xref: /dragonfly/sys/kern/kern_sig.c (revision c9c5aa9e)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  * $FreeBSD: src/sys/kern/kern_sig.c,v 1.72.2.17 2003/05/16 16:34:34 obrien Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/sysmsg.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vnode.h>
47 #include <sys/event.h>
48 #include <sys/proc.h>
49 #include <sys/nlookup.h>
50 #include <sys/pioctl.h>
51 #include <sys/acct.h>
52 #include <sys/fcntl.h>
53 #include <sys/lock.h>
54 #include <sys/wait.h>
55 #include <sys/ktrace.h>
56 #include <sys/syslog.h>
57 #include <sys/stat.h>
58 #include <sys/sysent.h>
59 #include <sys/sysctl.h>
60 #include <sys/malloc.h>
61 #include <sys/interrupt.h>
62 #include <sys/unistd.h>
63 #include <sys/kern_syscall.h>
64 #include <sys/vkernel.h>
65 
66 #include <sys/signal2.h>
67 #include <sys/thread2.h>
68 #include <sys/spinlock2.h>
69 
70 #include <machine/cpu.h>
71 #include <machine/smp.h>
72 
73 static int	coredump(struct lwp *, int);
74 static char	*expand_name(const char *, uid_t, pid_t);
75 static int	dokillpg(int sig, int pgid, int all);
76 static int	sig_ffs(sigset_t *set);
77 static int	sigprop(int sig);
78 static void	lwp_signotify(struct lwp *lp);
79 static void	lwp_signotify_remote(void *arg);
80 static int	kern_sigtimedwait(sigset_t set, siginfo_t *info,
81 		    struct timespec *timeout);
82 static void	proc_stopwait(struct proc *p);
83 
84 static int	filt_sigattach(struct knote *kn);
85 static void	filt_sigdetach(struct knote *kn);
86 static int	filt_signal(struct knote *kn, long hint);
87 
88 struct filterops sig_filtops =
89 	{ FILTEROP_MPSAFE, filt_sigattach, filt_sigdetach, filt_signal };
90 
91 static int	kern_logsigexit = 1;
92 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
93     &kern_logsigexit, 0,
94     "Log processes quitting on abnormal signals to syslog(3)");
95 
96 /*
97  * Can process p send the signal sig to process q?  Only processes within
98  * the current reaper or children of the current reaper can be signaled.
99  * Normally the reaper itself cannot be signalled, unless initok is set.
100  */
101 #define CANSIGNAL(q, sig, initok)				\
102 	((!p_trespass(curproc->p_ucred, (q)->p_ucred) &&	\
103 	reaper_sigtest(curproc, p, initok)) ||			\
104 	((sig) == SIGCONT && (q)->p_session == curproc->p_session))
105 
106 /*
107  * Policy -- Can real uid ruid with ucred uc send a signal to process q?
108  */
109 #define CANSIGIO(ruid, uc, q) \
110 	((uc)->cr_uid == 0 || \
111 	    (ruid) == (q)->p_ucred->cr_ruid || \
112 	    (uc)->cr_uid == (q)->p_ucred->cr_ruid || \
113 	    (ruid) == (q)->p_ucred->cr_uid || \
114 	    (uc)->cr_uid == (q)->p_ucred->cr_uid)
115 
116 int sugid_coredump;
117 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
118 	&sugid_coredump, 0, "Enable coredumping set user/group ID processes");
119 
120 static int	do_coredump = 1;
121 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
122 	&do_coredump, 0, "Enable/Disable coredumps");
123 
124 /*
125  * Signal properties and actions.
126  * The array below categorizes the signals and their default actions
127  * according to the following properties:
128  */
129 #define	SA_KILL		0x01		/* terminates process by default */
130 #define	SA_CORE		0x02		/* ditto and coredumps */
131 #define	SA_STOP		0x04		/* suspend process */
132 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
133 #define	SA_IGNORE	0x10		/* ignore by default */
134 #define	SA_CONT		0x20		/* continue if suspended */
135 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
136 #define SA_CKPT         0x80            /* checkpoint process */
137 
138 
139 static int sigproptbl[NSIG] = {
140         SA_KILL,                /* SIGHUP */
141         SA_KILL,                /* SIGINT */
142         SA_KILL|SA_CORE,        /* SIGQUIT */
143         SA_KILL|SA_CORE,        /* SIGILL */
144         SA_KILL|SA_CORE,        /* SIGTRAP */
145         SA_KILL|SA_CORE,        /* SIGABRT */
146         SA_KILL|SA_CORE,        /* SIGEMT */
147         SA_KILL|SA_CORE,        /* SIGFPE */
148         SA_KILL,                /* SIGKILL */
149         SA_KILL|SA_CORE,        /* SIGBUS */
150         SA_KILL|SA_CORE,        /* SIGSEGV */
151         SA_KILL|SA_CORE,        /* SIGSYS */
152         SA_KILL,                /* SIGPIPE */
153         SA_KILL,                /* SIGALRM */
154         SA_KILL,                /* SIGTERM */
155         SA_IGNORE,              /* SIGURG */
156         SA_STOP,                /* SIGSTOP */
157         SA_STOP|SA_TTYSTOP,     /* SIGTSTP */
158         SA_IGNORE|SA_CONT,      /* SIGCONT */
159         SA_IGNORE,              /* SIGCHLD */
160         SA_STOP|SA_TTYSTOP,     /* SIGTTIN */
161         SA_STOP|SA_TTYSTOP,     /* SIGTTOU */
162         SA_IGNORE,              /* SIGIO */
163         SA_KILL,                /* SIGXCPU */
164         SA_KILL,                /* SIGXFSZ */
165         SA_KILL,                /* SIGVTALRM */
166         SA_KILL,                /* SIGPROF */
167         SA_IGNORE,              /* SIGWINCH  */
168         SA_IGNORE,              /* SIGINFO */
169         SA_KILL,                /* SIGUSR1 */
170         SA_KILL,                /* SIGUSR2 */
171 	SA_IGNORE,              /* SIGTHR */
172 	SA_CKPT,                /* SIGCKPT */
173 	SA_KILL|SA_CKPT,        /* SIGCKPTEXIT */
174 	SA_IGNORE,
175 	SA_IGNORE,
176 	SA_IGNORE,
177 	SA_IGNORE,
178 	SA_IGNORE,
179 	SA_IGNORE,
180 	SA_IGNORE,
181 	SA_IGNORE,
182 	SA_IGNORE,
183 	SA_IGNORE,
184 	SA_IGNORE,
185 	SA_IGNORE,
186 	SA_IGNORE,
187 	SA_IGNORE,
188 	SA_IGNORE,
189 	SA_IGNORE,
190 	SA_IGNORE,
191 	SA_IGNORE,
192 	SA_IGNORE,
193 	SA_IGNORE,
194 	SA_IGNORE,
195 	SA_IGNORE,
196 	SA_IGNORE,
197 	SA_IGNORE,
198 	SA_IGNORE,
199 	SA_IGNORE,
200 	SA_IGNORE,
201 	SA_IGNORE,
202 	SA_IGNORE,
203 	SA_IGNORE,
204 
205 };
206 
207 __read_mostly sigset_t sigcantmask_mask;
208 
209 static __inline int
210 sigprop(int sig)
211 {
212 
213 	if (sig > 0 && sig < NSIG)
214 		return (sigproptbl[_SIG_IDX(sig)]);
215 
216 	return (0);
217 }
218 
219 static __inline int
220 sig_ffs(sigset_t *set)
221 {
222 	int i;
223 
224 	for (i = 0; i < _SIG_WORDS; i++)
225 		if (set->__bits[i])
226 			return (ffs(set->__bits[i]) + (i * 32));
227 	return (0);
228 }
229 
230 /*
231  * Allows us to populate siginfo->si_pid and si_uid in the target process
232  * (p) from the originating thread (td).  This function must work properly
233  * even if a kernel thread is sending the signal.
234  *
235  * NOTE: Signals are not queued, so if multiple signals are received the
236  *	 signal handler will only see the most recent pid and uid for any
237  *	 given signal number.
238  */
239 static __inline void
240 sigsetfrompid(thread_t td, struct proc *p, int sig)
241 {
242 	struct sigacts *sap;
243 
244 	if ((sap = p->p_sigacts) == NULL)
245 		return;
246 	if (td->td_proc) {
247 		sap->ps_frominfo[sig].pid = td->td_proc->p_pid;
248 		sap->ps_frominfo[sig].uid = td->td_ucred->cr_uid;
249 	} else {
250 		sap->ps_frominfo[sig].pid = 0;
251 		sap->ps_frominfo[sig].uid = 0;
252 	}
253 }
254 
255 /*
256  * No requirements.
257  */
258 int
259 kern_sigaction(int sig, struct sigaction *act, struct sigaction *oact)
260 {
261 	struct thread *td = curthread;
262 	struct proc *p = td->td_proc;
263 	struct lwp *lp;
264 	struct sigacts *ps = p->p_sigacts;
265 
266 	if (sig <= 0 || sig >= _SIG_MAXSIG)
267 		return (EINVAL);
268 
269 	lwkt_gettoken(&p->p_token);
270 
271 	if (oact) {
272 		oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
273 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
274 		oact->sa_flags = 0;
275 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
276 			oact->sa_flags |= SA_ONSTACK;
277 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
278 			oact->sa_flags |= SA_RESTART;
279 		if (SIGISMEMBER(ps->ps_sigreset, sig))
280 			oact->sa_flags |= SA_RESETHAND;
281 		if (SIGISMEMBER(ps->ps_signodefer, sig))
282 			oact->sa_flags |= SA_NODEFER;
283 		if (SIGISMEMBER(ps->ps_siginfo, sig))
284 			oact->sa_flags |= SA_SIGINFO;
285 		if (sig == SIGCHLD && p->p_sigacts->ps_flag & PS_NOCLDSTOP)
286 			oact->sa_flags |= SA_NOCLDSTOP;
287 		if (sig == SIGCHLD && p->p_sigacts->ps_flag & PS_NOCLDWAIT)
288 			oact->sa_flags |= SA_NOCLDWAIT;
289 	}
290 	if (act) {
291 		/*
292 		 * Check for invalid requests.  KILL and STOP cannot be
293 		 * caught.
294 		 */
295 		if (sig == SIGKILL || sig == SIGSTOP) {
296 			if (act->sa_handler != SIG_DFL) {
297 				lwkt_reltoken(&p->p_token);
298 				return (EINVAL);
299 			}
300 		}
301 
302 		/*
303 		 * Change setting atomically.
304 		 */
305 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
306 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
307 		if (act->sa_flags & SA_SIGINFO) {
308 			ps->ps_sigact[_SIG_IDX(sig)] =
309 			    (__sighandler_t *)act->sa_sigaction;
310 			SIGADDSET(ps->ps_siginfo, sig);
311 		} else {
312 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
313 			SIGDELSET(ps->ps_siginfo, sig);
314 		}
315 		if (!(act->sa_flags & SA_RESTART))
316 			SIGADDSET(ps->ps_sigintr, sig);
317 		else
318 			SIGDELSET(ps->ps_sigintr, sig);
319 		if (act->sa_flags & SA_ONSTACK)
320 			SIGADDSET(ps->ps_sigonstack, sig);
321 		else
322 			SIGDELSET(ps->ps_sigonstack, sig);
323 		if (act->sa_flags & SA_RESETHAND)
324 			SIGADDSET(ps->ps_sigreset, sig);
325 		else
326 			SIGDELSET(ps->ps_sigreset, sig);
327 		if (act->sa_flags & SA_NODEFER)
328 			SIGADDSET(ps->ps_signodefer, sig);
329 		else
330 			SIGDELSET(ps->ps_signodefer, sig);
331 		if (sig == SIGCHLD) {
332 			if (act->sa_flags & SA_NOCLDSTOP)
333 				p->p_sigacts->ps_flag |= PS_NOCLDSTOP;
334 			else
335 				p->p_sigacts->ps_flag &= ~PS_NOCLDSTOP;
336 			if (act->sa_flags & SA_NOCLDWAIT) {
337 				/*
338 				 * Paranoia: since SA_NOCLDWAIT is implemented
339 				 * by reparenting the dying child to PID 1 (and
340 				 * trust it to reap the zombie), PID 1 itself
341 				 * is forbidden to set SA_NOCLDWAIT.
342 				 */
343 				if (p->p_pid == 1)
344 					p->p_sigacts->ps_flag &= ~PS_NOCLDWAIT;
345 				else
346 					p->p_sigacts->ps_flag |= PS_NOCLDWAIT;
347 			} else {
348 				p->p_sigacts->ps_flag &= ~PS_NOCLDWAIT;
349 			}
350 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
351 				ps->ps_flag |= PS_CLDSIGIGN;
352 			else
353 				ps->ps_flag &= ~PS_CLDSIGIGN;
354 		}
355 		/*
356 		 * Set bit in p_sigignore for signals that are set to SIG_IGN,
357 		 * and for signals set to SIG_DFL where the default is to
358 		 * ignore. However, don't put SIGCONT in p_sigignore, as we
359 		 * have to restart the process.
360 		 *
361 		 * Also remove the signal from the process and lwp signal
362 		 * list.
363 		 */
364 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
365 		    (sigprop(sig) & SA_IGNORE &&
366 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
367 			SIGDELSET_ATOMIC(p->p_siglist, sig);
368 			FOREACH_LWP_IN_PROC(lp, p) {
369 				spin_lock(&lp->lwp_spin);
370 				SIGDELSET(lp->lwp_siglist, sig);
371 				spin_unlock(&lp->lwp_spin);
372 			}
373 			if (sig != SIGCONT) {
374 				/* easier in ksignal */
375 				SIGADDSET(p->p_sigignore, sig);
376 			}
377 			SIGDELSET(p->p_sigcatch, sig);
378 		} else {
379 			SIGDELSET(p->p_sigignore, sig);
380 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
381 				SIGDELSET(p->p_sigcatch, sig);
382 			else
383 				SIGADDSET(p->p_sigcatch, sig);
384 		}
385 	}
386 	lwkt_reltoken(&p->p_token);
387 	return (0);
388 }
389 
390 int
391 sys_sigaction(struct sysmsg *sysmsg, const struct sigaction_args *uap)
392 {
393 	struct sigaction act, oact;
394 	struct sigaction *actp, *oactp;
395 	int error;
396 
397 	actp = (uap->act != NULL) ? &act : NULL;
398 	oactp = (uap->oact != NULL) ? &oact : NULL;
399 	if (actp) {
400 		error = copyin(uap->act, actp, sizeof(act));
401 		if (error)
402 			return (error);
403 	}
404 	error = kern_sigaction(uap->sig, actp, oactp);
405 	if (oactp && !error) {
406 		error = copyout(oactp, uap->oact, sizeof(oact));
407 	}
408 	return (error);
409 }
410 
411 /*
412  * Initialize signal state for process 0;
413  * set to ignore signals that are ignored by default.
414  */
415 void
416 siginit(struct proc *p)
417 {
418 	int i;
419 
420 	for (i = 1; i <= NSIG; i++) {
421 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
422 			SIGADDSET(p->p_sigignore, i);
423 	}
424 
425 	/*
426 	 * Also initialize signal-related global state.
427 	 */
428 	SIGSETOR_CANTMASK(sigcantmask_mask);
429 }
430 
431 /*
432  * Reset signals for an exec of the specified process.
433  */
434 void
435 execsigs(struct proc *p)
436 {
437 	struct sigacts *ps = p->p_sigacts;
438 	struct lwp *lp;
439 	int sig;
440 
441 	lp = ONLY_LWP_IN_PROC(p);
442 
443 	/*
444 	 * Reset caught signals.  Held signals remain held
445 	 * through p_sigmask (unless they were caught,
446 	 * and are now ignored by default).
447 	 */
448 	while (SIGNOTEMPTY(p->p_sigcatch)) {
449 		sig = sig_ffs(&p->p_sigcatch);
450 		SIGDELSET(p->p_sigcatch, sig);
451 		if (sigprop(sig) & SA_IGNORE) {
452 			if (sig != SIGCONT)
453 				SIGADDSET(p->p_sigignore, sig);
454 			SIGDELSET_ATOMIC(p->p_siglist, sig);
455 			/* don't need spinlock */
456 			SIGDELSET(lp->lwp_siglist, sig);
457 		}
458 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
459 	}
460 
461 	/*
462 	 * Reset stack state to the user stack.
463 	 * Clear set of signals caught on the signal stack.
464 	 */
465 	lp->lwp_sigstk.ss_flags = SS_DISABLE;
466 	lp->lwp_sigstk.ss_size = 0;
467 	lp->lwp_sigstk.ss_sp = NULL;
468 	lp->lwp_flags &= ~LWP_ALTSTACK;
469 	/*
470 	 * Reset no zombies if child dies flag as Solaris does.
471 	 */
472 	p->p_sigacts->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
473 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
474 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
475 }
476 
477 /*
478  * kern_sigprocmask() - MP SAFE ONLY IF p == curproc
479  *
480  *	Manipulate signal mask.  This routine is MP SAFE *ONLY* if
481  *	p == curproc.
482  */
483 int
484 kern_sigprocmask(int how, sigset_t *set, sigset_t *oset)
485 {
486 	struct thread *td = curthread;
487 	struct lwp *lp = td->td_lwp;
488 	struct proc *p = td->td_proc;
489 	int error;
490 
491 	lwkt_gettoken(&p->p_token);
492 
493 	if (oset != NULL)
494 		*oset = lp->lwp_sigmask;
495 
496 	error = 0;
497 	if (set != NULL) {
498 		switch (how) {
499 		case SIG_BLOCK:
500 			SIG_CANTMASK(*set);
501 			SIGSETOR(lp->lwp_sigmask, *set);
502 			break;
503 		case SIG_UNBLOCK:
504 			SIGSETNAND(lp->lwp_sigmask, *set);
505 			break;
506 		case SIG_SETMASK:
507 			SIG_CANTMASK(*set);
508 			lp->lwp_sigmask = *set;
509 			break;
510 		default:
511 			error = EINVAL;
512 			break;
513 		}
514 	}
515 
516 	lwkt_reltoken(&p->p_token);
517 
518 	return (error);
519 }
520 
521 /*
522  * sigprocmask()
523  *
524  * MPSAFE
525  */
526 int
527 sys_sigprocmask(struct sysmsg *sysmsg, const struct sigprocmask_args *uap)
528 {
529 	sigset_t set, oset;
530 	sigset_t *setp, *osetp;
531 	int error;
532 
533 	setp = (uap->set != NULL) ? &set : NULL;
534 	osetp = (uap->oset != NULL) ? &oset : NULL;
535 	if (setp) {
536 		error = copyin(uap->set, setp, sizeof(set));
537 		if (error)
538 			return (error);
539 	}
540 	error = kern_sigprocmask(uap->how, setp, osetp);
541 	if (osetp && !error) {
542 		error = copyout(osetp, uap->oset, sizeof(oset));
543 	}
544 	return (error);
545 }
546 
547 /*
548  * MPSAFE
549  */
550 int
551 kern_sigpending(sigset_t *set)
552 {
553 	struct lwp *lp = curthread->td_lwp;
554 
555 	*set = lwp_sigpend(lp);
556 
557 	return (0);
558 }
559 
560 /*
561  * MPSAFE
562  */
563 int
564 sys_sigpending(struct sysmsg *sysmsg, const struct sigpending_args *uap)
565 {
566 	sigset_t set;
567 	int error;
568 
569 	error = kern_sigpending(&set);
570 
571 	if (error == 0)
572 		error = copyout(&set, uap->set, sizeof(set));
573 	return (error);
574 }
575 
576 /*
577  * Suspend process until signal, providing mask to be set
578  * in the meantime.
579  *
580  * MPSAFE
581  */
582 int
583 kern_sigsuspend(sigset_t *set)
584 {
585 	struct thread *td = curthread;
586 	struct lwp *lp = td->td_lwp;
587 	struct proc *p = td->td_proc;
588 	struct sigacts *ps = p->p_sigacts;
589 
590 	/*
591 	 * When returning from sigsuspend, we want
592 	 * the old mask to be restored after the
593 	 * signal handler has finished.  Thus, we
594 	 * save it here and mark the sigacts structure
595 	 * to indicate this.
596 	 */
597 	lp->lwp_oldsigmask = lp->lwp_sigmask;
598 	lp->lwp_flags |= LWP_OLDMASK;
599 
600 	SIG_CANTMASK(*set);
601 	lp->lwp_sigmask = *set;
602 	while (tsleep(ps, PCATCH, "pause", 0) == 0)
603 		/* void */;
604 	/* always return EINTR rather than ERESTART... */
605 	return (EINTR);
606 }
607 
608 /*
609  * Note nonstandard calling convention: libc stub passes mask, not
610  * pointer, to save a copyin.
611  *
612  * MPSAFE
613  */
614 int
615 sys_sigsuspend(struct sysmsg *sysmsg, const struct sigsuspend_args *uap)
616 {
617 	sigset_t mask;
618 	int error;
619 
620 	error = copyin(uap->sigmask, &mask, sizeof(mask));
621 	if (error)
622 		return (error);
623 
624 	error = kern_sigsuspend(&mask);
625 
626 	return (error);
627 }
628 
629 /*
630  * MPSAFE
631  */
632 int
633 kern_sigaltstack(stack_t *ss, stack_t *oss)
634 {
635 	struct thread *td = curthread;
636 	struct lwp *lp = td->td_lwp;
637 	struct proc *p = td->td_proc;
638 
639 	if ((lp->lwp_flags & LWP_ALTSTACK) == 0)
640 		lp->lwp_sigstk.ss_flags |= SS_DISABLE;
641 
642 	if (oss)
643 		*oss = lp->lwp_sigstk;
644 
645 	if (ss) {
646 		if (ss->ss_flags & ~SS_DISABLE)
647 			return (EINVAL);
648 		if (ss->ss_flags & SS_DISABLE) {
649 			if (lp->lwp_sigstk.ss_flags & SS_ONSTACK)
650 				return (EPERM);
651 			lp->lwp_flags &= ~LWP_ALTSTACK;
652 			lp->lwp_sigstk.ss_flags = ss->ss_flags;
653 		} else {
654 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
655 				return (ENOMEM);
656 			lp->lwp_flags |= LWP_ALTSTACK;
657 			lp->lwp_sigstk = *ss;
658 		}
659 	}
660 
661 	return (0);
662 }
663 
664 /*
665  * MPSAFE
666  */
667 int
668 sys_sigaltstack(struct sysmsg *sysmsg, const struct sigaltstack_args *uap)
669 {
670 	stack_t ss, oss;
671 	int error;
672 
673 	if (uap->ss) {
674 		error = copyin(uap->ss, &ss, sizeof(ss));
675 		if (error)
676 			return (error);
677 	}
678 
679 	error = kern_sigaltstack(uap->ss ? &ss : NULL, uap->oss ? &oss : NULL);
680 
681 	if (error == 0 && uap->oss)
682 		error = copyout(&oss, uap->oss, sizeof(*uap->oss));
683 	return (error);
684 }
685 
686 /*
687  * Common code for kill process group/broadcast kill.
688  * cp is calling process.
689  */
690 struct killpg_info {
691 	int nfound;
692 	int sig;
693 };
694 
695 static int killpg_all_callback(struct proc *p, void *data);
696 
697 static int
698 dokillpg(int sig, int pgid, int all)
699 {
700 	struct killpg_info info;
701 	struct proc *cp = curproc;
702 	struct proc *p;
703 	struct pgrp *pgrp;
704 
705 	info.nfound = 0;
706 	info.sig = sig;
707 
708 	if (all) {
709 		/*
710 		 * broadcast
711 		 */
712 		allproc_scan(killpg_all_callback, &info, 0);
713 	} else {
714 		if (pgid == 0) {
715 			/*
716 			 * zero pgid means send to my process group.
717 			 */
718 			pgrp = cp->p_pgrp;
719 			pgref(pgrp);
720 		} else {
721 			pgrp = pgfind(pgid);
722 			if (pgrp == NULL)
723 				return (ESRCH);
724 		}
725 
726 		/*
727 		 * Must interlock all signals against fork
728 		 */
729 		lockmgr(&pgrp->pg_lock, LK_EXCLUSIVE);
730 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
731 			if (p->p_pid <= 1 ||
732 			    p->p_stat == SZOMB ||
733 			    (p->p_flags & P_SYSTEM) ||
734 			    !CANSIGNAL(p, sig, 0)) {
735 				continue;
736 			}
737 			++info.nfound;
738 			if (sig)
739 				ksignal(p, sig);
740 		}
741 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
742 		pgrel(pgrp);
743 	}
744 	return (info.nfound ? 0 : ESRCH);
745 }
746 
747 static int
748 killpg_all_callback(struct proc *p, void *data)
749 {
750 	struct killpg_info *info = data;
751 
752 	if (p->p_pid <= 1 || (p->p_flags & P_SYSTEM) ||
753 	    p == curproc || !CANSIGNAL(p, info->sig, 0)) {
754 		return (0);
755 	}
756 	++info->nfound;
757 	if (info->sig)
758 		ksignal(p, info->sig);
759 	return(0);
760 }
761 
762 /*
763  * Send a general signal to a process or LWPs within that process.
764  *
765  * Note that new signals cannot be sent if a process is exiting or already
766  * a zombie, but we return success anyway as userland is likely to not handle
767  * the race properly.
768  *
769  * No requirements.
770  */
771 int
772 kern_kill(int sig, pid_t pid, lwpid_t tid)
773 {
774 	int t;
775 
776 	if ((u_int)sig >= _SIG_MAXSIG)
777 		return (EINVAL);
778 
779 	if (pid > 0) {
780 		struct proc *p;
781 		struct lwp *lp = NULL;
782 
783 		/*
784 		 * Send a signal to a single process.  If the kill() is
785 		 * racing an exiting process which has not yet been reaped
786 		 * act as though the signal was delivered successfully but
787 		 * don't actually try to deliver the signal.
788 		 */
789 		if ((p = pfind(pid)) == NULL) {
790 			if ((p = zpfind(pid)) == NULL)
791 				return (ESRCH);
792 			PRELE(p);
793 			return (0);
794 		}
795 		if (p != curproc) {
796 			lwkt_gettoken_shared(&p->p_token);
797 			if (!CANSIGNAL(p, sig, 1)) {
798 				lwkt_reltoken(&p->p_token);
799 				PRELE(p);
800 				return (EPERM);
801 			}
802 			lwkt_reltoken(&p->p_token);
803 		}
804 
805 		/*
806 		 * NOP if the process is exiting.  Note that lwpsignal() is
807 		 * called directly with P_WEXIT set to kill individual LWPs
808 		 * during exit, which is allowed.
809 		 */
810 		if (p->p_flags & P_WEXIT) {
811 			PRELE(p);
812 			return (0);
813 		}
814 		if (tid != -1) {
815 			lwkt_gettoken_shared(&p->p_token);
816 			lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, tid);
817 			if (lp == NULL) {
818 				lwkt_reltoken(&p->p_token);
819 				PRELE(p);
820 				return (ESRCH);
821 			}
822 			LWPHOLD(lp);
823 			lwkt_reltoken(&p->p_token);
824 		}
825 		if (sig)
826 			lwpsignal(p, lp, sig);
827 		if (lp)
828 			LWPRELE(lp);
829 		PRELE(p);
830 
831 		return (0);
832 	}
833 
834 	/*
835 	 * If we come here, pid is a special broadcast pid.
836 	 * This doesn't mix with a tid.
837 	 */
838 	if (tid != -1)
839 		return (EINVAL);
840 
841 	switch (pid) {
842 	case -1:		/* broadcast signal */
843 		t = (dokillpg(sig, 0, 1));
844 		break;
845 	case 0:			/* signal own process group */
846 		t = (dokillpg(sig, 0, 0));
847 		break;
848 	default:		/* negative explicit process group */
849 		t = (dokillpg(sig, -pid, 0));
850 		break;
851 	}
852 	return t;
853 }
854 
855 int
856 sys_kill(struct sysmsg *sysmsg, const struct kill_args *uap)
857 {
858 	int error;
859 
860 	error = kern_kill(uap->signum, uap->pid, -1);
861 	return (error);
862 }
863 
864 int
865 sys_lwp_kill(struct sysmsg *sysmsg, const struct lwp_kill_args *uap)
866 {
867 	int error;
868 	pid_t pid = uap->pid;
869 
870 	/*
871 	 * A tid is mandatory for lwp_kill(), otherwise
872 	 * you could simply use kill().
873 	 */
874 	if (uap->tid == -1)
875 		return (EINVAL);
876 
877 	/*
878 	 * To save on a getpid() function call for intra-process
879 	 * signals, pid == -1 means current process.
880 	 */
881 	if (pid == -1)
882 		pid = curproc->p_pid;
883 
884 	error = kern_kill(uap->signum, pid, uap->tid);
885 	return (error);
886 }
887 
888 /*
889  * Send a signal to a process group.
890  */
891 void
892 gsignal(int pgid, int sig)
893 {
894 	struct pgrp *pgrp;
895 
896 	if (pgid && (pgrp = pgfind(pgid)))
897 		pgsignal(pgrp, sig, 0);
898 }
899 
900 /*
901  * Send a signal to a process group.  If checktty is 1,
902  * limit to members which have a controlling terminal.
903  *
904  * pg_lock interlocks against a fork that might be in progress, to
905  * ensure that the new child process picks up the signal.
906  */
907 void
908 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
909 {
910 	struct proc *p;
911 
912 	/*
913 	 * Must interlock all signals against fork
914 	 */
915 	if (pgrp) {
916 		pgref(pgrp);
917 		lockmgr(&pgrp->pg_lock, LK_EXCLUSIVE);
918 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
919 			if (checkctty == 0 || p->p_flags & P_CONTROLT)
920 				ksignal(p, sig);
921 		}
922 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
923 		pgrel(pgrp);
924 	}
925 }
926 
927 /*
928  * Send a signal caused by a trap to the current lwp.  If it will be caught
929  * immediately, deliver it with correct code.  Otherwise, post it normally.
930  *
931  * These signals may ONLY be delivered to the specified lwp and may never
932  * be delivered to the process generically.
933  *
934  * lpmap->blockallsigs is ignored.
935  */
936 void
937 trapsignal(struct lwp *lp, int sig, u_long code)
938 {
939 	struct proc *p = lp->lwp_proc;
940 	struct sigacts *ps = p->p_sigacts;
941 
942 	/*
943 	 * If we are a virtual kernel running an emulated user process
944 	 * context, switch back to the virtual kernel context before
945 	 * trying to post the signal.
946 	 */
947 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
948 		struct trapframe *tf = lp->lwp_md.md_regs;
949 		tf->tf_trapno = 0;
950 		vkernel_trap(lp, tf);
951 	}
952 
953 	if ((p->p_flags & P_TRACED) == 0 && SIGISMEMBER(p->p_sigcatch, sig) &&
954 	    !SIGISMEMBER(lp->lwp_sigmask, sig)) {
955 		lp->lwp_ru.ru_nsignals++;
956 #ifdef KTRACE
957 		if (KTRPOINT(lp->lwp_thread, KTR_PSIG))
958 			ktrpsig(lp, sig, ps->ps_sigact[_SIG_IDX(sig)],
959 				&lp->lwp_sigmask, code);
960 #endif
961 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)], sig,
962 						&lp->lwp_sigmask, code);
963 		SIGSETOR(lp->lwp_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
964 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
965 			SIGADDSET(lp->lwp_sigmask, sig);
966 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
967 			/*
968 			 * See kern_sigaction() for origin of this code.
969 			 */
970 			SIGDELSET(p->p_sigcatch, sig);
971 			if (sig != SIGCONT &&
972 			    sigprop(sig) & SA_IGNORE)
973 				SIGADDSET(p->p_sigignore, sig);
974 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
975 		}
976 	} else {
977 		lp->lwp_code = code;	/* XXX for core dump/debugger */
978 		lp->lwp_sig = sig;	/* XXX to verify code */
979 		lwpsignal(p, lp, sig);
980 	}
981 }
982 
983 /*
984  * Find a suitable lwp to deliver the signal to.  Returns NULL if all
985  * lwps hold the signal blocked.
986  *
987  * Caller must hold p->p_token.
988  *
989  * Returns a lp or NULL.  If non-NULL the lp is held and its token is
990  * acquired.
991  */
992 static struct lwp *
993 find_lwp_for_signal(struct proc *p, int sig)
994 {
995 	struct lwp *lp;
996 	struct lwp *run, *sleep, *stop;
997 
998 	/*
999 	 * If the running/preempted thread belongs to the proc to which
1000 	 * the signal is being delivered and this thread does not block
1001 	 * the signal, then we can avoid a context switch by delivering
1002 	 * the signal to this thread, because it will return to userland
1003 	 * soon anyways.
1004 	 */
1005 	lp = lwkt_preempted_proc();
1006 	if (lp != NULL && lp->lwp_proc == p) {
1007 		LWPHOLD(lp);
1008 		lwkt_gettoken(&lp->lwp_token);
1009 		if (!SIGISMEMBER(lp->lwp_sigmask, sig)) {
1010 			/* return w/ token held */
1011 			return (lp);
1012 		}
1013 		lwkt_reltoken(&lp->lwp_token);
1014 		LWPRELE(lp);
1015 	}
1016 
1017 	run = sleep = stop = NULL;
1018 	FOREACH_LWP_IN_PROC(lp, p) {
1019 		/*
1020 		 * If the signal is being blocked by the lwp, then this
1021 		 * lwp is not eligible for receiving the signal.
1022 		 */
1023 		LWPHOLD(lp);
1024 		lwkt_gettoken(&lp->lwp_token);
1025 
1026 		if (SIGISMEMBER(lp->lwp_sigmask, sig)) {
1027 			lwkt_reltoken(&lp->lwp_token);
1028 			LWPRELE(lp);
1029 			continue;
1030 		}
1031 
1032 		switch (lp->lwp_stat) {
1033 		case LSRUN:
1034 			if (sleep) {
1035 				lwkt_token_swap();
1036 				lwkt_reltoken(&sleep->lwp_token);
1037 				LWPRELE(sleep);
1038 				sleep = NULL;
1039 				run = lp;
1040 			} else if (stop) {
1041 				lwkt_token_swap();
1042 				lwkt_reltoken(&stop->lwp_token);
1043 				LWPRELE(stop);
1044 				stop = NULL;
1045 				run = lp;
1046 			} else {
1047 				run = lp;
1048 			}
1049 			break;
1050 		case LSSLEEP:
1051 			if (lp->lwp_flags & LWP_SINTR) {
1052 				if (sleep) {
1053 					lwkt_reltoken(&lp->lwp_token);
1054 					LWPRELE(lp);
1055 				} else if (stop) {
1056 					lwkt_token_swap();
1057 					lwkt_reltoken(&stop->lwp_token);
1058 					LWPRELE(stop);
1059 					stop = NULL;
1060 					sleep = lp;
1061 				} else {
1062 					sleep = lp;
1063 				}
1064 			} else {
1065 				lwkt_reltoken(&lp->lwp_token);
1066 				LWPRELE(lp);
1067 			}
1068 			break;
1069 		case LSSTOP:
1070 			if (sleep) {
1071 				lwkt_reltoken(&lp->lwp_token);
1072 				LWPRELE(lp);
1073 			} else if (stop) {
1074 				lwkt_reltoken(&lp->lwp_token);
1075 				LWPRELE(lp);
1076 			} else {
1077 				stop = lp;
1078 			}
1079 			break;
1080 		}
1081 		if (run)
1082 			break;
1083 	}
1084 
1085 	if (run != NULL)
1086 		return (run);
1087 	else if (sleep != NULL)
1088 		return (sleep);
1089 	else
1090 		return (stop);
1091 }
1092 
1093 /*
1094  * Send the signal to the process.  If the signal has an action, the action
1095  * is usually performed by the target process rather than the caller; we add
1096  * the signal to the set of pending signals for the process.
1097  *
1098  * Exceptions:
1099  *   o When a stop signal is sent to a sleeping process that takes the
1100  *     default action, the process is stopped without awakening it.
1101  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1102  *     regardless of the signal action (eg, blocked or ignored).
1103  *
1104  * Other ignored signals are discarded immediately.
1105  *
1106  * If the caller wishes to call this function from a hard code section the
1107  * caller must already hold p->p_token (see kern_clock.c).
1108  *
1109  * No requirements.
1110  */
1111 void
1112 ksignal(struct proc *p, int sig)
1113 {
1114 	lwpsignal(p, NULL, sig);
1115 }
1116 
1117 /*
1118  * The core for ksignal.  lp may be NULL, then a suitable thread
1119  * will be chosen.  If not, lp MUST be a member of p.
1120  *
1121  * If the caller wishes to call this function from a hard code section the
1122  * caller must already hold p->p_token.
1123  *
1124  * No requirements.
1125  */
1126 void
1127 lwpsignal(struct proc *p, struct lwp *lp, int sig)
1128 {
1129 	struct proc *q;
1130 	sig_t action;
1131 	int prop;
1132 
1133 	if (sig >= _SIG_MAXSIG || sig <= 0) {
1134 		kprintf("lwpsignal: signal %d\n", sig);
1135 		panic("lwpsignal signal number");
1136 	}
1137 
1138 	KKASSERT(lp == NULL || lp->lwp_proc == p);
1139 
1140 	/*
1141 	 * We don't want to race... well, all sorts of things.  Get appropriate
1142 	 * tokens.
1143 	 *
1144 	 * Don't try to deliver a generic signal to an exiting process,
1145 	 * the signal structures could be in flux.  We check the LWP later
1146 	 * on.
1147 	 */
1148 	PHOLD(p);
1149 	if (lp) {
1150 		LWPHOLD(lp);
1151 		lwkt_gettoken(&lp->lwp_token);
1152 	} else {
1153 		lwkt_gettoken(&p->p_token);
1154 		if (p->p_flags & P_WEXIT)
1155 			goto out;
1156 	}
1157 
1158 	prop = sigprop(sig);
1159 
1160 	/*
1161 	 * If proc is traced, always give parent a chance;
1162 	 * if signal event is tracked by procfs, give *that*
1163 	 * a chance, as well.
1164 	 */
1165 	if ((p->p_flags & P_TRACED) || (p->p_stops & S_SIG)) {
1166 		action = SIG_DFL;
1167 	} else {
1168 		/*
1169 		 * Do not try to deliver signals to an exiting lwp other
1170 		 * than SIGKILL.  Note that we must still deliver the signal
1171 		 * if P_WEXIT is set in the process flags.
1172 		 */
1173 		if (lp && (lp->lwp_mpflags & LWP_MP_WEXIT) && sig != SIGKILL) {
1174 			lwkt_reltoken(&lp->lwp_token);
1175 			LWPRELE(lp);
1176 			PRELE(p);
1177 			return;
1178 		}
1179 
1180 		/*
1181 		 * If the signal is being ignored, then we forget about
1182 		 * it immediately.  NOTE: We don't set SIGCONT in p_sigignore,
1183 		 * and if it is set to SIG_IGN, action will be SIG_DFL here.
1184 		 */
1185 		if (SIGISMEMBER(p->p_sigignore, sig)) {
1186 			/*
1187 			 * Even if a signal is set SIG_IGN, it may still be
1188 			 * lurking in a kqueue.
1189 			 */
1190 			KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
1191 			if (lp) {
1192 				lwkt_reltoken(&lp->lwp_token);
1193 				LWPRELE(lp);
1194 			} else {
1195 				lwkt_reltoken(&p->p_token);
1196 			}
1197 			PRELE(p);
1198 			return;
1199 		}
1200 		if (SIGISMEMBER(p->p_sigcatch, sig))
1201 			action = SIG_CATCH;
1202 		else
1203 			action = SIG_DFL;
1204 	}
1205 
1206 	/*
1207 	 * If continuing, clear any pending STOP signals for the whole
1208 	 * process.
1209 	 */
1210 	if (prop & SA_CONT) {
1211 		lwkt_gettoken(&p->p_token);
1212 		SIG_STOPSIGMASK_ATOMIC(p->p_siglist);
1213 		lwkt_reltoken(&p->p_token);
1214 	}
1215 
1216 	if (prop & SA_STOP) {
1217 		/*
1218 		 * If sending a tty stop signal to a member of an orphaned
1219 		 * process group, discard the signal here if the action
1220 		 * is default; don't stop the process below if sleeping,
1221 		 * and don't clear any pending SIGCONT.
1222 		 */
1223 		if ((prop & SA_TTYSTOP) && p->p_pgrp->pg_jobc == 0 &&
1224 		    action == SIG_DFL) {
1225 			if (lp) {
1226 				lwkt_reltoken(&lp->lwp_token);
1227 				LWPRELE(lp);
1228 			} else {
1229 				lwkt_reltoken(&p->p_token);
1230 			}
1231 			PRELE(p);
1232 		        return;
1233 		}
1234 		lwkt_gettoken(&p->p_token);
1235 		SIG_CONTSIGMASK_ATOMIC(p->p_siglist);
1236 		p->p_flags &= ~P_CONTINUED;
1237 		lwkt_reltoken(&p->p_token);
1238 	}
1239 
1240 	if (p->p_stat == SSTOP) {
1241 		/*
1242 		 * Nobody can handle this signal, add it to the lwp or
1243 		 * process pending list
1244 		 */
1245 		lwkt_gettoken(&p->p_token);
1246 		if (p->p_stat != SSTOP) {
1247 			lwkt_reltoken(&p->p_token);
1248 			goto not_stopped;
1249 		}
1250 		sigsetfrompid(curthread, p, sig);
1251 		if (lp) {
1252 			spin_lock(&lp->lwp_spin);
1253 			SIGADDSET(lp->lwp_siglist, sig);
1254 			spin_unlock(&lp->lwp_spin);
1255 		} else {
1256 			SIGADDSET_ATOMIC(p->p_siglist, sig);
1257 		}
1258 
1259 		/*
1260 		 * If the process is stopped and is being traced, then no
1261 		 * further action is necessary.
1262 		 */
1263 		if (p->p_flags & P_TRACED) {
1264 			lwkt_reltoken(&p->p_token);
1265 			goto out;
1266 		}
1267 
1268 		/*
1269 		 * If the process is stopped and receives a KILL signal,
1270 		 * make the process runnable.
1271 		 */
1272 		if (sig == SIGKILL) {
1273 			proc_unstop(p, SSTOP);
1274 			lwkt_reltoken(&p->p_token);
1275 			goto active_process;
1276 		}
1277 
1278 		/*
1279 		 * If the process is stopped and receives a CONT signal,
1280 		 * then try to make the process runnable again.
1281 		 */
1282 		if (prop & SA_CONT) {
1283 			/*
1284 			 * If SIGCONT is default (or ignored), we continue the
1285 			 * process but don't leave the signal in p_siglist, as
1286 			 * it has no further action.  If SIGCONT is held, we
1287 			 * continue the process and leave the signal in
1288 			 * p_siglist.  If the process catches SIGCONT, let it
1289 			 * handle the signal itself.
1290 			 *
1291 			 * XXX what if the signal is being held blocked?
1292 			 *
1293 			 * Token required to interlock kern_wait().
1294 			 * Reparenting can also cause a race so we have to
1295 			 * hold (q).
1296 			 */
1297 			q = p->p_pptr;
1298 			PHOLD(q);
1299 			lwkt_gettoken(&q->p_token);
1300 			p->p_flags |= P_CONTINUED;
1301 			wakeup(q);
1302 			if (action == SIG_DFL)
1303 				SIGDELSET_ATOMIC(p->p_siglist, sig);
1304 			proc_unstop(p, SSTOP);
1305 			lwkt_reltoken(&q->p_token);
1306 			PRELE(q);
1307 			lwkt_reltoken(&p->p_token);
1308 			if (action == SIG_CATCH)
1309 				goto active_process;
1310 			goto out;
1311 		}
1312 
1313 		/*
1314 		 * If the process is stopped and receives another STOP
1315 		 * signal, we do not need to stop it again.  If we did
1316 		 * the shell could get confused.
1317 		 *
1318 		 * However, if the current/preempted lwp is part of the
1319 		 * process receiving the signal, we need to keep it,
1320 		 * so that this lwp can stop in issignal() later, as
1321 		 * we don't want to wait until it reaches userret!
1322 		 */
1323 		if (prop & SA_STOP) {
1324 			if (lwkt_preempted_proc() == NULL ||
1325 			    lwkt_preempted_proc()->lwp_proc != p) {
1326 				SIGDELSET_ATOMIC(p->p_siglist, sig);
1327 			}
1328 		}
1329 
1330 		/*
1331 		 * Otherwise the process is stopped and it received some
1332 		 * signal, which does not change its stopped state.  When
1333 		 * the process is continued a wakeup(p) will be issued which
1334 		 * will wakeup any threads sleeping in tstop().
1335 		 */
1336 		lwkt_reltoken(&p->p_token);
1337 		goto out;
1338 		/* NOTREACHED */
1339 	}
1340 not_stopped:
1341 	;
1342 	/* else not stopped */
1343 active_process:
1344 
1345 	/*
1346 	 * Never deliver a lwp-specific signal to a random lwp.
1347 	 */
1348 	if (lp == NULL) {
1349 		/* NOTE: returns lp w/ token held */
1350 		lp = find_lwp_for_signal(p, sig);
1351 		if (lp) {
1352 			if (SIGISMEMBER(lp->lwp_sigmask, sig)) {
1353 				lwkt_reltoken(&lp->lwp_token);
1354 				LWPRELE(lp);
1355 				lp = NULL;
1356 				/* maintain proc token */
1357 			} else {
1358 				lwkt_token_swap();
1359 				lwkt_reltoken(&p->p_token);
1360 				/* maintain lp token */
1361 			}
1362 		}
1363 	}
1364 
1365 	/*
1366 	 * Deliver to the process generically if (1) the signal is being
1367 	 * sent to any thread or (2) we could not find a thread to deliver
1368 	 * it to.
1369 	 */
1370 	if (lp == NULL) {
1371 		sigsetfrompid(curthread, p, sig);
1372 		KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
1373 		SIGADDSET_ATOMIC(p->p_siglist, sig);
1374 		goto out;
1375 	}
1376 
1377 	/*
1378 	 * Deliver to a specific LWP whether it masks it or not.  It will
1379 	 * not be dispatched if masked but we must still deliver it.
1380 	 */
1381 	if (p->p_nice > NZERO && action == SIG_DFL && (prop & SA_KILL) &&
1382 	    (p->p_flags & P_TRACED) == 0) {
1383 		lwkt_gettoken(&p->p_token);
1384 		p->p_nice = NZERO;
1385 		lwkt_reltoken(&p->p_token);
1386 	}
1387 
1388 	/*
1389 	 * If the process receives a STOP signal which indeed needs to
1390 	 * stop the process, do so.  If the process chose to catch the
1391 	 * signal, it will be treated like any other signal.
1392 	 */
1393 	if ((prop & SA_STOP) && action == SIG_DFL) {
1394 		/*
1395 		 * If a child holding parent blocked, stopping
1396 		 * could cause deadlock.  Take no action at this
1397 		 * time.
1398 		 */
1399 		lwkt_gettoken(&p->p_token);
1400 		if (p->p_flags & P_PPWAIT) {
1401 			sigsetfrompid(curthread, p, sig);
1402 			SIGADDSET_ATOMIC(p->p_siglist, sig);
1403 			lwkt_reltoken(&p->p_token);
1404 			goto out;
1405 		}
1406 
1407 		/*
1408 		 * Do not actually try to manipulate the process, but simply
1409 		 * stop it.  Lwps will stop as soon as they safely can.
1410 		 *
1411 		 * Ignore stop if the process is exiting.
1412 		 */
1413 		if ((p->p_flags & P_WEXIT) == 0) {
1414 			p->p_xstat = sig;
1415 			proc_stop(p, SSTOP);
1416 		}
1417 		lwkt_reltoken(&p->p_token);
1418 		goto out;
1419 	}
1420 
1421 	/*
1422 	 * If it is a CONT signal with default action, just ignore it.
1423 	 */
1424 	if ((prop & SA_CONT) && action == SIG_DFL)
1425 		goto out;
1426 
1427 	/*
1428 	 * Mark signal pending at this specific thread.
1429 	 */
1430 	sigsetfrompid(curthread, p, sig);
1431 	spin_lock(&lp->lwp_spin);
1432 	SIGADDSET(lp->lwp_siglist, sig);
1433 	spin_unlock(&lp->lwp_spin);
1434 
1435 	lwp_signotify(lp);
1436 
1437 out:
1438 	if (lp) {
1439 		lwkt_reltoken(&lp->lwp_token);
1440 		LWPRELE(lp);
1441 	} else {
1442 		lwkt_reltoken(&p->p_token);
1443 	}
1444 	PRELE(p);
1445 }
1446 
1447 /*
1448  * Notify the LWP that a signal has arrived.  The LWP does not have to be
1449  * sleeping on the current cpu.
1450  *
1451  * p->p_token and lp->lwp_token must be held on call.
1452  *
1453  * We can only safely schedule the thread on its current cpu and only if
1454  * one of the SINTR flags is set.  If an SINTR flag is set AND we are on
1455  * the correct cpu we are properly interlocked, otherwise we could be
1456  * racing other thread transition states (or the lwp is on the user scheduler
1457  * runq but not scheduled) and must not do anything.
1458  *
1459  * Since we hold the lwp token we know the lwp cannot be ripped out from
1460  * under us so we can safely hold it to prevent it from being ripped out
1461  * from under us if we are forced to IPI another cpu to make the local
1462  * checks there.
1463  *
1464  * Adjustment of lp->lwp_stat can only occur when we hold the lwp_token,
1465  * which we won't in an IPI so any fixups have to be done here, effectively
1466  * replicating part of what setrunnable() does.
1467  */
1468 static void
1469 lwp_signotify(struct lwp *lp)
1470 {
1471 	thread_t dtd;
1472 
1473 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1474 	dtd = lp->lwp_thread;
1475 
1476 	crit_enter();
1477 	if (lp == lwkt_preempted_proc()) {
1478 		/*
1479 		 * lwp is on the current cpu AND it is currently running
1480 		 * (we preempted it).
1481 		 */
1482 		signotify();
1483 	} else if (lp->lwp_flags & LWP_SINTR) {
1484 		/*
1485 		 * lwp is sitting in tsleep() with PCATCH set
1486 		 */
1487 		if (dtd->td_gd == mycpu) {
1488 			setrunnable(lp);
1489 		} else {
1490 			/*
1491 			 * We can only adjust lwp_stat while we hold the
1492 			 * lwp_token, and we won't in the IPI function.
1493 			 */
1494 			LWPHOLD(lp);
1495 			if (lp->lwp_stat == LSSTOP)
1496 				lp->lwp_stat = LSSLEEP;
1497 			lwkt_send_ipiq(dtd->td_gd, lwp_signotify_remote, lp);
1498 		}
1499 	} else if (dtd->td_flags & TDF_SINTR) {
1500 		/*
1501 		 * lwp is sitting in lwkt_sleep() with PCATCH set.
1502 		 */
1503 		if (dtd->td_gd == mycpu) {
1504 			setrunnable(lp);
1505 		} else {
1506 			/*
1507 			 * We can only adjust lwp_stat while we hold the
1508 			 * lwp_token, and we won't in the IPI function.
1509 			 */
1510 			LWPHOLD(lp);
1511 			if (lp->lwp_stat == LSSTOP)
1512 				lp->lwp_stat = LSSLEEP;
1513 			lwkt_send_ipiq(dtd->td_gd, lwp_signotify_remote, lp);
1514 		}
1515 	} else {
1516 		/*
1517 		 * Otherwise the lwp is either in some uninterruptible state
1518 		 * or it is on the userland scheduler's runqueue waiting to
1519 		 * be scheduled to a cpu, or it is running in userland.  We
1520 		 * generally want to send an IPI so a running target gets the
1521 		 * signal ASAP, otherwise a scheduler-tick worth of latency
1522 		 * will occur.
1523 		 *
1524 		 * Issue an IPI to the remote cpu to knock it into the kernel,
1525 		 * remote cpu will issue the cpu-local signotify() if the IPI
1526 		 * preempts the desired thread.
1527 		 */
1528 		if (dtd->td_gd != mycpu) {
1529 			LWPHOLD(lp);
1530 			lwkt_send_ipiq(dtd->td_gd, lwp_signotify_remote, lp);
1531 		}
1532 	}
1533 	crit_exit();
1534 }
1535 
1536 /*
1537  * This function is called via an IPI so we cannot call setrunnable() here
1538  * (because while we hold the lp we don't own its token, and can't get it
1539  * from an IPI).
1540  *
1541  * We are interlocked by virtue of being on the same cpu as the target.  If
1542  * we still are and LWP_SINTR or TDF_SINTR is set we can safely schedule
1543  * the target thread.
1544  */
1545 static void
1546 lwp_signotify_remote(void *arg)
1547 {
1548 	struct lwp *lp = arg;
1549 	thread_t td = lp->lwp_thread;
1550 
1551 	if (lp == lwkt_preempted_proc()) {
1552 		signotify();
1553 		LWPRELE(lp);
1554 	} else if (td->td_gd == mycpu) {
1555 		if ((lp->lwp_flags & LWP_SINTR) ||
1556 		    (td->td_flags & TDF_SINTR)) {
1557 			lwkt_schedule(td);
1558 		}
1559 		LWPRELE(lp);
1560 	} else {
1561 		lwkt_send_ipiq(td->td_gd, lwp_signotify_remote, lp);
1562 		/* LWPHOLD() is forwarded to the target cpu */
1563 	}
1564 }
1565 
1566 /*
1567  * Caller must hold p->p_token
1568  */
1569 void
1570 proc_stop(struct proc *p, int sig)
1571 {
1572 	struct proc *q;
1573 	struct lwp *lp;
1574 
1575 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
1576 
1577 	/*
1578 	 * If somebody raced us, be happy with it.  SCORE overrides SSTOP.
1579 	 */
1580 	if (sig == SCORE) {
1581 		if (p->p_stat == SCORE || p->p_stat == SZOMB)
1582 			return;
1583 	} else {
1584 		if (p->p_stat == SSTOP || p->p_stat == SCORE ||
1585 		    p->p_stat == SZOMB) {
1586 			return;
1587 		}
1588 	}
1589 	p->p_stat = sig;
1590 
1591 	FOREACH_LWP_IN_PROC(lp, p) {
1592 		LWPHOLD(lp);
1593 		lwkt_gettoken(&lp->lwp_token);
1594 
1595 		switch (lp->lwp_stat) {
1596 		case LSSTOP:
1597 			/*
1598 			 * Do nothing, we are already counted in
1599 			 * p_nstopped.
1600 			 */
1601 			break;
1602 
1603 		case LSSLEEP:
1604 			/*
1605 			 * We're sleeping, but we will stop before
1606 			 * returning to userspace, so count us
1607 			 * as stopped as well.  We set LWP_MP_WSTOP
1608 			 * to signal the lwp that it should not
1609 			 * increase p_nstopped when reaching tstop().
1610 			 *
1611 			 * LWP_MP_WSTOP is protected by lp->lwp_token.
1612 			 */
1613 			if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1614 				atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1615 				++p->p_nstopped;
1616 			}
1617 			break;
1618 
1619 		case LSRUN:
1620 			/*
1621 			 * We might notify ourself, but that's not
1622 			 * a problem.
1623 			 */
1624 			lwp_signotify(lp);
1625 			break;
1626 		}
1627 		lwkt_reltoken(&lp->lwp_token);
1628 		LWPRELE(lp);
1629 	}
1630 
1631 	if (p->p_nstopped == p->p_nthreads) {
1632 		/*
1633 		 * Token required to interlock kern_wait().  Reparenting can
1634 		 * also cause a race so we have to hold (q).
1635 		 */
1636 		q = p->p_pptr;
1637 		PHOLD(q);
1638 		lwkt_gettoken(&q->p_token);
1639 		p->p_flags &= ~P_WAITED;
1640 		wakeup(q);
1641 		if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1642 			ksignal(p->p_pptr, SIGCHLD);
1643 		lwkt_reltoken(&q->p_token);
1644 		PRELE(q);
1645 	}
1646 }
1647 
1648 /*
1649  * Caller must hold p_token
1650  */
1651 void
1652 proc_unstop(struct proc *p, int sig)
1653 {
1654 	struct lwp *lp;
1655 
1656 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
1657 
1658 	if (p->p_stat != sig)
1659 		return;
1660 
1661 	p->p_stat = SACTIVE;
1662 
1663 	FOREACH_LWP_IN_PROC(lp, p) {
1664 		LWPHOLD(lp);
1665 		lwkt_gettoken(&lp->lwp_token);
1666 
1667 		switch (lp->lwp_stat) {
1668 		case LSRUN:
1669 			/*
1670 			 * Uh?  Not stopped?  Well, I guess that's okay.
1671 			 */
1672 			if (bootverbose)
1673 				kprintf("proc_unstop: lwp %d/%d not sleeping\n",
1674 					p->p_pid, lp->lwp_tid);
1675 			break;
1676 
1677 		case LSSLEEP:
1678 			/*
1679 			 * Still sleeping.  Don't bother waking it up.
1680 			 * However, if this thread was counted as
1681 			 * stopped, undo this.
1682 			 *
1683 			 * Nevertheless we call setrunnable() so that it
1684 			 * will wake up in case a signal or timeout arrived
1685 			 * in the meantime.
1686 			 *
1687 			 * LWP_MP_WSTOP is protected by lp->lwp_token.
1688 			 */
1689 			if (lp->lwp_mpflags & LWP_MP_WSTOP) {
1690 				atomic_clear_int(&lp->lwp_mpflags,
1691 						 LWP_MP_WSTOP);
1692 				--p->p_nstopped;
1693 			} else {
1694 				if (bootverbose)
1695 					kprintf("proc_unstop: lwp %d/%d sleeping, not stopped\n",
1696 						p->p_pid, lp->lwp_tid);
1697 			}
1698 			/* FALLTHROUGH */
1699 
1700 		case LSSTOP:
1701 			/*
1702 			 * This handles any lwp's waiting in a tsleep with
1703 			 * SIGCATCH.
1704 			 */
1705 			lwp_signotify(lp);
1706 			break;
1707 
1708 		}
1709 		lwkt_reltoken(&lp->lwp_token);
1710 		LWPRELE(lp);
1711 	}
1712 
1713 	/*
1714 	 * This handles any lwp's waiting in tstop().  We have interlocked
1715 	 * the setting of p_stat by acquiring and releasing each lpw's
1716 	 * token.
1717 	 */
1718 	wakeup(p);
1719 }
1720 
1721 /*
1722  * Wait for all threads except the current thread to stop.
1723  */
1724 static void
1725 proc_stopwait(struct proc *p)
1726 {
1727 	while ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1728 	       p->p_nstopped < p->p_nthreads - 1) {
1729 		tsleep_interlock(&p->p_nstopped, 0);
1730 		if (p->p_nstopped < p->p_nthreads - 1) {
1731 			tsleep(&p->p_nstopped, PINTERLOCKED, "stopwt", hz);
1732 		}
1733 	}
1734 }
1735 
1736 /*
1737  * No requirements.
1738  */
1739 static int
1740 kern_sigtimedwait(sigset_t waitset, siginfo_t *info, struct timespec *timeout)
1741 {
1742 	sigset_t savedmask, set;
1743 	struct proc *p = curproc;
1744 	struct lwp *lp = curthread->td_lwp;
1745 	int error, sig, hz, timevalid = 0;
1746 	struct timespec rts, ets, ts;
1747 	struct timeval tv;
1748 
1749 	error = 0;
1750 	sig = 0;
1751 	ets.tv_sec = 0;		/* silence compiler warning */
1752 	ets.tv_nsec = 0;	/* silence compiler warning */
1753 	SIG_CANTMASK(waitset);
1754 	savedmask = lp->lwp_sigmask;
1755 
1756 	if (timeout) {
1757 		if (timeout->tv_sec >= 0 && timeout->tv_nsec >= 0 &&
1758 		    timeout->tv_nsec < 1000000000) {
1759 			timevalid = 1;
1760 			getnanouptime(&rts);
1761 			timespecadd(&rts, timeout, &ets);
1762 		}
1763 	}
1764 
1765 	for (;;) {
1766 		set = lwp_sigpend(lp);
1767 		SIGSETAND(set, waitset);
1768 		if ((sig = sig_ffs(&set)) != 0) {
1769 			SIGFILLSET(lp->lwp_sigmask);
1770 			SIGDELSET(lp->lwp_sigmask, sig);
1771 			SIG_CANTMASK(lp->lwp_sigmask);
1772 			sig = issignal(lp, 1, 0);
1773 			/*
1774 			 * It may be a STOP signal, in the case, issignal
1775 			 * returns 0, because we may stop there, and new
1776 			 * signal can come in, we should restart if we got
1777 			 * nothing.
1778 			 */
1779 			if (sig == 0)
1780 				continue;
1781 			else
1782 				break;
1783 		}
1784 
1785 		/*
1786 		 * Previous checking got nothing, and we retried but still
1787 		 * got nothing, we should return the error status.
1788 		 */
1789 		if (error)
1790 			break;
1791 
1792 		/*
1793 		 * POSIX says this must be checked after looking for pending
1794 		 * signals.
1795 		 */
1796 		if (timeout) {
1797 			if (timevalid == 0) {
1798 				error = EINVAL;
1799 				break;
1800 			}
1801 			getnanouptime(&rts);
1802 			if (timespeccmp(&rts, &ets, >=)) {
1803 				error = EAGAIN;
1804 				break;
1805 			}
1806 			timespecsub(&ets, &rts, &ts);
1807 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1808 			hz = tvtohz_high(&tv);
1809 		} else {
1810 			hz = 0;
1811 		}
1812 
1813 		lp->lwp_sigmask = savedmask;
1814 		SIGSETNAND(lp->lwp_sigmask, waitset);
1815 		/*
1816 		 * We won't ever be woken up.  Instead, our sleep will
1817 		 * be broken in lwpsignal().
1818 		 */
1819 		error = tsleep(&p->p_sigacts, PCATCH, "sigwt", hz);
1820 		if (timeout) {
1821 			if (error == ERESTART) {
1822 				/* can not restart a timeout wait. */
1823 				error = EINTR;
1824 			} else if (error == EAGAIN) {
1825 				/* will calculate timeout by ourself. */
1826 				error = 0;
1827 			}
1828 		}
1829 		/* Retry ... */
1830 	}
1831 
1832 	lp->lwp_sigmask = savedmask;
1833 	if (sig) {
1834 		error = 0;
1835 		bzero(info, sizeof(*info));
1836 		info->si_signo = sig;
1837 		spin_lock(&lp->lwp_spin);
1838 		lwp_delsig(lp, sig, 1);	/* take the signal! */
1839 		spin_unlock(&lp->lwp_spin);
1840 
1841 		if (sig == SIGKILL) {
1842 			sigexit(lp, sig);
1843 			/* NOT REACHED */
1844 		}
1845 	}
1846 
1847 	return (error);
1848 }
1849 
1850 /*
1851  * MPALMOSTSAFE
1852  */
1853 int
1854 sys_sigtimedwait(struct sysmsg *sysmsg, const struct sigtimedwait_args *uap)
1855 {
1856 	struct timespec ts;
1857 	struct timespec *timeout;
1858 	sigset_t set;
1859 	siginfo_t info;
1860 	int error;
1861 
1862 	if (uap->timeout) {
1863 		error = copyin(uap->timeout, &ts, sizeof(ts));
1864 		if (error)
1865 			return (error);
1866 		timeout = &ts;
1867 	} else {
1868 		timeout = NULL;
1869 	}
1870 	error = copyin(uap->set, &set, sizeof(set));
1871 	if (error)
1872 		return (error);
1873 	error = kern_sigtimedwait(set, &info, timeout);
1874 	if (error)
1875 		return (error);
1876 	if (uap->info)
1877 		error = copyout(&info, uap->info, sizeof(info));
1878 	/* Repost if we got an error. */
1879 	/*
1880 	 * XXX lwp
1881 	 *
1882 	 * This could transform a thread-specific signal to another
1883 	 * thread / process pending signal.
1884 	 */
1885 	if (error) {
1886 		ksignal(curproc, info.si_signo);
1887 	} else {
1888 		sysmsg->sysmsg_result = info.si_signo;
1889 	}
1890 	return (error);
1891 }
1892 
1893 /*
1894  * MPALMOSTSAFE
1895  */
1896 int
1897 sys_sigwaitinfo(struct sysmsg *sysmsg, const struct sigwaitinfo_args *uap)
1898 {
1899 	siginfo_t info;
1900 	sigset_t set;
1901 	int error;
1902 
1903 	error = copyin(uap->set, &set, sizeof(set));
1904 	if (error)
1905 		return (error);
1906 	error = kern_sigtimedwait(set, &info, NULL);
1907 	if (error)
1908 		return (error);
1909 	if (uap->info)
1910 		error = copyout(&info, uap->info, sizeof(info));
1911 	/* Repost if we got an error. */
1912 	/*
1913 	 * XXX lwp
1914 	 *
1915 	 * This could transform a thread-specific signal to another
1916 	 * thread / process pending signal.
1917 	 */
1918 	if (error) {
1919 		ksignal(curproc, info.si_signo);
1920 	} else {
1921 		sysmsg->sysmsg_result = info.si_signo;
1922 	}
1923 	return (error);
1924 }
1925 
1926 /*
1927  * If the current process has received a signal that would interrupt a
1928  * system call, return EINTR or ERESTART as appropriate.
1929  */
1930 int
1931 iscaught(struct lwp *lp)
1932 {
1933 	struct proc *p = lp->lwp_proc;
1934 	int sig;
1935 
1936 	if (p) {
1937 		if ((sig = CURSIG(lp)) != 0) {
1938 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
1939 				return (EINTR);
1940 			return (ERESTART);
1941 		}
1942 	}
1943 	return(EWOULDBLOCK);
1944 }
1945 
1946 /*
1947  * If the current lwp/proc has received a signal (should be caught or cause
1948  * termination, should interrupt current syscall), return the signal number.
1949  * Stop signals with default action are processed immediately, then cleared;
1950  * they aren't returned.  This is checked after each entry to the system for
1951  * a syscall or trap (though this can usually be done without calling issignal
1952  * by checking the pending signal masks in the CURSIG macro).
1953  *
1954  * This routine is called via CURSIG/__cursig.  We will acquire and release
1955  * p->p_token but if the caller needs to interlock the test the caller must
1956  * also hold p->p_token.
1957  *
1958  *	while (sig = CURSIG(curproc))
1959  *		postsig(sig);
1960  */
1961 int
1962 issignal(struct lwp *lp, int maytrace, int *ptokp)
1963 {
1964 	struct proc *p = lp->lwp_proc;
1965 	sigset_t mask;
1966 	int sig, prop;
1967 	int haveptok;
1968 
1969 	for (;;) {
1970 		int traced = (p->p_flags & P_TRACED) || (p->p_stops & S_SIG);
1971 
1972 		haveptok = 0;
1973 
1974 		/*
1975 		 * NOTE: Do not tstop here.  Issue the proc_stop()
1976 		 *	 so other parties see that we know we need
1977 		 *	 to stop, but don't block here.  Locks might
1978 		 *	 be held.
1979 		 *
1980 		 * XXX If this process is supposed to stop, stop this thread.
1981 		 *     removed.
1982 		 */
1983 #if 0
1984 		if (STOPLWP(p, lp)) {
1985 			lwkt_gettoken(&p->p_token);
1986 			tstop();
1987 			lwkt_reltoken(&p->p_token);
1988 		}
1989 #endif
1990 
1991 		/*
1992 		 * Quick check without token
1993 		 */
1994 		mask = lwp_sigpend(lp);
1995 		SIGSETNAND(mask, lp->lwp_sigmask);
1996 		if (p->p_flags & P_PPWAIT)
1997 			SIG_STOPSIGMASK(mask);
1998 		SIG_CONDBLOCKALLSIGS(mask, lp);
1999 
2000 		if (SIGISEMPTY(mask)) 		/* no signal to send */
2001 			return (0);
2002 
2003 		/*
2004 		 * If the signal is a member of the process signal set
2005 		 * we need p_token (even if it is also a member of the
2006 		 * lwp signal set).
2007 		 */
2008 		sig = sig_ffs(&mask);
2009 		if (SIGISMEMBER(p->p_siglist, sig)) {
2010 			/*
2011 			 * Recheck with token
2012 			 */
2013 			haveptok = 1;
2014 			lwkt_gettoken(&p->p_token);
2015 
2016 			mask = lwp_sigpend(lp);
2017 			SIGSETNAND(mask, lp->lwp_sigmask);
2018 			if (p->p_flags & P_PPWAIT)
2019 				SIG_STOPSIGMASK(mask);
2020 			if (SIGISEMPTY(mask)) {		/* no signal to send */
2021 				/* haveptok is TRUE */
2022 				lwkt_reltoken(&p->p_token);
2023 				return (0);
2024 			}
2025 			sig = sig_ffs(&mask);
2026 		}
2027 
2028 		STOPEVENT(p, S_SIG, sig);
2029 
2030 		/*
2031 		 * We should see pending but ignored signals
2032 		 * only if P_TRACED was on when they were posted.
2033 		 */
2034 		if (SIGISMEMBER(p->p_sigignore, sig) && (traced == 0)) {
2035 			spin_lock(&lp->lwp_spin);
2036 			lwp_delsig(lp, sig, haveptok);
2037 			spin_unlock(&lp->lwp_spin);
2038 			if (haveptok)
2039 				lwkt_reltoken(&p->p_token);
2040 			continue;
2041 		}
2042 		if (maytrace &&
2043 		    (p->p_flags & P_TRACED) &&
2044 		    (p->p_flags & P_PPWAIT) == 0) {
2045 			/*
2046 			 * If traced, always stop, and stay stopped until
2047 			 * released by the parent.
2048 			 *
2049 			 * NOTE: SSTOP may get cleared during the loop, but
2050 			 *	 we do not re-notify the parent if we have
2051 			 *	 to loop several times waiting for the parent
2052 			 *	 to let us continue.  XXX not sure if this is
2053 			 * 	 still true
2054 			 *
2055 			 * NOTE: Do not tstop here.  Issue the proc_stop()
2056 			 *	 so other parties see that we know we need
2057 			 *	 to stop, but don't block here.  Locks might
2058 			 *	 be held.
2059 			 */
2060 			if (haveptok == 0) {
2061 				lwkt_gettoken(&p->p_token);
2062 				haveptok = 1;
2063 			}
2064 			p->p_xstat = sig;
2065 			proc_stop(p, SSTOP);
2066 
2067 			/*
2068 			 * Normally we don't stop until we return to userland, but
2069 			 * make an exception when tracing and 'maytrace' is asserted.
2070 			 */
2071 			if (p->p_flags & P_TRACED)
2072 				tstop();
2073 
2074 			/*
2075 			 * If parent wants us to take the signal,
2076 			 * then it will leave it in p->p_xstat;
2077 			 * otherwise we just look for signals again.
2078 			 */
2079 			spin_lock(&lp->lwp_spin);
2080 			lwp_delsig(lp, sig, 1);	/* clear old signal */
2081 			spin_unlock(&lp->lwp_spin);
2082 			sig = p->p_xstat;
2083 			if (sig == 0) {
2084 				/* haveptok is TRUE */
2085 				lwkt_reltoken(&p->p_token);
2086 				continue;
2087 			}
2088 
2089 			/*
2090 			 * Put the new signal into p_siglist.  If the
2091 			 * signal is being masked, look for other signals.
2092 			 *
2093 			 * XXX lwp might need a call to ksignal()
2094 			 */
2095 			SIGADDSET_ATOMIC(p->p_siglist, sig);
2096 			if (SIGISMEMBER(lp->lwp_sigmask, sig)) {
2097 				/* haveptok is TRUE */
2098 				lwkt_reltoken(&p->p_token);
2099 				continue;
2100 			}
2101 
2102 			/*
2103 			 * If the traced bit got turned off, go back up
2104 			 * to the top to rescan signals.  This ensures
2105 			 * that p_sig* and ps_sigact are consistent.
2106 			 */
2107 			if ((p->p_flags & P_TRACED) == 0) {
2108 				/* haveptok is TRUE */
2109 				lwkt_reltoken(&p->p_token);
2110 				continue;
2111 			}
2112 		}
2113 
2114 		/*
2115 		 * p_token may be held here
2116 		 */
2117 		prop = sigprop(sig);
2118 
2119 		/*
2120 		 * Decide whether the signal should be returned.
2121 		 * Return the signal's number, or fall through
2122 		 * to clear it from the pending mask.
2123 		 */
2124 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2125 		case (intptr_t)SIG_DFL:
2126 			/*
2127 			 * Don't take default actions on system processes.
2128 			 */
2129 			if (p->p_pid <= 1) {
2130 #ifdef DIAGNOSTIC
2131 				/*
2132 				 * Are you sure you want to ignore SIGSEGV
2133 				 * in init? XXX
2134 				 */
2135 				kprintf("Process (pid %lu) got signal %d\n",
2136 					(u_long)p->p_pid, sig);
2137 #endif
2138 				break;		/* == ignore */
2139 			}
2140 
2141 			/*
2142 			 * Handle the in-kernel checkpoint action
2143 			 */
2144 			if (prop & SA_CKPT) {
2145 				if (haveptok == 0) {
2146 					lwkt_gettoken(&p->p_token);
2147 					haveptok = 1;
2148 				}
2149 				checkpoint_signal_handler(lp);
2150 				break;
2151 			}
2152 
2153 			/*
2154 			 * If there is a pending stop signal to process
2155 			 * with default action, stop here,
2156 			 * then clear the signal.  However,
2157 			 * if process is member of an orphaned
2158 			 * process group, ignore tty stop signals.
2159 			 */
2160 			if (prop & SA_STOP) {
2161 				if (haveptok == 0) {
2162 					lwkt_gettoken(&p->p_token);
2163 					haveptok = 1;
2164 				}
2165 				if (p->p_flags & P_TRACED ||
2166 		    		    (p->p_pgrp->pg_jobc == 0 &&
2167 				    prop & SA_TTYSTOP))
2168 					break;	/* == ignore */
2169 				if ((p->p_flags & P_WEXIT) == 0) {
2170 					/*
2171 					 * NOTE: We do not block here.  Issue
2172 					 *	 stopthe stop so other parties
2173 					 *	 see that we know we need to
2174 					 *	 stop.  Locks might be held.
2175 					 */
2176 					p->p_xstat = sig;
2177 					proc_stop(p, SSTOP);
2178 
2179 #if 0
2180 					tstop();
2181 #endif
2182 				}
2183 				break;
2184 			} else if (prop & SA_IGNORE) {
2185 				/*
2186 				 * Except for SIGCONT, shouldn't get here.
2187 				 * Default action is to ignore; drop it.
2188 				 */
2189 				break;		/* == ignore */
2190 			} else {
2191 				if (ptokp)
2192 					*ptokp = haveptok;
2193 				else if (haveptok)
2194 					lwkt_reltoken(&p->p_token);
2195 				return (sig);
2196 			}
2197 
2198 			/*NOTREACHED*/
2199 
2200 		case (intptr_t)SIG_IGN:
2201 			/*
2202 			 * Masking above should prevent us ever trying
2203 			 * to take action on an ignored signal other
2204 			 * than SIGCONT, unless process is traced.
2205 			 */
2206 			if ((prop & SA_CONT) == 0 &&
2207 			    (p->p_flags & P_TRACED) == 0)
2208 				kprintf("issignal\n");
2209 			break;		/* == ignore */
2210 
2211 		default:
2212 			/*
2213 			 * This signal has an action, let
2214 			 * postsig() process it.
2215 			 */
2216 			if (ptokp)
2217 				*ptokp = haveptok;
2218 			else if (haveptok)
2219 				lwkt_reltoken(&p->p_token);
2220 			return (sig);
2221 		}
2222 		spin_lock(&lp->lwp_spin);
2223 		lwp_delsig(lp, sig, haveptok);		/* take the signal! */
2224 		spin_unlock(&lp->lwp_spin);
2225 
2226 		if (haveptok)
2227 			lwkt_reltoken(&p->p_token);
2228 	}
2229 	/* NOTREACHED */
2230 }
2231 
2232 /*
2233  * Take the action for the specified signal from the current set of
2234  * pending signals.
2235  *
2236  * haveptok indicates whether the caller is holding p->p_token.  If the
2237  * caller is, we are responsible for releasing it.
2238  *
2239  * This routine can only be called from the top-level trap from usermode.
2240  * It is expecting to be able to modify the top-level stack frame.
2241  */
2242 void
2243 postsig(int sig, int haveptok)
2244 {
2245 	struct lwp *lp = curthread->td_lwp;
2246 	struct proc *p = lp->lwp_proc;
2247 	struct sigacts *ps = p->p_sigacts;
2248 	sig_t action;
2249 	sigset_t returnmask;
2250 	int code;
2251 
2252 	KASSERT(sig != 0, ("postsig"));
2253 
2254 	/*
2255 	 * If we are a virtual kernel running an emulated user process
2256 	 * context, switch back to the virtual kernel context before
2257 	 * trying to post the signal.
2258 	 */
2259 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
2260 		struct trapframe *tf = lp->lwp_md.md_regs;
2261 		tf->tf_trapno = 0;
2262 		vkernel_trap(lp, tf);
2263 	}
2264 
2265 	KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
2266 
2267 	spin_lock(&lp->lwp_spin);
2268 	lwp_delsig(lp, sig, haveptok);
2269 	spin_unlock(&lp->lwp_spin);
2270 	action = ps->ps_sigact[_SIG_IDX(sig)];
2271 #ifdef KTRACE
2272 	if (KTRPOINT(lp->lwp_thread, KTR_PSIG))
2273 		ktrpsig(lp, sig, action, lp->lwp_flags & LWP_OLDMASK ?
2274 			&lp->lwp_oldsigmask : &lp->lwp_sigmask, 0);
2275 #endif
2276 	/*
2277 	 * We don't need p_token after this point.
2278 	 */
2279 	if (haveptok)
2280 		lwkt_reltoken(&p->p_token);
2281 
2282 	STOPEVENT(p, S_SIG, sig);
2283 
2284 	if (action == SIG_DFL) {
2285 		/*
2286 		 * Default action, where the default is to kill
2287 		 * the process.  (Other cases were ignored above.)
2288 		 */
2289 		sigexit(lp, sig);
2290 		/* NOTREACHED */
2291 	} else {
2292 		/*
2293 		 * If we get here, the signal must be caught.
2294 		 */
2295 		KASSERT(action != SIG_IGN && !SIGISMEMBER(lp->lwp_sigmask, sig),
2296 		    ("postsig action"));
2297 
2298 		/*
2299 		 * Reset the signal handler if asked to
2300 		 */
2301 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2302 			/*
2303 			 * See kern_sigaction() for origin of this code.
2304 			 */
2305 			SIGDELSET(p->p_sigcatch, sig);
2306 			if (sig != SIGCONT &&
2307 			    sigprop(sig) & SA_IGNORE)
2308 				SIGADDSET(p->p_sigignore, sig);
2309 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2310 		}
2311 
2312 		/*
2313 		 * Set the signal mask and calculate the mask to restore
2314 		 * when the signal function returns.
2315 		 *
2316 		 * Special case: user has done a sigsuspend.  Here the
2317 		 * current mask is not of interest, but rather the
2318 		 * mask from before the sigsuspend is what we want
2319 		 * restored after the signal processing is completed.
2320 		 */
2321 		if (lp->lwp_flags & LWP_OLDMASK) {
2322 			returnmask = lp->lwp_oldsigmask;
2323 			lp->lwp_flags &= ~LWP_OLDMASK;
2324 		} else {
2325 			returnmask = lp->lwp_sigmask;
2326 		}
2327 
2328 		SIGSETOR(lp->lwp_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2329 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2330 			SIGADDSET(lp->lwp_sigmask, sig);
2331 
2332 		lp->lwp_ru.ru_nsignals++;
2333 		if (lp->lwp_sig != sig) {
2334 			code = 0;
2335 		} else {
2336 			code = lp->lwp_code;
2337 			lp->lwp_code = 0;
2338 			lp->lwp_sig = 0;
2339 		}
2340 		(*p->p_sysent->sv_sendsig)(action, sig, &returnmask, code);
2341 	}
2342 }
2343 
2344 /*
2345  * Kill the current process for stated reason.
2346  */
2347 void
2348 killproc(struct proc *p, char *why)
2349 {
2350 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n",
2351 		p->p_pid, p->p_comm,
2352 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2353 	ksignal(p, SIGKILL);
2354 }
2355 
2356 /*
2357  * Force the current process to exit with the specified signal, dumping core
2358  * if appropriate.  We bypass the normal tests for masked and caught signals,
2359  * allowing unrecoverable failures to terminate the process without changing
2360  * signal state.  Mark the accounting record with the signal termination.
2361  * If dumping core, save the signal number for the debugger.  Calls exit and
2362  * does not return.
2363  *
2364  * This routine does not return.
2365  */
2366 void
2367 sigexit(struct lwp *lp, int sig)
2368 {
2369 	struct proc *p = lp->lwp_proc;
2370 
2371 	lwkt_gettoken(&p->p_token);
2372 	p->p_acflag |= AXSIG;
2373 	if (sigprop(sig) & SA_CORE) {
2374 		lp->lwp_sig = sig;
2375 
2376 		/*
2377 		 * All threads must be stopped before we can safely coredump.
2378 		 * Stop threads using SCORE, which cannot be overridden.
2379 		 */
2380 		if (p->p_stat != SCORE) {
2381 			proc_stop(p, SCORE);
2382 			proc_stopwait(p);
2383 
2384 			if (coredump(lp, sig) == 0)
2385 				sig |= WCOREFLAG;
2386 			p->p_stat = SSTOP;
2387 		}
2388 
2389 		/*
2390 		 * Log signals which would cause core dumps
2391 		 * (Log as LOG_INFO to appease those who don't want
2392 		 * these messages.)
2393 		 * XXX : Todo, as well as euid, write out ruid too
2394 		 */
2395 		if (kern_logsigexit) {
2396 			log(LOG_INFO,
2397 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2398 			    p->p_pid, p->p_comm,
2399 			    p->p_ucred ? p->p_ucred->cr_uid : -1,
2400 			    sig &~ WCOREFLAG,
2401 			    sig & WCOREFLAG ? " (core dumped)" : "");
2402 			if (kern_logsigexit > 1)
2403 				kprintf("DEBUG - waiting on kern.logsigexit\n");
2404 			while (kern_logsigexit > 1) {
2405 				tsleep(&kern_logsigexit, 0, "DEBUG", hz);
2406 			}
2407 		}
2408 	}
2409 	lwkt_reltoken(&p->p_token);
2410 	exit1(W_EXITCODE(0, sig));
2411 	/* NOTREACHED */
2412 }
2413 
2414 static char corefilename[MAXPATHLEN+1] = {"%N.core"};
2415 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2416 	      sizeof(corefilename), "process corefile name format string");
2417 
2418 /*
2419  * expand_name(name, uid, pid)
2420  * Expand the name described in corefilename, using name, uid, and pid.
2421  * corefilename is a kprintf-like string, with three format specifiers:
2422  *	%N	name of process ("name")
2423  *	%P	process id (pid)
2424  *	%U	user id (uid)
2425  * For example, "%N.core" is the default; they can be disabled completely
2426  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2427  * This is controlled by the sysctl variable kern.corefile (see above).
2428  */
2429 
2430 static char *
2431 expand_name(const char *name, uid_t uid, pid_t pid)
2432 {
2433 	char *temp;
2434 	char buf[11];		/* Buffer for pid/uid -- max 4B */
2435 	int i, n;
2436 	char *format = corefilename;
2437 	size_t namelen;
2438 
2439 	temp = kmalloc(MAXPATHLEN + 1, M_TEMP, M_NOWAIT);
2440 	if (temp == NULL)
2441 		return NULL;
2442 	namelen = strlen(name);
2443 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
2444 		int l;
2445 		switch (format[i]) {
2446 		case '%':	/* Format character */
2447 			i++;
2448 			switch (format[i]) {
2449 			case '%':
2450 				temp[n++] = '%';
2451 				break;
2452 			case 'N':	/* process name */
2453 				if ((n + namelen) > MAXPATHLEN) {
2454 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
2455 					    pid, name, uid, temp, name);
2456 					kfree(temp, M_TEMP);
2457 					return NULL;
2458 				}
2459 				memcpy(temp+n, name, namelen);
2460 				n += namelen;
2461 				break;
2462 			case 'P':	/* process id */
2463 				l = ksprintf(buf, "%u", pid);
2464 				if ((n + l) > MAXPATHLEN) {
2465 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
2466 					    pid, name, uid, temp, name);
2467 					kfree(temp, M_TEMP);
2468 					return NULL;
2469 				}
2470 				memcpy(temp+n, buf, l);
2471 				n += l;
2472 				break;
2473 			case 'U':	/* user id */
2474 				l = ksprintf(buf, "%u", uid);
2475 				if ((n + l) > MAXPATHLEN) {
2476 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
2477 					    pid, name, uid, temp, name);
2478 					kfree(temp, M_TEMP);
2479 					return NULL;
2480 				}
2481 				memcpy(temp+n, buf, l);
2482 				n += l;
2483 				break;
2484 			default:
2485 			  	log(LOG_ERR, "Unknown format character %c in `%s'\n", format[i], format);
2486 			}
2487 			break;
2488 		default:
2489 			temp[n++] = format[i];
2490 		}
2491 	}
2492 	temp[n] = '\0';
2493 	return temp;
2494 }
2495 
2496 /*
2497  * Dump a process' core.  The main routine does some
2498  * policy checking, and creates the name of the coredump;
2499  * then it passes on a vnode and a size limit to the process-specific
2500  * coredump routine if there is one; if there _is not_ one, it returns
2501  * ENOSYS; otherwise it returns the error from the process-specific routine.
2502  *
2503  * The parameter `lp' is the lwp which triggered the coredump.
2504  */
2505 
2506 static int
2507 coredump(struct lwp *lp, int sig)
2508 {
2509 	struct proc *p = lp->lwp_proc;
2510 	struct vnode *vp;
2511 	struct ucred *cred = p->p_ucred;
2512 	struct flock lf;
2513 	struct nlookupdata nd;
2514 	struct vattr vattr;
2515 	int error, error1;
2516 	char *name;			/* name of corefile */
2517 	off_t limit;
2518 
2519 	STOPEVENT(p, S_CORE, 0);
2520 
2521 	if (((sugid_coredump == 0) && p->p_flags & P_SUGID) || do_coredump == 0)
2522 		return (EFAULT);
2523 
2524 	/*
2525 	 * Note that the bulk of limit checking is done after
2526 	 * the corefile is created.  The exception is if the limit
2527 	 * for corefiles is 0, in which case we don't bother
2528 	 * creating the corefile at all.  This layout means that
2529 	 * a corefile is truncated instead of not being created,
2530 	 * if it is larger than the limit.
2531 	 */
2532 	limit = p->p_rlimit[RLIMIT_CORE].rlim_cur;
2533 	if (limit == 0)
2534 		return EFBIG;
2535 
2536 	name = expand_name(p->p_comm, p->p_ucred->cr_uid, p->p_pid);
2537 	if (name == NULL)
2538 		return (EINVAL);
2539 	error = nlookup_init(&nd, name, UIO_SYSSPACE, NLC_LOCKVP);
2540 	if (error == 0)
2541 		error = vn_open(&nd, NULL,
2542 				O_CREAT | FWRITE | O_NOFOLLOW,
2543 				S_IRUSR | S_IWUSR);
2544 	kfree(name, M_TEMP);
2545 	if (error) {
2546 		nlookup_done(&nd);
2547 		return (error);
2548 	}
2549 	vp = nd.nl_open_vp;
2550 	nd.nl_open_vp = NULL;
2551 	nlookup_done(&nd);
2552 
2553 	vn_unlock(vp);
2554 	lf.l_whence = SEEK_SET;
2555 	lf.l_start = 0;
2556 	lf.l_len = 0;
2557 	lf.l_type = F_WRLCK;
2558 	error = VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, 0);
2559 	if (error)
2560 		goto out2;
2561 
2562 	/* Don't dump to non-regular files or files with links. */
2563 	if (vp->v_type != VREG ||
2564 	    VOP_GETATTR(vp, &vattr) || vattr.va_nlink != 1) {
2565 		error = EFAULT;
2566 		goto out1;
2567 	}
2568 
2569 	/* Don't dump to files current user does not own */
2570 	if (vattr.va_uid != p->p_ucred->cr_uid) {
2571 		error = EFAULT;
2572 		goto out1;
2573 	}
2574 
2575 	VATTR_NULL(&vattr);
2576 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2577 	vattr.va_size = 0;
2578 	VOP_SETATTR(vp, &vattr, cred);
2579 	p->p_acflag |= ACORE;
2580 	vn_unlock(vp);
2581 
2582 	error = p->p_sysent->sv_coredump ?
2583 		  p->p_sysent->sv_coredump(lp, sig, vp, limit) : ENOSYS;
2584 
2585 out1:
2586 	lf.l_type = F_UNLCK;
2587 	VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, 0);
2588 out2:
2589 	error1 = vn_close(vp, FWRITE, NULL);
2590 	if (error == 0)
2591 		error = error1;
2592 	return (error);
2593 }
2594 
2595 /*
2596  * Nonexistent system call-- signal process (may want to handle it).
2597  * Flag error in case process won't see signal immediately (blocked or ignored).
2598  *
2599  * MPALMOSTSAFE
2600  */
2601 /* ARGSUSED */
2602 int
2603 sys_nosys(struct sysmsg *sysmsg, const struct nosys_args *args)
2604 {
2605 	lwpsignal(curproc, curthread->td_lwp, SIGSYS);
2606 	return (EINVAL);
2607 }
2608 
2609 /*
2610  * Send a SIGIO or SIGURG signal to a process or process group using
2611  * stored credentials rather than those of the current process.
2612  */
2613 void
2614 pgsigio(struct sigio *sigio, int sig, int checkctty)
2615 {
2616 	if (sigio == NULL)
2617 		return;
2618 
2619 	if (sigio->sio_pgid > 0) {
2620 		if (CANSIGIO(sigio->sio_ruid, sigio->sio_ucred,
2621 		             sigio->sio_proc))
2622 			ksignal(sigio->sio_proc, sig);
2623 	} else if (sigio->sio_pgid < 0) {
2624 		struct proc *p;
2625 		struct pgrp *pg = sigio->sio_pgrp;
2626 
2627 		/*
2628 		 * Must interlock all signals against fork
2629 		 */
2630 		pgref(pg);
2631 		lockmgr(&pg->pg_lock, LK_EXCLUSIVE);
2632 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
2633 			if (CANSIGIO(sigio->sio_ruid, sigio->sio_ucred, p) &&
2634 			    (checkctty == 0 || (p->p_flags & P_CONTROLT)))
2635 				ksignal(p, sig);
2636 		}
2637 		lockmgr(&pg->pg_lock, LK_RELEASE);
2638 		pgrel(pg);
2639 	}
2640 }
2641 
2642 static int
2643 filt_sigattach(struct knote *kn)
2644 {
2645 	struct proc *p = curproc;
2646 
2647 	kn->kn_ptr.p_proc = p;
2648 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
2649 
2650 	/* XXX lock the proc here while adding to the list? */
2651 	knote_insert(&p->p_klist, kn);
2652 
2653 	return (0);
2654 }
2655 
2656 static void
2657 filt_sigdetach(struct knote *kn)
2658 {
2659 	struct proc *p = kn->kn_ptr.p_proc;
2660 
2661 	knote_remove(&p->p_klist, kn);
2662 }
2663 
2664 /*
2665  * signal knotes are shared with proc knotes, so we apply a mask to
2666  * the hint in order to differentiate them from process hints.  This
2667  * could be avoided by using a signal-specific knote list, but probably
2668  * isn't worth the trouble.
2669  */
2670 static int
2671 filt_signal(struct knote *kn, long hint)
2672 {
2673 	if (hint & NOTE_SIGNAL) {
2674 		hint &= ~NOTE_SIGNAL;
2675 
2676 		if (kn->kn_id == hint)
2677 			kn->kn_data++;
2678 	}
2679 	return (kn->kn_data != 0);
2680 }
2681