 			 *	 to stop, but don't block here.  Locks might
2045 			 *	 be held.
2046 			 */
2047 			if (haveptok == 0) {
2048 				lwkt_gettoken(&p->p_token);
2049 				haveptok = 1;
2050 			}
2051 			p->p_xstat = sig;
2052 			proc_stop(p, SSTOP);
2053 
2054 			/*
2055 			 * Normally we don't stop until we return to userland, but
2056 			 * make an exception when tracing and 'maytrace' is asserted.
2057 			 */
2058 			if (p->p_flags & P_TRACED)
2059 				tstop();
2060 
2061 			/*
2062 			 * If parent wants us to take the signal,
2063 			 * then it will leave it in p->p_xstat;
2064 			 * otherwise we just look for signals again.
2065 			 */
2066 			spin_lock(&lp->lwp_spin);
2067 			lwp_delsig(lp, sig, 1);	/* clear old signal */
2068 			spin_unlock(&lp->lwp_spin);
2069 			sig = p->p_xstat;
2070 			if (sig == 0) {
2071 				/* haveptok is TRUE */
2072 				lwkt_reltoken(&p->p_token);
2073 				continue;
2074 			}
2075 
2076 			/*
2077 			 * Put the new signal into p_siglist.  If the
2078 			 * signal is being masked, look for other signals.
2079 			 *
2080 			 * XXX lwp might need a call to ksignal()
2081 			 */
2082 			SIGADDSET_ATOMIC(p->p_siglist, sig);
2083 			if (SIGISMEMBER(lp->lwp_sigmask, sig)) {
2084 				/* haveptok is TRUE */
2085 				lwkt_reltoken(&p->p_token);
2086 				continue;
2087 			}
2088 
2089 			/*
2090 			 * If the traced bit got turned off, go back up
2091 			 * to the top to rescan signals.  This ensures
2092 			 * that p_sig* and ps_sigact are consistent.
2093 			 */
2094 			if ((p->p_flags & P_TRACED) == 0) {
2095 				/* haveptok is TRUE */
2096 				lwkt_reltoken(&p->p_token);
2097 				continue;
2098 			}
2099 		}
2100 
2101 		/*
2102 		 * p_token may be held here
2103 		 */
2104 		prop = sigprop(sig);
2105 
2106 		/*
2107 		 * Decide whether the signal should be returned.
2108 		 * Return the signal's number, or fall through
2109 		 * to clear it from the pending mask.
2110 		 */
2111 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2112 		case (intptr_t)SIG_DFL:
2113 			/*
2114 			 * Don't take default actions on system processes.
2115 			 */
2116 			if (p->p_pid <= 1) {
2117 #ifdef DIAGNOSTIC
2118 				/*
2119 				 * Are you sure you want to ignore SIGSEGV
2120 				 * in init? XXX
2121 				 */
2122 				kprintf("Process (pid %lu) got signal %d\n",
2123 					(u_long)p->p_pid, sig);
2124 #endif
2125 				break;		/* == ignore */
2126 			}
2127 
2128 			/*
2129 			 * Handle the in-kernel checkpoint action
2130 			 */
2131 			if (prop & SA_CKPT) {
2132 				if (haveptok == 0) {
2133 					lwkt_gettoken(&p->p_token);
2134 					haveptok = 1;
2135 				}
2136 				checkpoint_signal_handler(lp);
2137 				break;
2138 			}
2139 
2140 			/*
2141 			 * If there is a pending stop signal to process
2142 			 * with default action, stop here,
2143 			 * then clear the signal.  However,
2144 			 * if process is member of an orphaned
2145 			 * process group, ignore tty stop signals.
2146 			 */
2147 			if (prop & SA_STOP) {
2148 				if (haveptok == 0) {
2149 					lwkt_gettoken(&p->p_token);
2150 					haveptok = 1;
2151 				}
2152 				if (p->p_flags & P_TRACED ||
2153 		    		    (p->p_pgrp->pg_jobc == 0 &&
2154 				    prop & SA_TTYSTOP))
2155 					break;	/* == ignore */
2156 				if ((p->p_flags & P_WEXIT) == 0) {
2157 					/*
2158 					 * NOTE: We do not block here.  Issue
2159 					 *	 stopthe stop so other parties
2160 					 *	 see that we know we need to
2161 					 *	 stop.  Locks might be held.
2162 					 */
2163 					p->p_xstat = sig;
2164 					proc_stop(p, SSTOP);
2165 
2166 #if 0
2167 					tstop();
2168 #endif
2169 				}
2170 				break;
2171 			} else if (prop & SA_IGNORE) {
2172 				/*
2173 				 * Except for SIGCONT, shouldn't get here.
2174 				 * Default action is to ignore; drop it.
2175 				 */
2176 				break;		/* == ignore */
2177 			} else {
2178 				if (ptokp)
2179 					*ptokp = haveptok;
2180 				else if (haveptok)
2181 					lwkt_reltoken(&p->p_token);
2182 				return (sig);
2183 			}
2184 
2185 			/*NOTREACHED*/
2186 
2187 		case (intptr_t)SIG_IGN:
2188 			/*
2189 			 * Masking above should prevent us ever trying
2190 			 * to take action on an ignored signal other
2191 			 * than SIGCONT, unless process is traced.
2192 			 */
2193 			if ((prop & SA_CONT) == 0 &&
2194 			    (p->p_flags & P_TRACED) == 0)
2195 				kprintf("issignal\n");
2196 			break;		/* == ignore */
2197 
2198 		default:
2199 			/*
2200 			 * This signal has an action, let
2201 			 * postsig() process it.
2202 			 */
2203 			if (ptokp)
2204 				*ptokp = haveptok;
2205 			else if (haveptok)
2206 				lwkt_reltoken(&p->p_token);
2207 			return (sig);
2208 		}
2209 		spin_lock(&lp->lwp_spin);
2210 		lwp_delsig(lp, sig, haveptok);		/* take the signal! */
2211 		spin_unlock(&lp->lwp_spin);
2212 
2213 		if (haveptok)
2214 			lwkt_reltoken(&p->p_token);
2215 	}
2216 	/* NOTREACHED */
2217 }
2218 
2219 /*
2220  * Take the action for the specified signal from the current set of
2221  * pending signals.
2222  *
2223  * haveptok indicates whether the caller is holding p->p_token.  If the
2224  * caller is, we are responsible for releasing it.
2225  *
2226  * This routine can only be called from the top-level trap from usermode.
2227  * It is expecting to be able to modify the top-level stack frame.
2228  */
2229 void
2230 postsig(int sig, int haveptok)
2231 {
2232 	struct lwp *lp = curthread->td_lwp;
2233 	struct proc *p = lp->lwp_proc;
2234 	struct sigacts *ps = p->p_sigacts;
2235 	sig_t action;
2236 	sigset_t returnmask;
2237 	int code;
2238 
2239 	KASSERT(sig != 0, ("postsig"));
2240 
2241 	/*
2242 	 * If we are a virtual kernel running an emulated user process
2243 	 * context, switch back to the virtual kernel context before
2244 	 * trying to post the signal.
2245 	 */
2246 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
2247 		struct trapframe *tf = lp->lwp_md.md_regs;
2248 		tf->tf_trapno = 0;
2249 		vkernel_trap(lp, tf);
2250 	}
2251 
2252 	KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
2253 
2254 	spin_lock(&lp->lwp_spin);
2255 	lwp_delsig(lp, sig, haveptok);
2256 	spin_unlock(&lp->lwp_spin);
2257 	action = ps->ps_sigact[_SIG_IDX(sig)];
2258 #ifdef KTRACE
2259 	if (KTRPOINT(lp->lwp_thread, KTR_PSIG))
2260 		ktrpsig(lp, sig, action, lp->lwp_flags & LWP_OLDMASK ?
2261 			&lp->lwp_oldsigmask : &lp->lwp_sigmask, 0);
2262 #endif
2263 	/*
2264 	 * We don't need p_token after this point.
2265 	 */
2266 	if (haveptok)
2267 		lwkt_reltoken(&p->p_token);
2268 
2269 	STOPEVENT(p, S_SIG, sig);
2270 
2271 	if (action == SIG_DFL) {
2272 		/*
2273 		 * Default action, where the default is to kill
2274 		 * the process.  (Other cases were ignored above.)
2275 		 */
2276 		sigexit(lp, sig);
2277 		/* NOTREACHED */
2278 	} else {
2279 		/*
2280 		 * If we get here, the signal must be caught.
2281 		 */
2282 		KASSERT(action != SIG_IGN && !SIGISMEMBER(lp->lwp_sigmask, sig),
2283 		    ("postsig action"));
2284 
2285 		/*
2286 		 * Reset the signal handler if asked to
2287 		 */
2288 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2289 			/*
2290 			 * See kern_sigaction() for origin of this code.
2291 			 */
2292 			SIGDELSET(p->p_sigcatch, sig);
2293 			if (sig != SIGCONT &&
2294 			    sigprop(sig) & SA_IGNORE)
2295 				SIGADDSET(p->p_sigignore, sig);
2296 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2297 		}
2298 
2299 		/*
2300 		 * Set the signal mask and calculate the mask to restore
2301 		 * when the signal function returns.
2302 		 *
2303 		 * Special case: user has done a sigsuspend.  Here the
2304 		 * current mask is not of interest, but rather the
2305 		 * mask from before the sigsuspend is what we want
2306 		 * restored after the signal processing is completed.
2307 		 */
2308 		if (lp->lwp_flags & LWP_OLDMASK) {
2309 			returnmask = lp->lwp_oldsigmask;
2310 			lp->lwp_flags &= ~LWP_OLDMASK;
2311 		} else {
2312 			returnmask = lp->lwp_sigmask;
2313 		}
2314 
2315 		SIGSETOR(lp->lwp_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2316 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2317 			SIGADDSET(lp->lwp_sigmask, sig);
2318 
2319 		lp->lwp_ru.ru_nsignals++;
2320 		if (lp->lwp_sig != sig) {
2321 			code = 0;
2322 		} else {
2323 			code = lp->lwp_code;
2324 			lp->lwp_code = 0;
2325 			lp->lwp_sig = 0;
2326 		}
2327 		(*p->p_sysent->sv_sendsig)(action, sig, &returnmask, code);
2328 	}
2329 }
2330 
2331 /*
2332  * Kill the current process for stated reason.
2333  */
2334 void
2335 killproc(struct proc *p, char *why)
2336 {
2337 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n",
2338 		p->p_pid, p->p_comm,
2339 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2340 	ksignal(p, SIGKILL);
2341 }
2342 
2343 /*
2344  * Force the current process to exit with the specified signal, dumping core
2345  * if appropriate.  We bypass the normal tests for masked and caught signals,
2346  * allowing unrecoverable failures to terminate the process without changing
2347  * signal state.  Mark the accounting record with the signal termination.
2348  * If dumping core, save the signal number for the debugger.  Calls exit and
2349  * does not return.
2350  *
2351  * This routine does not return.
2352  */
2353 void
2354 sigexit(struct lwp *lp, int sig)
2355 {
2356 	struct proc *p = lp->lwp_proc;
2357 
2358 	lwkt_gettoken(&p->p_token);
2359 	p->p_acflag |= AXSIG;
2360 	if (sigprop(sig) & SA_CORE) {
2361 		lp->lwp_sig = sig;
2362 
2363 		/*
2364 		 * All threads must be stopped before we can safely coredump.
2365 		 * Stop threads using SCORE, which cannot be overridden.
2366 		 */
2367 		if (p->p_stat != SCORE) {
2368 			proc_stop(p, SCORE);
2369 			proc_stopwait(p);
2370 
2371 			if (coredump(lp, sig) == 0)
2372 				sig |= WCOREFLAG;
2373 			p->p_stat = SSTOP;
2374 		}
2375 
2376 		/*
2377 		 * Log signals which would cause core dumps
2378 		 * (Log as LOG_INFO to appease those who don't want
2379 		 * these messages.)
2380 		 * XXX : Todo, as well as euid, write out ruid too
2381 		 */
2382 		if (kern_logsigexit) {
2383 			log(LOG_INFO,
2384 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2385 			    p->p_pid, p->p_comm,
2386 			    p->p_ucred ? p->p_ucred->cr_uid : -1,
2387 			    sig &~ WCOREFLAG,
2388 			    sig & WCOREFLAG ? " (core dumped)" : "");
2389 			if (kern_logsigexit > 1)
2390 				kprintf("DEBUG - waiting on kern.logsigexit\n");
2391 			while (kern_logsigexit > 1) {
2392 				tsleep(&kern_logsigexit, 0, "DEBUG", hz);
2393 			}
2394 		}
2395 	}
2396 	lwkt_reltoken(&p->p_token);
2397 	exit1(W_EXITCODE(0, sig));
2398 	/* NOTREACHED */
2399 }
2400 
2401 static char corefilename[MAXPATHLEN+1] = {"%N.core"};
2402 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2403 	      sizeof(corefilename), "process corefile name format string");
2404 
2405 /*
2406  * expand_name(name, uid, pid)
2407  * Expand the name described in corefilename, using name, uid, and pid.
2408  * corefilename is a kprintf-like string, with three format specifiers:
2409  *	%N	name of process ("name")
2410  *	%P	process id (pid)
2411  *	%U	user id (uid)
2412  * For example, "%N.core" is the default; they can be disabled completely
2413  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2414  * This is controlled by the sysctl variable kern.corefile (see above).
2415  */
2416 
2417 static char *
2418 expand_name(const char *name, uid_t uid, pid_t pid)
2419 {
2420 	char *temp;
2421 	char buf[11];		/* Buffer for pid/uid -- max 4B */
2422 	int i, n;
2423 	char *format = corefilename;
2424 	size_t namelen;
2425 
2426 	temp = kmalloc(MAXPATHLEN + 1, M_TEMP, M_NOWAIT);
2427 	if (temp == NULL)
2428 		return NULL;
2429 	namelen = strlen(name);
2430 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
2431 		int l;
2432 		switch (format[i]) {
2433 		case '%':	/* Format character */
2434 			i++;
2435 			switch (format[i]) {
2436 			case '%':
2437 				temp[n++] = '%';
2438 				break;
2439 			case 'N':	/* process name */
2440 				if ((n + namelen) > MAXPATHLEN) {
2441 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
2442 					    pid, name, uid, temp, name);
2443 					kfree(temp, M_TEMP);
2444 					return NULL;
2445 				}
2446 				memcpy(temp+n, name, namelen);
2447 				n += namelen;
2448 				break;
2449 			case 'P':	/* process id */
2450 				l = ksprintf(buf, "%u", pid);
2451 				if ((n + l) > MAXPATHLEN) {
2452 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
2453 					    pid, name, uid, temp, name);
2454 					kfree(temp, M_TEMP);
2455 					return NULL;
2456 				}
2457 				memcpy(temp+n, buf, l);
2458 				n += l;
2459 				break;
2460 			case 'U':	/* user id */
2461 				l = ksprintf(buf, "%u", uid);
2462 				if ((n + l) > MAXPATHLEN) {
2463 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
2464 					    pid, name, uid, temp, name);
2465 					kfree(temp, M_TEMP);
2466 					return NULL;
2467 				}
2468 				memcpy(temp+n, buf, l);
2469 				n += l;
2470 				break;
2471 			default:
2472 			  	log(LOG_ERR, "Unknown format character %c in `%s'\n", format[i], format);
2473 			}
2474 			break;
2475 		default:
2476 			temp[n++] = format[i];
2477 		}
2478 	}
2479 	temp[n] = '\0';
2480 	return temp;
2481 }
2482 
2483 /*
2484  * Dump a process' core.  The main routine does some
2485  * policy checking, and creates the name of the coredump;
2486  * then it passes on a vnode and a size limit to the process-specific
2487  * coredump routine if there is one; if there _is not_ one, it returns
2488  * ENOSYS; otherwise it returns the error from the process-specific routine.
2489  *
2490  * The parameter `lp' is the lwp which triggered the coredump.
2491  */
2492 
2493 static int
2494 coredump(struct lwp *lp, int sig)
2495 {
2496 	struct proc *p = lp->lwp_proc;
2497 	struct vnode *vp;
2498 	struct ucred *cred = p->p_ucred;
2499 	struct flock lf;
2500 	struct nlookupdata nd;
2501 	struct vattr vattr;
2502 	int error, error1;
2503 	char *name;			/* name of corefile */
2504 	off_t limit;
2505 
2506 	STOPEVENT(p, S_CORE, 0);
2507 
2508 	if (((sugid_coredump == 0) && p->p_flags & P_SUGID) || do_coredump == 0)
2509 		return (EFAULT);
2510 
2511 	/*
2512 	 * Note that the bulk of limit checking is done after
2513 	 * the corefile is created.  The exception is if the limit
2514 	 * for corefiles is 0, in which case we don't bother
2515 	 * creating the corefile at all.  This layout means that
2516 	 * a corefile is truncated instead of not being created,
2517 	 * if it is larger than the limit.
2518 	 */
2519 	limit = p->p_rlimit[RLIMIT_CORE].rlim_cur;
2520 	if (limit == 0)
2521 		return EFBIG;
2522 
2523 	name = expand_name(p->p_comm, p->p_ucred->cr_uid, p->p_pid);
2524 	if (name == NULL)
2525 		return (EINVAL);
2526 	error = nlookup_init(&nd, name, UIO_SYSSPACE, NLC_LOCKVP);
2527 	if (error == 0)
2528 		error = vn_open(&nd, NULL,
2529 				O_CREAT | FWRITE | O_NOFOLLOW,
2530 				S_IRUSR | S_IWUSR);
2531 	kfree(name, M_TEMP);
2532 	if (error) {
2533 		nlookup_done(&nd);
2534 		return (error);
2535 	}
2536 	vp = nd.nl_open_vp;
2537 	nd.nl_open_vp = NULL;
2538 	nlookup_done(&nd);
2539 
2540 	vn_unlock(vp);
2541 	lf.l_whence = SEEK_SET;
2542 	lf.l_start = 0;
2543 	lf.l_len = 0;
2544 	lf.l_type = F_WRLCK;
2545 	error = VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, 0);
2546 	if (error)
2547 		goto out2;
2548 
2549 	/* Don't dump to non-regular files or files with links. */
2550 	if (vp->v_type != VREG ||
2551 	    VOP_GETATTR(vp, &vattr) || vattr.va_nlink != 1) {
2552 		error = EFAULT;
2553 		goto out1;
2554 	}
2555 
2556 	/* Don't dump to files current user does not own */
2557 	if (vattr.va_uid != p->p_ucred->cr_uid) {
2558 		error = EFAULT;
2559 		goto out1;
2560 	}
2561 
2562 	VATTR_NULL(&vattr);
2563 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2564 	vattr.va_size = 0;
2565 	VOP_SETATTR(vp, &vattr, cred);
2566 	p->p_acflag |= ACORE;
2567 	vn_unlock(vp);
2568 
2569 	error = p->p_sysent->sv_coredump ?
2570 		  p->p_sysent->sv_coredump(lp, sig, vp, limit) : ENOSYS;
2571 
2572 out1:
2573 	lf.l_type = F_UNLCK;
2574 	VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, 0);
2575 out2:
2576 	error1 = vn_close(vp, FWRITE, NULL);
2577 	if (error == 0)
2578 		error = error1;
2579 	return (error);
2580 }
2581 
2582 /*
2583  * Nonexistent system call-- signal process (may want to handle it).
2584  * Flag error in case process won't see signal immediately (blocked or ignored).
2585  *
2586  * MPALMOSTSAFE
2587  */
2588 /* ARGSUSED */
2589 int
2590 sys_nosys(struct nosys_args *args)
2591 {
2592 	lwpsignal(curproc, curthread->td_lwp, SIGSYS);
2593 	return (EINVAL);
2594 }
2595 
2596 /*
2597  * Send a SIGIO or SIGURG signal to a process or process group using
2598  * stored credentials rather than those of the current process.
2599  */
2600 void
2601 pgsigio(struct sigio *sigio, int sig, int checkctty)
2602 {
2603 	if (sigio == NULL)
2604 		return;
2605 
2606 	if (sigio->sio_pgid > 0) {
2607 		if (CANSIGIO(sigio->sio_ruid, sigio->sio_ucred,
2608 		             sigio->sio_proc))
2609 			ksignal(sigio->sio_proc, sig);
2610 	} else if (sigio->sio_pgid < 0) {
2611 		struct proc *p;
2612 		struct pgrp *pg = sigio->sio_pgrp;
2613 
2614 		/*
2615 		 * Must interlock all signals against fork
2616 		 */
2617 		pgref(pg);
2618 		lockmgr(&pg->pg_lock, LK_EXCLUSIVE);
2619 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
2620 			if (CANSIGIO(sigio->sio_ruid, sigio->sio_ucred, p) &&
2621 			    (checkctty == 0 || (p->p_flags & P_CONTROLT)))
2622 				ksignal(p, sig);
2623 		}
2624 		lockmgr(&pg->pg_lock, LK_RELEASE);
2625 		pgrel(pg);
2626 	}
2627 }
2628 
2629 static int
2630 filt_sigattach(struct knote *kn)
2631 {
2632 	struct proc *p = curproc;
2633 
2634 	kn->kn_ptr.p_proc = p;
2635 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
2636 
2637 	/* XXX lock the proc here while adding to the list? */
2638 	knote_insert(&p->p_klist, kn);
2639 
2640 	return (0);
2641 }
2642 
2643 static void
2644 filt_sigdetach(struct knote *kn)
2645 {
2646 	struct proc *p = kn->kn_ptr.p_proc;
2647 
2648 	knote_remove(&p->p_klist, kn);
2649 }
2650 
2651 /*
2652  * signal knotes are shared with proc knotes, so we apply a mask to
2653  * the hint in order to differentiate them from process hints.  This
2654  * could be avoided by using a signal-specific knote list, but probably
2655  * isn't worth the trouble.
2656  */
2657 static int
2658 filt_signal(struct knote *kn, long hint)
2659 {
2660 	if (hint & NOTE_SIGNAL) {
2661 		hint &= ~NOTE_SIGNAL;
2662 
2663 		if (kn->kn_id == hint)
2664 			kn->kn_data++;
2665 	}
2666 	return (kn->kn_data != 0);
2667 }
2668