xref: /dragonfly/sys/kern/kern_slaballoc.c (revision 0720b42f)
1 /*
2  * (MPSAFE)
3  *
4  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
5  *
6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
7  *
8  * This code is derived from software contributed to The DragonFly Project
9  * by Matthew Dillon <dillon@backplane.com>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  * Alignment properties:
82  * - All power-of-2 sized allocations are power-of-2 aligned.
83  * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84  *   power-of-2 round up of 'size'.
85  * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86  *   above table 'Chunking' column).
87  *
88  *			API REQUIREMENTS AND SIDE EFFECTS
89  *
90  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91  *    have remained compatible with the following API requirements:
92  *
93  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
94  *    + ability to allocate arbitrarily large chunks of memory
95  */
96 
97 #include "opt_vm.h"
98 
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/kernel.h>
102 #include <sys/slaballoc.h>
103 #include <sys/mbuf.h>
104 #include <sys/vmmeter.h>
105 #include <sys/lock.h>
106 #include <sys/thread.h>
107 #include <sys/globaldata.h>
108 #include <sys/sysctl.h>
109 #include <sys/ktr.h>
110 
111 #include <vm/vm.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_extern.h>
115 #include <vm/vm_object.h>
116 #include <vm/pmap.h>
117 #include <vm/vm_map.h>
118 #include <vm/vm_page.h>
119 #include <vm/vm_pageout.h>
120 
121 #include <machine/cpu.h>
122 
123 #include <sys/thread2.h>
124 #include <vm/vm_page2.h>
125 
126 #define btokup(z)	(&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
127 
128 #define MEMORY_STRING	"ptr=%p type=%p size=%lu flags=%04x"
129 #define MEMORY_ARGS	void *ptr, void *type, unsigned long size, int flags
130 
131 #if !defined(KTR_MEMORY)
132 #define KTR_MEMORY	KTR_ALL
133 #endif
134 KTR_INFO_MASTER(memory);
135 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
136 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
137 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
138 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
139 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
140 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
141 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
142 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
143 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
144 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
145 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
146 
147 #define logmemory(name, ptr, type, size, flags)				\
148 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
149 #define logmemory_quick(name)						\
150 	KTR_LOG(memory_ ## name)
151 
152 /*
153  * Fixed globals (not per-cpu)
154  */
155 static int ZoneSize;
156 static int ZoneLimit;
157 static int ZonePageCount;
158 static uintptr_t ZoneMask;
159 static int ZoneBigAlloc;		/* in KB */
160 static int ZoneGenAlloc;		/* in KB */
161 struct malloc_type *kmemstatistics;	/* exported to vmstat */
162 static int32_t weirdary[16];
163 
164 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
165 static void kmem_slab_free(void *ptr, vm_size_t bytes);
166 
167 #if defined(INVARIANTS)
168 static void chunk_mark_allocated(SLZone *z, void *chunk);
169 static void chunk_mark_free(SLZone *z, void *chunk);
170 #else
171 #define chunk_mark_allocated(z, chunk)
172 #define chunk_mark_free(z, chunk)
173 #endif
174 
175 /*
176  * Misc constants.  Note that allocations that are exact multiples of
177  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
178  */
179 #define ZONE_RELS_THRESH	32		/* threshold number of zones */
180 
181 /*
182  * The WEIRD_ADDR is used as known text to copy into free objects to
183  * try to create deterministic failure cases if the data is accessed after
184  * free.
185  */
186 #define WEIRD_ADDR      0xdeadc0de
187 #define MAX_COPY        sizeof(weirdary)
188 #define ZERO_LENGTH_PTR	((void *)-8)
189 
190 /*
191  * Misc global malloc buckets
192  */
193 
194 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
195 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
196 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
197 
198 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
199 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
200 
201 /*
202  * Initialize the slab memory allocator.  We have to choose a zone size based
203  * on available physical memory.  We choose a zone side which is approximately
204  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
205  * 128K.  The zone size is limited to the bounds set in slaballoc.h
206  * (typically 32K min, 128K max).
207  */
208 static void kmeminit(void *dummy);
209 
210 char *ZeroPage;
211 
212 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL);
213 
214 #ifdef INVARIANTS
215 /*
216  * If enabled any memory allocated without M_ZERO is initialized to -1.
217  */
218 static int  use_malloc_pattern;
219 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
220     &use_malloc_pattern, 0,
221     "Initialize memory to -1 if M_ZERO not specified");
222 #endif
223 
224 static int ZoneRelsThresh = ZONE_RELS_THRESH;
225 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
226 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
227 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
228 static long SlabsAllocated;
229 static long SlabsFreed;
230 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD,
231 	    &SlabsAllocated, 0, "");
232 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD,
233 	    &SlabsFreed, 0, "");
234 static int SlabFreeToTail;
235 SYSCTL_INT(_kern, OID_AUTO, slab_freetotail, CTLFLAG_RW,
236 	    &SlabFreeToTail, 0, "");
237 
238 /*
239  * Returns the kernel memory size limit for the purposes of initializing
240  * various subsystem caches.  The smaller of available memory and the KVM
241  * memory space is returned.
242  *
243  * The size in megabytes is returned.
244  */
245 size_t
246 kmem_lim_size(void)
247 {
248     size_t limsize;
249 
250     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
251     if (limsize > KvaSize)
252 	limsize = KvaSize;
253     return (limsize / (1024 * 1024));
254 }
255 
256 static void
257 kmeminit(void *dummy)
258 {
259     size_t limsize;
260     int usesize;
261     int i;
262 
263     limsize = kmem_lim_size();
264     usesize = (int)(limsize * 1024);	/* convert to KB */
265 
266     /*
267      * If the machine has a large KVM space and more than 8G of ram,
268      * double the zone release threshold to reduce SMP invalidations.
269      * If more than 16G of ram, do it again.
270      *
271      * The BIOS eats a little ram so add some slop.  We want 8G worth of
272      * memory sticks to trigger the first adjustment.
273      */
274     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
275 	    if (limsize >= 7 * 1024)
276 		    ZoneRelsThresh *= 2;
277 	    if (limsize >= 15 * 1024)
278 		    ZoneRelsThresh *= 2;
279     }
280 
281     /*
282      * Calculate the zone size.  This typically calculates to
283      * ZALLOC_MAX_ZONE_SIZE
284      */
285     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
286     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
287 	ZoneSize <<= 1;
288     ZoneLimit = ZoneSize / 4;
289     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
290 	ZoneLimit = ZALLOC_ZONE_LIMIT;
291     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
292     ZonePageCount = ZoneSize / PAGE_SIZE;
293 
294     for (i = 0; i < NELEM(weirdary); ++i)
295 	weirdary[i] = WEIRD_ADDR;
296 
297     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
298 
299     if (bootverbose)
300 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
301 }
302 
303 /*
304  * (low level) Initialize slab-related elements in the globaldata structure.
305  *
306  * Occurs after kmeminit().
307  */
308 void
309 slab_gdinit(globaldata_t gd)
310 {
311 	SLGlobalData *slgd;
312 	int i;
313 
314 	slgd = &gd->gd_slab;
315 	for (i = 0; i < NZONES; ++i)
316 		TAILQ_INIT(&slgd->ZoneAry[i]);
317 	TAILQ_INIT(&slgd->FreeZones);
318 	TAILQ_INIT(&slgd->FreeOvZones);
319 }
320 
321 /*
322  * Initialize a malloc type tracking structure.
323  */
324 void
325 malloc_init(void *data)
326 {
327     struct malloc_type *type = data;
328     size_t limsize;
329 
330     if (type->ks_magic != M_MAGIC)
331 	panic("malloc type lacks magic");
332 
333     if (type->ks_limit != 0)
334 	return;
335 
336     if (vmstats.v_page_count == 0)
337 	panic("malloc_init not allowed before vm init");
338 
339     limsize = kmem_lim_size() * (1024 * 1024);
340     type->ks_limit = limsize / 10;
341 
342     type->ks_next = kmemstatistics;
343     kmemstatistics = type;
344 }
345 
346 void
347 malloc_uninit(void *data)
348 {
349     struct malloc_type *type = data;
350     struct malloc_type *t;
351 #ifdef INVARIANTS
352     int i;
353     long ttl;
354 #endif
355 
356     if (type->ks_magic != M_MAGIC)
357 	panic("malloc type lacks magic");
358 
359     if (vmstats.v_page_count == 0)
360 	panic("malloc_uninit not allowed before vm init");
361 
362     if (type->ks_limit == 0)
363 	panic("malloc_uninit on uninitialized type");
364 
365     /* Make sure that all pending kfree()s are finished. */
366     lwkt_synchronize_ipiqs("muninit");
367 
368 #ifdef INVARIANTS
369     /*
370      * memuse is only correct in aggregation.  Due to memory being allocated
371      * on one cpu and freed on another individual array entries may be
372      * negative or positive (canceling each other out).
373      */
374     for (i = ttl = 0; i < ncpus; ++i)
375 	ttl += type->ks_memuse[i];
376     if (ttl) {
377 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
378 	    ttl, type->ks_shortdesc, i);
379     }
380 #endif
381     if (type == kmemstatistics) {
382 	kmemstatistics = type->ks_next;
383     } else {
384 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
385 	    if (t->ks_next == type) {
386 		t->ks_next = type->ks_next;
387 		break;
388 	    }
389 	}
390     }
391     type->ks_next = NULL;
392     type->ks_limit = 0;
393 }
394 
395 /*
396  * Increase the kmalloc pool limit for the specified pool.  No changes
397  * are the made if the pool would shrink.
398  */
399 void
400 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
401 {
402     if (type->ks_limit == 0)
403 	malloc_init(type);
404     if (bytes == 0)
405 	bytes = KvaSize;
406     if (type->ks_limit < bytes)
407 	type->ks_limit = bytes;
408 }
409 
410 /*
411  * Dynamically create a malloc pool.  This function is a NOP if *typep is
412  * already non-NULL.
413  */
414 void
415 kmalloc_create(struct malloc_type **typep, const char *descr)
416 {
417 	struct malloc_type *type;
418 
419 	if (*typep == NULL) {
420 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
421 		type->ks_magic = M_MAGIC;
422 		type->ks_shortdesc = descr;
423 		malloc_init(type);
424 		*typep = type;
425 	}
426 }
427 
428 /*
429  * Destroy a dynamically created malloc pool.  This function is a NOP if
430  * the pool has already been destroyed.
431  */
432 void
433 kmalloc_destroy(struct malloc_type **typep)
434 {
435 	if (*typep != NULL) {
436 		malloc_uninit(*typep);
437 		kfree(*typep, M_TEMP);
438 		*typep = NULL;
439 	}
440 }
441 
442 /*
443  * Calculate the zone index for the allocation request size and set the
444  * allocation request size to that particular zone's chunk size.
445  */
446 static __inline int
447 zoneindex(unsigned long *bytes, unsigned long *align)
448 {
449     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
450     if (n < 128) {
451 	*bytes = n = (n + 7) & ~7;
452 	*align = 8;
453 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
454     }
455     if (n < 256) {
456 	*bytes = n = (n + 15) & ~15;
457 	*align = 16;
458 	return(n / 16 + 7);
459     }
460     if (n < 8192) {
461 	if (n < 512) {
462 	    *bytes = n = (n + 31) & ~31;
463 	    *align = 32;
464 	    return(n / 32 + 15);
465 	}
466 	if (n < 1024) {
467 	    *bytes = n = (n + 63) & ~63;
468 	    *align = 64;
469 	    return(n / 64 + 23);
470 	}
471 	if (n < 2048) {
472 	    *bytes = n = (n + 127) & ~127;
473 	    *align = 128;
474 	    return(n / 128 + 31);
475 	}
476 	if (n < 4096) {
477 	    *bytes = n = (n + 255) & ~255;
478 	    *align = 256;
479 	    return(n / 256 + 39);
480 	}
481 	*bytes = n = (n + 511) & ~511;
482 	*align = 512;
483 	return(n / 512 + 47);
484     }
485 #if ZALLOC_ZONE_LIMIT > 8192
486     if (n < 16384) {
487 	*bytes = n = (n + 1023) & ~1023;
488 	*align = 1024;
489 	return(n / 1024 + 55);
490     }
491 #endif
492 #if ZALLOC_ZONE_LIMIT > 16384
493     if (n < 32768) {
494 	*bytes = n = (n + 2047) & ~2047;
495 	*align = 2048;
496 	return(n / 2048 + 63);
497     }
498 #endif
499     panic("Unexpected byte count %d", n);
500     return(0);
501 }
502 
503 static __inline
504 void
505 clean_zone_rchunks(SLZone *z)
506 {
507     SLChunk *bchunk;
508 
509     while ((bchunk = z->z_RChunks) != NULL) {
510 	cpu_ccfence();
511 	if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
512 	    *z->z_LChunksp = bchunk;
513 	    while (bchunk) {
514 		chunk_mark_free(z, bchunk);
515 		z->z_LChunksp = &bchunk->c_Next;
516 		bchunk = bchunk->c_Next;
517 		++z->z_NFree;
518 	    }
519 	    break;
520 	}
521 	/* retry */
522     }
523 }
524 
525 /*
526  * If the zone becomes totally free and is not the only zone listed for a
527  * chunk size we move it to the FreeZones list.  We always leave at least
528  * one zone per chunk size listed, even if it is freeable.
529  *
530  * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
531  * otherwise MP races can result in our free_remote code accessing a
532  * destroyed zone.  The remote end interlocks z_RCount with z_RChunks
533  * so one has to test both z_NFree and z_RCount.
534  *
535  * Since this code can be called from an IPI callback, do *NOT* try to mess
536  * with kernel_map here.  Hysteresis will be performed at kmalloc() time.
537  */
538 static __inline
539 SLZone *
540 check_zone_free(SLGlobalData *slgd, SLZone *z)
541 {
542     SLZone *znext;
543 
544     znext = TAILQ_NEXT(z, z_Entry);
545     if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
546 	(TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || znext)
547     ) {
548 	int *kup;
549 
550 	TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
551 
552 	z->z_Magic = -1;
553 	TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
554 	++slgd->NFreeZones;
555 	kup = btokup(z);
556 	*kup = 0;
557     }
558     return znext;
559 }
560 
561 #ifdef SLAB_DEBUG
562 /*
563  * Used to debug memory corruption issues.  Record up to (typically 32)
564  * allocation sources for this zone (for a particular chunk size).
565  */
566 
567 static void
568 slab_record_source(SLZone *z, const char *file, int line)
569 {
570     int i;
571     int b = line & (SLAB_DEBUG_ENTRIES - 1);
572 
573     i = b;
574     do {
575 	if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
576 		return;
577 	if (z->z_Sources[i].file == NULL)
578 		break;
579 	i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
580     } while (i != b);
581     z->z_Sources[i].file = file;
582     z->z_Sources[i].line = line;
583 }
584 
585 #endif
586 
587 static __inline unsigned long
588 powerof2_size(unsigned long size)
589 {
590 	int i;
591 
592 	if (size == 0 || powerof2(size))
593 		return size;
594 
595 	i = flsl(size);
596 	return (1UL << i);
597 }
598 
599 /*
600  * kmalloc()	(SLAB ALLOCATOR)
601  *
602  *	Allocate memory via the slab allocator.  If the request is too large,
603  *	or if it page-aligned beyond a certain size, we fall back to the
604  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
605  *	&SlabMisc if you don't care.
606  *
607  *	M_RNOWAIT	- don't block.
608  *	M_NULLOK	- return NULL instead of blocking.
609  *	M_ZERO		- zero the returned memory.
610  *	M_USE_RESERVE	- allow greater drawdown of the free list
611  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
612  *	M_POWEROF2	- roundup size to the nearest power of 2
613  *
614  * MPSAFE
615  */
616 
617 #ifdef SLAB_DEBUG
618 void *
619 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
620 	      const char *file, int line)
621 #else
622 void *
623 kmalloc(unsigned long size, struct malloc_type *type, int flags)
624 #endif
625 {
626     SLZone *z;
627     SLChunk *chunk;
628     SLGlobalData *slgd;
629     struct globaldata *gd;
630     unsigned long align;
631     int zi;
632 #ifdef INVARIANTS
633     int i;
634 #endif
635 
636     logmemory_quick(malloc_beg);
637     gd = mycpu;
638     slgd = &gd->gd_slab;
639 
640     /*
641      * XXX silly to have this in the critical path.
642      */
643     if (type->ks_limit == 0) {
644 	crit_enter();
645 	malloc_init(type);
646 	crit_exit();
647     }
648     ++type->ks_calls;
649 
650     if (flags & M_POWEROF2)
651 	size = powerof2_size(size);
652 
653     /*
654      * Handle the case where the limit is reached.  Panic if we can't return
655      * NULL.  The original malloc code looped, but this tended to
656      * simply deadlock the computer.
657      *
658      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
659      * to determine if a more complete limit check should be done.  The
660      * actual memory use is tracked via ks_memuse[cpu].
661      */
662     while (type->ks_loosememuse >= type->ks_limit) {
663 	int i;
664 	long ttl;
665 
666 	for (i = ttl = 0; i < ncpus; ++i)
667 	    ttl += type->ks_memuse[i];
668 	type->ks_loosememuse = ttl;	/* not MP synchronized */
669 	if ((ssize_t)ttl < 0)		/* deal with occassional race */
670 		ttl = 0;
671 	if (ttl >= type->ks_limit) {
672 	    if (flags & M_NULLOK) {
673 		logmemory(malloc_end, NULL, type, size, flags);
674 		return(NULL);
675 	    }
676 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
677 	}
678     }
679 
680     /*
681      * Handle the degenerate size == 0 case.  Yes, this does happen.
682      * Return a special pointer.  This is to maintain compatibility with
683      * the original malloc implementation.  Certain devices, such as the
684      * adaptec driver, not only allocate 0 bytes, they check for NULL and
685      * also realloc() later on.  Joy.
686      */
687     if (size == 0) {
688 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
689 	return(ZERO_LENGTH_PTR);
690     }
691 
692     /*
693      * Handle hysteresis from prior frees here in malloc().  We cannot
694      * safely manipulate the kernel_map in free() due to free() possibly
695      * being called via an IPI message or from sensitive interrupt code.
696      *
697      * NOTE: ku_pagecnt must be cleared before we free the slab or we
698      *	     might race another cpu allocating the kva and setting
699      *	     ku_pagecnt.
700      */
701     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
702 	crit_enter();
703 	if (slgd->NFreeZones > ZoneRelsThresh) {	/* crit sect race */
704 	    int *kup;
705 
706 	    z = TAILQ_LAST(&slgd->FreeZones, SLZoneList);
707 	    KKASSERT(z != NULL);
708 	    TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
709 	    --slgd->NFreeZones;
710 	    kup = btokup(z);
711 	    *kup = 0;
712 	    kmem_slab_free(z, ZoneSize);	/* may block */
713 	    atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024);
714 	}
715 	crit_exit();
716     }
717 
718     /*
719      * XXX handle oversized frees that were queued from kfree().
720      */
721     while (TAILQ_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) {
722 	crit_enter();
723 	if ((z = TAILQ_LAST(&slgd->FreeOvZones, SLZoneList)) != NULL) {
724 	    vm_size_t tsize;
725 
726 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
727 	    TAILQ_REMOVE(&slgd->FreeOvZones, z, z_Entry);
728 	    tsize = z->z_ChunkSize;
729 	    kmem_slab_free(z, tsize);	/* may block */
730 	    atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
731 	}
732 	crit_exit();
733     }
734 
735     /*
736      * Handle large allocations directly.  There should not be very many of
737      * these so performance is not a big issue.
738      *
739      * The backend allocator is pretty nasty on a SMP system.   Use the
740      * slab allocator for one and two page-sized chunks even though we lose
741      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
742      */
743     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
744 	int *kup;
745 
746 	size = round_page(size);
747 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
748 	if (chunk == NULL) {
749 	    logmemory(malloc_end, NULL, type, size, flags);
750 	    return(NULL);
751 	}
752 	atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
753 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
754 	flags |= M_PASSIVE_ZERO;
755 	kup = btokup(chunk);
756 	*kup = size / PAGE_SIZE;
757 	crit_enter();
758 	goto done;
759     }
760 
761     /*
762      * Attempt to allocate out of an existing zone.  First try the free list,
763      * then allocate out of unallocated space.  If we find a good zone move
764      * it to the head of the list so later allocations find it quickly
765      * (we might have thousands of zones in the list).
766      *
767      * Note: zoneindex() will panic of size is too large.
768      */
769     zi = zoneindex(&size, &align);
770     KKASSERT(zi < NZONES);
771     crit_enter();
772 
773     if ((z = TAILQ_LAST(&slgd->ZoneAry[zi], SLZoneList)) != NULL) {
774 	/*
775 	 * Locate a chunk - we have to have at least one.  If this is the
776 	 * last chunk go ahead and do the work to retrieve chunks freed
777 	 * from remote cpus, and if the zone is still empty move it off
778 	 * the ZoneAry.
779 	 */
780 	if (--z->z_NFree <= 0) {
781 	    KKASSERT(z->z_NFree == 0);
782 
783 	    /*
784 	     * WARNING! This code competes with other cpus.  It is ok
785 	     * for us to not drain RChunks here but we might as well, and
786 	     * it is ok if more accumulate after we're done.
787 	     *
788 	     * Set RSignal before pulling rchunks off, indicating that we
789 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
790 	     * read RSignal before putting rchunks on thus interlocking
791 	     * their IPI signaling.
792 	     */
793 	    if (z->z_RChunks == NULL)
794 		atomic_swap_int(&z->z_RSignal, 1);
795 
796 	    clean_zone_rchunks(z);
797 
798 	    /*
799 	     * Remove from the zone list if no free chunks remain.
800 	     * Clear RSignal
801 	     */
802 	    if (z->z_NFree == 0) {
803 		TAILQ_REMOVE(&slgd->ZoneAry[zi], z, z_Entry);
804 	    } else {
805 		z->z_RSignal = 0;
806 	    }
807 	}
808 
809 	/*
810 	 * Fast path, we have chunks available in z_LChunks.
811 	 */
812 	chunk = z->z_LChunks;
813 	if (chunk) {
814 		chunk_mark_allocated(z, chunk);
815 		z->z_LChunks = chunk->c_Next;
816 		if (z->z_LChunks == NULL)
817 			z->z_LChunksp = &z->z_LChunks;
818 #ifdef SLAB_DEBUG
819 		slab_record_source(z, file, line);
820 #endif
821 		goto done;
822 	}
823 
824 	/*
825 	 * No chunks are available in LChunks, the free chunk MUST be
826 	 * in the never-before-used memory area, controlled by UIndex.
827 	 *
828 	 * The consequences are very serious if our zone got corrupted so
829 	 * we use an explicit panic rather than a KASSERT.
830 	 */
831 	if (z->z_UIndex + 1 != z->z_NMax)
832 	    ++z->z_UIndex;
833 	else
834 	    z->z_UIndex = 0;
835 
836 	if (z->z_UIndex == z->z_UEndIndex)
837 	    panic("slaballoc: corrupted zone");
838 
839 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
840 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
841 	    flags &= ~M_ZERO;
842 	    flags |= M_PASSIVE_ZERO;
843 	}
844 	chunk_mark_allocated(z, chunk);
845 #ifdef SLAB_DEBUG
846 	slab_record_source(z, file, line);
847 #endif
848 	goto done;
849     }
850 
851     /*
852      * If all zones are exhausted we need to allocate a new zone for this
853      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
854      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
855      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
856      * we do not pre-zero it because we do not want to mess up the L1 cache.
857      *
858      * At least one subsystem, the tty code (see CROUND) expects power-of-2
859      * allocations to be power-of-2 aligned.  We maintain compatibility by
860      * adjusting the base offset below.
861      */
862     {
863 	int off;
864 	int *kup;
865 
866 	if ((z = TAILQ_FIRST(&slgd->FreeZones)) != NULL) {
867 	    TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
868 	    --slgd->NFreeZones;
869 	    bzero(z, sizeof(SLZone));
870 	    z->z_Flags |= SLZF_UNOTZEROD;
871 	} else {
872 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
873 	    if (z == NULL)
874 		goto fail;
875 	    atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024);
876 	}
877 
878 	/*
879 	 * How big is the base structure?
880 	 */
881 #if defined(INVARIANTS)
882 	/*
883 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
884 	 * complicated so don't make an exact calculation.
885 	 */
886 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
887 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
888 #else
889 	off = sizeof(SLZone);
890 #endif
891 
892 	/*
893 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
894 	 * Otherwise properly align the data according to the chunk size.
895 	 */
896 	if (powerof2(size))
897 	    align = size;
898 	off = roundup2(off, align);
899 
900 	z->z_Magic = ZALLOC_SLAB_MAGIC;
901 	z->z_ZoneIndex = zi;
902 	z->z_NMax = (ZoneSize - off) / size;
903 	z->z_NFree = z->z_NMax - 1;
904 	z->z_BasePtr = (char *)z + off;
905 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
906 	z->z_ChunkSize = size;
907 	z->z_CpuGd = gd;
908 	z->z_Cpu = gd->gd_cpuid;
909 	z->z_LChunksp = &z->z_LChunks;
910 #ifdef SLAB_DEBUG
911 	bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
912 	bzero(z->z_Sources, sizeof(z->z_Sources));
913 #endif
914 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
915 	TAILQ_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry);
916 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
917 	    flags &= ~M_ZERO;	/* already zero'd */
918 	    flags |= M_PASSIVE_ZERO;
919 	}
920 	kup = btokup(z);
921 	*kup = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
922 	chunk_mark_allocated(z, chunk);
923 #ifdef SLAB_DEBUG
924 	slab_record_source(z, file, line);
925 #endif
926 
927 	/*
928 	 * Slide the base index for initial allocations out of the next
929 	 * zone we create so we do not over-weight the lower part of the
930 	 * cpu memory caches.
931 	 */
932 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
933 				& (ZALLOC_MAX_ZONE_SIZE - 1);
934     }
935 
936 done:
937     ++type->ks_inuse[gd->gd_cpuid];
938     type->ks_memuse[gd->gd_cpuid] += size;
939     type->ks_loosememuse += size;	/* not MP synchronized */
940     crit_exit();
941 
942     if (flags & M_ZERO)
943 	bzero(chunk, size);
944 #ifdef INVARIANTS
945     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
946 	if (use_malloc_pattern) {
947 	    for (i = 0; i < size; i += sizeof(int)) {
948 		*(int *)((char *)chunk + i) = -1;
949 	    }
950 	}
951 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
952     }
953 #endif
954     logmemory(malloc_end, chunk, type, size, flags);
955     return(chunk);
956 fail:
957     crit_exit();
958     logmemory(malloc_end, NULL, type, size, flags);
959     return(NULL);
960 }
961 
962 /*
963  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
964  *
965  * Generally speaking this routine is not called very often and we do
966  * not attempt to optimize it beyond reusing the same pointer if the
967  * new size fits within the chunking of the old pointer's zone.
968  */
969 #ifdef SLAB_DEBUG
970 void *
971 krealloc_debug(void *ptr, unsigned long size,
972 	       struct malloc_type *type, int flags,
973 	       const char *file, int line)
974 #else
975 void *
976 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
977 #endif
978 {
979     unsigned long osize;
980     unsigned long align;
981     SLZone *z;
982     void *nptr;
983     int *kup;
984 
985     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
986 
987     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
988 	return(kmalloc_debug(size, type, flags, file, line));
989     if (size == 0) {
990 	kfree(ptr, type);
991 	return(NULL);
992     }
993 
994     /*
995      * Handle oversized allocations.  XXX we really should require that a
996      * size be passed to free() instead of this nonsense.
997      */
998     kup = btokup(ptr);
999     if (*kup > 0) {
1000 	osize = *kup << PAGE_SHIFT;
1001 	if (osize == round_page(size))
1002 	    return(ptr);
1003 	if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1004 	    return(NULL);
1005 	bcopy(ptr, nptr, min(size, osize));
1006 	kfree(ptr, type);
1007 	return(nptr);
1008     }
1009 
1010     /*
1011      * Get the original allocation's zone.  If the new request winds up
1012      * using the same chunk size we do not have to do anything.
1013      */
1014     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1015     kup = btokup(z);
1016     KKASSERT(*kup < 0);
1017     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1018 
1019     /*
1020      * Allocate memory for the new request size.  Note that zoneindex has
1021      * already adjusted the request size to the appropriate chunk size, which
1022      * should optimize our bcopy().  Then copy and return the new pointer.
1023      *
1024      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
1025      * necessary align the result.
1026      *
1027      * We can only zoneindex (to align size to the chunk size) if the new
1028      * size is not too large.
1029      */
1030     if (size < ZoneLimit) {
1031 	zoneindex(&size, &align);
1032 	if (z->z_ChunkSize == size)
1033 	    return(ptr);
1034     }
1035     if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1036 	return(NULL);
1037     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
1038     kfree(ptr, type);
1039     return(nptr);
1040 }
1041 
1042 /*
1043  * Return the kmalloc limit for this type, in bytes.
1044  */
1045 long
1046 kmalloc_limit(struct malloc_type *type)
1047 {
1048     if (type->ks_limit == 0) {
1049 	crit_enter();
1050 	if (type->ks_limit == 0)
1051 	    malloc_init(type);
1052 	crit_exit();
1053     }
1054     return(type->ks_limit);
1055 }
1056 
1057 /*
1058  * Allocate a copy of the specified string.
1059  *
1060  * (MP SAFE) (MAY BLOCK)
1061  */
1062 #ifdef SLAB_DEBUG
1063 char *
1064 kstrdup_debug(const char *str, struct malloc_type *type,
1065 	      const char *file, int line)
1066 #else
1067 char *
1068 kstrdup(const char *str, struct malloc_type *type)
1069 #endif
1070 {
1071     int zlen;	/* length inclusive of terminating NUL */
1072     char *nstr;
1073 
1074     if (str == NULL)
1075 	return(NULL);
1076     zlen = strlen(str) + 1;
1077     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1078     bcopy(str, nstr, zlen);
1079     return(nstr);
1080 }
1081 
1082 /*
1083  * Notify our cpu that a remote cpu has freed some chunks in a zone that
1084  * we own.  RCount will be bumped so the memory should be good, but validate
1085  * that it really is.
1086  */
1087 static
1088 void
1089 kfree_remote(void *ptr)
1090 {
1091     SLGlobalData *slgd;
1092     SLZone *z;
1093     int nfree;
1094     int *kup;
1095 
1096     slgd = &mycpu->gd_slab;
1097     z = ptr;
1098     kup = btokup(z);
1099     KKASSERT(*kup == -((int)mycpuid + 1));
1100     KKASSERT(z->z_RCount > 0);
1101     atomic_subtract_int(&z->z_RCount, 1);
1102 
1103     logmemory(free_rem_beg, z, NULL, 0L, 0);
1104     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1105     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
1106     nfree = z->z_NFree;
1107 
1108     /*
1109      * Indicate that we will no longer be off of the ZoneAry by
1110      * clearing RSignal.
1111      */
1112     if (z->z_RChunks)
1113 	z->z_RSignal = 0;
1114 
1115     /*
1116      * Atomically extract the bchunks list and then process it back
1117      * into the lchunks list.  We want to append our bchunks to the
1118      * lchunks list and not prepend since we likely do not have
1119      * cache mastership of the related data (not that it helps since
1120      * we are using c_Next).
1121      */
1122     clean_zone_rchunks(z);
1123     if (z->z_NFree && nfree == 0) {
1124 	TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1125     }
1126 
1127     /*
1128      * If the zone becomes totally free and is not the only zone listed for a
1129      * chunk size we move it to the FreeZones list.  We always leave at least
1130      * one zone per chunk size listed, even if it is freeable.
1131      *
1132      * Since this code can be called from an IPI callback, do *NOT* try to
1133      * mess with kernel_map here.  Hysteresis will be performed at malloc()
1134      * time.
1135      *
1136      * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
1137      * otherwise MP races can result in our free_remote code accessing a
1138      * destroyed zone.  The remote end interlocks z_RCount with z_RChunks
1139      * so one has to test both z_NFree and z_RCount.
1140      */
1141     if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
1142 	(TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z ||
1143 	 TAILQ_NEXT(z, z_Entry))
1144     ) {
1145 	int *kup;
1146 
1147 	TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1148 	z->z_Magic = -1;
1149 	TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
1150 	++slgd->NFreeZones;
1151 	kup = btokup(z);
1152 	*kup = 0;
1153     }
1154     logmemory(free_rem_end, z, NULL, 0L, 0);
1155 }
1156 
1157 /*
1158  * free (SLAB ALLOCATOR)
1159  *
1160  * Free a memory block previously allocated by malloc.  Note that we do not
1161  * attempt to update ks_loosememuse as MP races could prevent us from
1162  * checking memory limits in malloc.
1163  *
1164  * MPSAFE
1165  */
1166 void
1167 kfree(void *ptr, struct malloc_type *type)
1168 {
1169     SLZone *z;
1170     SLChunk *chunk;
1171     SLGlobalData *slgd;
1172     struct globaldata *gd;
1173     int *kup;
1174     unsigned long size;
1175     SLChunk *bchunk;
1176     int rsignal;
1177 
1178     logmemory_quick(free_beg);
1179     gd = mycpu;
1180     slgd = &gd->gd_slab;
1181 
1182     if (ptr == NULL)
1183 	panic("trying to free NULL pointer");
1184 
1185     /*
1186      * Handle special 0-byte allocations
1187      */
1188     if (ptr == ZERO_LENGTH_PTR) {
1189 	logmemory(free_zero, ptr, type, -1UL, 0);
1190 	logmemory_quick(free_end);
1191 	return;
1192     }
1193 
1194     /*
1195      * Panic on bad malloc type
1196      */
1197     if (type->ks_magic != M_MAGIC)
1198 	panic("free: malloc type lacks magic");
1199 
1200     /*
1201      * Handle oversized allocations.  XXX we really should require that a
1202      * size be passed to free() instead of this nonsense.
1203      *
1204      * This code is never called via an ipi.
1205      */
1206     kup = btokup(ptr);
1207     if (*kup > 0) {
1208 	size = *kup << PAGE_SHIFT;
1209 	*kup = 0;
1210 #ifdef INVARIANTS
1211 	KKASSERT(sizeof(weirdary) <= size);
1212 	bcopy(weirdary, ptr, sizeof(weirdary));
1213 #endif
1214 	/*
1215 	 * NOTE: For oversized allocations we do not record the
1216 	 *	     originating cpu.  It gets freed on the cpu calling
1217 	 *	     kfree().  The statistics are in aggregate.
1218 	 *
1219 	 * note: XXX we have still inherited the interrupts-can't-block
1220 	 * assumption.  An interrupt thread does not bump
1221 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1222 	 * primarily until we can fix softupdate's assumptions about free().
1223 	 */
1224 	crit_enter();
1225 	--type->ks_inuse[gd->gd_cpuid];
1226 	type->ks_memuse[gd->gd_cpuid] -= size;
1227 	if (mycpu->gd_intr_nesting_level ||
1228 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1229 	{
1230 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1231 	    z = (SLZone *)ptr;
1232 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1233 	    z->z_ChunkSize = size;
1234 
1235 	    TAILQ_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry);
1236 	    crit_exit();
1237 	} else {
1238 	    crit_exit();
1239 	    logmemory(free_ovsz, ptr, type, size, 0);
1240 	    kmem_slab_free(ptr, size);	/* may block */
1241 	    atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1242 	}
1243 	logmemory_quick(free_end);
1244 	return;
1245     }
1246 
1247     /*
1248      * Zone case.  Figure out the zone based on the fact that it is
1249      * ZoneSize aligned.
1250      */
1251     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1252     kup = btokup(z);
1253     KKASSERT(*kup < 0);
1254     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1255 
1256     /*
1257      * If we do not own the zone then use atomic ops to free to the
1258      * remote cpu linked list and notify the target zone using a
1259      * passive message.
1260      *
1261      * The target zone cannot be deallocated while we own a chunk of it,
1262      * so the zone header's storage is stable until the very moment
1263      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1264      *
1265      * (no critical section needed)
1266      */
1267     if (z->z_CpuGd != gd) {
1268 	/*
1269 	 * Making these adjustments now allow us to avoid passing (type)
1270 	 * to the remote cpu.  Note that ks_inuse/ks_memuse is being
1271 	 * adjusted on OUR cpu, not the zone cpu, but it should all still
1272 	 * sum up properly and cancel out.
1273 	 */
1274 	crit_enter();
1275 	--type->ks_inuse[gd->gd_cpuid];
1276 	type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize;
1277 	crit_exit();
1278 
1279 	/*
1280 	 * WARNING! This code competes with other cpus.  Once we
1281 	 *	    successfully link the chunk to RChunks the remote
1282 	 *	    cpu can rip z's storage out from under us.
1283 	 *
1284 	 *	    Bumping RCount prevents z's storage from getting
1285 	 *	    ripped out.
1286 	 */
1287 	rsignal = z->z_RSignal;
1288 	cpu_lfence();
1289 	if (rsignal)
1290 		atomic_add_int(&z->z_RCount, 1);
1291 
1292 	chunk = ptr;
1293 	for (;;) {
1294 	    bchunk = z->z_RChunks;
1295 	    cpu_ccfence();
1296 	    chunk->c_Next = bchunk;
1297 	    cpu_sfence();
1298 
1299 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1300 		break;
1301 	}
1302 
1303 	/*
1304 	 * We have to signal the remote cpu if our actions will cause
1305 	 * the remote zone to be placed back on ZoneAry so it can
1306 	 * move the zone back on.
1307 	 *
1308 	 * We only need to deal with NULL->non-NULL RChunk transitions
1309 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1310 	 * before adding our chunk to RChunks.  This should result in
1311 	 * virtually no IPI traffic.
1312 	 *
1313 	 * We can use a passive IPI to reduce overhead even further.
1314 	 */
1315 	if (bchunk == NULL && rsignal) {
1316 		logmemory(free_request, ptr, type,
1317 			  (unsigned long)z->z_ChunkSize, 0);
1318 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1319 	    /* z can get ripped out from under us from this point on */
1320 	} else if (rsignal) {
1321 	    atomic_subtract_int(&z->z_RCount, 1);
1322 	    /* z can get ripped out from under us from this point on */
1323 	}
1324 	logmemory_quick(free_end);
1325 	return;
1326     }
1327 
1328     /*
1329      * kfree locally
1330      */
1331     logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1332 
1333     crit_enter();
1334     chunk = ptr;
1335     chunk_mark_free(z, chunk);
1336 
1337     /*
1338      * Put weird data into the memory to detect modifications after freeing,
1339      * illegal pointer use after freeing (we should fault on the odd address),
1340      * and so forth.  XXX needs more work, see the old malloc code.
1341      */
1342 #ifdef INVARIANTS
1343     if (z->z_ChunkSize < sizeof(weirdary))
1344 	bcopy(weirdary, chunk, z->z_ChunkSize);
1345     else
1346 	bcopy(weirdary, chunk, sizeof(weirdary));
1347 #endif
1348 
1349     /*
1350      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1351      * to the front of the linked list so it is more likely to be
1352      * reallocated, since it is already in our L1 cache.
1353      */
1354 #ifdef INVARIANTS
1355     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1356 	panic("BADFREE %p", chunk);
1357 #endif
1358     chunk->c_Next = z->z_LChunks;
1359     z->z_LChunks = chunk;
1360     if (chunk->c_Next == NULL)
1361 	    z->z_LChunksp = &chunk->c_Next;
1362 
1363 #ifdef INVARIANTS
1364     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1365 	panic("BADFREE2");
1366 #endif
1367 
1368     /*
1369      * Bump the number of free chunks.  If it becomes non-zero the zone
1370      * must be added back onto the appropriate list.  A fully allocated
1371      * zone that sees its first free is considered 'mature' and is placed
1372      * at the head, giving the system time to potentially free the remaining
1373      * entries even while other allocations are going on and making the zone
1374      * freeable.
1375      */
1376     if (z->z_NFree++ == 0) {
1377 	if (SlabFreeToTail)
1378 		TAILQ_INSERT_TAIL(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1379 	else
1380 		TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1381     }
1382 
1383     --type->ks_inuse[z->z_Cpu];
1384     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1385 
1386     check_zone_free(slgd, z);
1387     logmemory_quick(free_end);
1388     crit_exit();
1389 }
1390 
1391 /*
1392  * Cleanup slabs which are hanging around due to RChunks or which are wholely
1393  * free and can be moved to the free list if not moved by other means.
1394  *
1395  * Called once every 10 seconds on all cpus.
1396  */
1397 void
1398 slab_cleanup(void)
1399 {
1400     SLGlobalData *slgd = &mycpu->gd_slab;
1401     SLZone *z;
1402     int i;
1403 
1404     crit_enter();
1405     for (i = 0; i < NZONES; ++i) {
1406 	if ((z = TAILQ_FIRST(&slgd->ZoneAry[i])) == NULL)
1407 		continue;
1408 
1409 	/*
1410 	 * Scan zones.
1411 	 */
1412 	while (z) {
1413 	    /*
1414 	     * Shift all RChunks to the end of the LChunks list.  This is
1415 	     * an O(1) operation.
1416 	     *
1417 	     * Then free the zone if possible.
1418 	     */
1419 	    clean_zone_rchunks(z);
1420 	    z = check_zone_free(slgd, z);
1421 	}
1422     }
1423     crit_exit();
1424 }
1425 
1426 #if defined(INVARIANTS)
1427 
1428 /*
1429  * Helper routines for sanity checks
1430  */
1431 static
1432 void
1433 chunk_mark_allocated(SLZone *z, void *chunk)
1434 {
1435     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1436     uint32_t *bitptr;
1437 
1438     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1439     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1440 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1441     bitptr = &z->z_Bitmap[bitdex >> 5];
1442     bitdex &= 31;
1443     KASSERT((*bitptr & (1 << bitdex)) == 0,
1444 	    ("memory chunk %p is already allocated!", chunk));
1445     *bitptr |= 1 << bitdex;
1446 }
1447 
1448 static
1449 void
1450 chunk_mark_free(SLZone *z, void *chunk)
1451 {
1452     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1453     uint32_t *bitptr;
1454 
1455     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1456     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1457 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1458     bitptr = &z->z_Bitmap[bitdex >> 5];
1459     bitdex &= 31;
1460     KASSERT((*bitptr & (1 << bitdex)) != 0,
1461 	    ("memory chunk %p is already free!", chunk));
1462     *bitptr &= ~(1 << bitdex);
1463 }
1464 
1465 #endif
1466 
1467 /*
1468  * kmem_slab_alloc()
1469  *
1470  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1471  *	specified alignment.  M_* flags are expected in the flags field.
1472  *
1473  *	Alignment must be a multiple of PAGE_SIZE.
1474  *
1475  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1476  *	but when we move zalloc() over to use this function as its backend
1477  *	we will have to switch to kreserve/krelease and call reserve(0)
1478  *	after the new space is made available.
1479  *
1480  *	Interrupt code which has preempted other code is not allowed to
1481  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1482  *	non-preemptively or blocks and then runs non-preemptively, then
1483  *	it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
1484  */
1485 static void *
1486 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1487 {
1488     vm_size_t i;
1489     vm_offset_t addr;
1490     int count, vmflags, base_vmflags;
1491     vm_page_t mbase = NULL;
1492     vm_page_t m;
1493     thread_t td;
1494 
1495     size = round_page(size);
1496     addr = vm_map_min(&kernel_map);
1497 
1498     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1499     crit_enter();
1500     vm_map_lock(&kernel_map);
1501     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1502 	vm_map_unlock(&kernel_map);
1503 	if ((flags & M_NULLOK) == 0)
1504 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1505 	vm_map_entry_release(count);
1506 	crit_exit();
1507 	return(NULL);
1508     }
1509 
1510     /*
1511      * kernel_object maps 1:1 to kernel_map.
1512      */
1513     vm_object_hold(&kernel_object);
1514     vm_object_reference_locked(&kernel_object);
1515     vm_map_insert(&kernel_map, &count,
1516 		  &kernel_object, NULL,
1517 		  addr, addr, addr + size,
1518 		  VM_MAPTYPE_NORMAL,
1519 		  VM_PROT_ALL, VM_PROT_ALL,
1520 		  0);
1521     vm_object_drop(&kernel_object);
1522     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1523     vm_map_unlock(&kernel_map);
1524 
1525     td = curthread;
1526 
1527     base_vmflags = 0;
1528     if (flags & M_ZERO)
1529         base_vmflags |= VM_ALLOC_ZERO;
1530     if (flags & M_USE_RESERVE)
1531 	base_vmflags |= VM_ALLOC_SYSTEM;
1532     if (flags & M_USE_INTERRUPT_RESERVE)
1533         base_vmflags |= VM_ALLOC_INTERRUPT;
1534     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1535 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1536 	      flags, ((int **)&size)[-1]);
1537     }
1538 
1539     /*
1540      * Allocate the pages.  Do not mess with the PG_ZERO flag or map
1541      * them yet.  VM_ALLOC_NORMAL can only be set if we are not preempting.
1542      *
1543      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1544      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1545      * implied in this case), though I'm not sure if we really need to
1546      * do that.
1547      */
1548     vmflags = base_vmflags;
1549     if (flags & M_WAITOK) {
1550 	if (td->td_preempted)
1551 	    vmflags |= VM_ALLOC_SYSTEM;
1552 	else
1553 	    vmflags |= VM_ALLOC_NORMAL;
1554     }
1555 
1556     vm_object_hold(&kernel_object);
1557     for (i = 0; i < size; i += PAGE_SIZE) {
1558 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1559 	if (i == 0)
1560 		mbase = m;
1561 
1562 	/*
1563 	 * If the allocation failed we either return NULL or we retry.
1564 	 *
1565 	 * If M_WAITOK is specified we wait for more memory and retry.
1566 	 * If M_WAITOK is specified from a preemption we yield instead of
1567 	 * wait.  Livelock will not occur because the interrupt thread
1568 	 * will not be preempting anyone the second time around after the
1569 	 * yield.
1570 	 */
1571 	if (m == NULL) {
1572 	    if (flags & M_WAITOK) {
1573 		if (td->td_preempted) {
1574 		    lwkt_switch();
1575 		} else {
1576 		    vm_wait(0);
1577 		}
1578 		i -= PAGE_SIZE;	/* retry */
1579 		continue;
1580 	    }
1581 	    break;
1582 	}
1583     }
1584 
1585     /*
1586      * Check and deal with an allocation failure
1587      */
1588     if (i != size) {
1589 	while (i != 0) {
1590 	    i -= PAGE_SIZE;
1591 	    m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1592 	    /* page should already be busy */
1593 	    vm_page_free(m);
1594 	}
1595 	vm_map_lock(&kernel_map);
1596 	vm_map_delete(&kernel_map, addr, addr + size, &count);
1597 	vm_map_unlock(&kernel_map);
1598 	vm_object_drop(&kernel_object);
1599 
1600 	vm_map_entry_release(count);
1601 	crit_exit();
1602 	return(NULL);
1603     }
1604 
1605     /*
1606      * Success!
1607      *
1608      * NOTE: The VM pages are still busied.  mbase points to the first one
1609      *	     but we have to iterate via vm_page_next()
1610      */
1611     vm_object_drop(&kernel_object);
1612     crit_exit();
1613 
1614     /*
1615      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1616      */
1617     m = mbase;
1618     i = 0;
1619 
1620     while (i < size) {
1621 	/*
1622 	 * page should already be busy
1623 	 */
1624 	m->valid = VM_PAGE_BITS_ALL;
1625 	vm_page_wire(m);
1626 	pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL | VM_PROT_NOSYNC,
1627 		   1, NULL);
1628 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1629 	    bzero((char *)addr + i, PAGE_SIZE);
1630 	vm_page_flag_clear(m, PG_ZERO);
1631 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1632 	vm_page_flag_set(m, PG_REFERENCED);
1633 	vm_page_wakeup(m);
1634 
1635 	i += PAGE_SIZE;
1636 	vm_object_hold(&kernel_object);
1637 	m = vm_page_next(m);
1638 	vm_object_drop(&kernel_object);
1639     }
1640     smp_invltlb();
1641     vm_map_entry_release(count);
1642     atomic_add_long(&SlabsAllocated, 1);
1643     return((void *)addr);
1644 }
1645 
1646 /*
1647  * kmem_slab_free()
1648  */
1649 static void
1650 kmem_slab_free(void *ptr, vm_size_t size)
1651 {
1652     crit_enter();
1653     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1654     atomic_add_long(&SlabsFreed, 1);
1655     crit_exit();
1656 }
1657 
1658 void *
1659 kmalloc_cachealign(unsigned long size_alloc, struct malloc_type *type,
1660     int flags)
1661 {
1662 #if (__VM_CACHELINE_SIZE == 32)
1663 #define CAN_CACHEALIGN(sz)	((sz) >= 256)
1664 #elif (__VM_CACHELINE_SIZE == 64)
1665 #define CAN_CACHEALIGN(sz)	((sz) >= 512)
1666 #elif (__VM_CACHELINE_SIZE == 128)
1667 #define CAN_CACHEALIGN(sz)	((sz) >= 1024)
1668 #else
1669 #error "unsupported cacheline size"
1670 #endif
1671 
1672 	void *ret;
1673 
1674 	if (size_alloc < __VM_CACHELINE_SIZE)
1675 		size_alloc = __VM_CACHELINE_SIZE;
1676 	else if (!CAN_CACHEALIGN(size_alloc))
1677 		flags |= M_POWEROF2;
1678 
1679 	ret = kmalloc(size_alloc, type, flags);
1680 	KASSERT(((uintptr_t)ret & (__VM_CACHELINE_SIZE - 1)) == 0,
1681 	    ("%p(%lu) not cacheline %d aligned",
1682 	     ret, size_alloc, __VM_CACHELINE_SIZE));
1683 	return ret;
1684 
1685 #undef CAN_CACHEALIGN
1686 }
1687