xref: /dragonfly/sys/kern/kern_slaballoc.c (revision 10cbe914)
1 /*
2  * (MPSAFE)
3  *
4  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
5  *
6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
7  *
8  * This code is derived from software contributed to The DragonFly Project
9  * by Matthew Dillon <dillon@backplane.com>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  *			API REQUIREMENTS AND SIDE EFFECTS
82  *
83  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
84  *    have remained compatible with the following API requirements:
85  *
86  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
87  *    + all power-of-2 sized allocations are power-of-2 aligned (twe)
88  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
89  *    + ability to allocate arbitrarily large chunks of memory
90  */
91 
92 #include "opt_vm.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/slaballoc.h>
98 #include <sys/mbuf.h>
99 #include <sys/vmmeter.h>
100 #include <sys/lock.h>
101 #include <sys/thread.h>
102 #include <sys/globaldata.h>
103 #include <sys/sysctl.h>
104 #include <sys/ktr.h>
105 
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_object.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_page.h>
114 #include <vm/vm_pageout.h>
115 
116 #include <machine/cpu.h>
117 
118 #include <sys/thread2.h>
119 
120 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
121 
122 #define btokup(z)	(&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
123 
124 #define MEMORY_STRING	"ptr=%p type=%p size=%d flags=%04x"
125 #define MEMORY_ARG_SIZE	(sizeof(void *) * 2 + sizeof(unsigned long) + 	\
126 			sizeof(int))
127 
128 #if !defined(KTR_MEMORY)
129 #define KTR_MEMORY	KTR_ALL
130 #endif
131 KTR_INFO_MASTER(memory);
132 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0);
133 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARG_SIZE);
134 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARG_SIZE);
135 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARG_SIZE);
136 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARG_SIZE);
137 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARG_SIZE);
138 #ifdef SMP
139 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARG_SIZE);
140 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARG_SIZE);
141 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARG_SIZE);
142 #endif
143 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin", 0);
144 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end", 0);
145 
146 #define logmemory(name, ptr, type, size, flags)				\
147 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
148 #define logmemory_quick(name)						\
149 	KTR_LOG(memory_ ## name)
150 
151 /*
152  * Fixed globals (not per-cpu)
153  */
154 static int ZoneSize;
155 static int ZoneLimit;
156 static int ZonePageCount;
157 static uintptr_t ZoneMask;
158 static int ZoneBigAlloc;		/* in KB */
159 static int ZoneGenAlloc;		/* in KB */
160 struct malloc_type *kmemstatistics;	/* exported to vmstat */
161 static int32_t weirdary[16];
162 
163 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
164 static void kmem_slab_free(void *ptr, vm_size_t bytes);
165 
166 #if defined(INVARIANTS)
167 static void chunk_mark_allocated(SLZone *z, void *chunk);
168 static void chunk_mark_free(SLZone *z, void *chunk);
169 #else
170 #define chunk_mark_allocated(z, chunk)
171 #define chunk_mark_free(z, chunk)
172 #endif
173 
174 /*
175  * Misc constants.  Note that allocations that are exact multiples of
176  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
177  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
178  */
179 #define MIN_CHUNK_SIZE		8		/* in bytes */
180 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
181 #define ZONE_RELS_THRESH	2		/* threshold number of zones */
182 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
183 
184 /*
185  * The WEIRD_ADDR is used as known text to copy into free objects to
186  * try to create deterministic failure cases if the data is accessed after
187  * free.
188  */
189 #define WEIRD_ADDR      0xdeadc0de
190 #define MAX_COPY        sizeof(weirdary)
191 #define ZERO_LENGTH_PTR	((void *)-8)
192 
193 /*
194  * Misc global malloc buckets
195  */
196 
197 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
198 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
199 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
200 
201 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
202 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
203 
204 /*
205  * Initialize the slab memory allocator.  We have to choose a zone size based
206  * on available physical memory.  We choose a zone side which is approximately
207  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
208  * 128K.  The zone size is limited to the bounds set in slaballoc.h
209  * (typically 32K min, 128K max).
210  */
211 static void kmeminit(void *dummy);
212 
213 char *ZeroPage;
214 
215 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
216 
217 #ifdef INVARIANTS
218 /*
219  * If enabled any memory allocated without M_ZERO is initialized to -1.
220  */
221 static int  use_malloc_pattern;
222 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
223     &use_malloc_pattern, 0,
224     "Initialize memory to -1 if M_ZERO not specified");
225 #endif
226 
227 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
228 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
229 
230 static void
231 kmeminit(void *dummy)
232 {
233     size_t limsize;
234     int usesize;
235     int i;
236 
237     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
238     if (limsize > KvaSize)
239 	limsize = KvaSize;
240 
241     usesize = (int)(limsize / 1024);	/* convert to KB */
242 
243     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
244     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
245 	ZoneSize <<= 1;
246     ZoneLimit = ZoneSize / 4;
247     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
248 	ZoneLimit = ZALLOC_ZONE_LIMIT;
249     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
250     ZonePageCount = ZoneSize / PAGE_SIZE;
251 
252     for (i = 0; i < arysize(weirdary); ++i)
253 	weirdary[i] = WEIRD_ADDR;
254 
255     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
256 
257     if (bootverbose)
258 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
259 }
260 
261 /*
262  * Initialize a malloc type tracking structure.
263  */
264 void
265 malloc_init(void *data)
266 {
267     struct malloc_type *type = data;
268     size_t limsize;
269 
270     if (type->ks_magic != M_MAGIC)
271 	panic("malloc type lacks magic");
272 
273     if (type->ks_limit != 0)
274 	return;
275 
276     if (vmstats.v_page_count == 0)
277 	panic("malloc_init not allowed before vm init");
278 
279     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
280     if (limsize > KvaSize)
281 	limsize = KvaSize;
282     type->ks_limit = limsize / 10;
283 
284     type->ks_next = kmemstatistics;
285     kmemstatistics = type;
286 }
287 
288 void
289 malloc_uninit(void *data)
290 {
291     struct malloc_type *type = data;
292     struct malloc_type *t;
293 #ifdef INVARIANTS
294     int i;
295     long ttl;
296 #endif
297 
298     if (type->ks_magic != M_MAGIC)
299 	panic("malloc type lacks magic");
300 
301     if (vmstats.v_page_count == 0)
302 	panic("malloc_uninit not allowed before vm init");
303 
304     if (type->ks_limit == 0)
305 	panic("malloc_uninit on uninitialized type");
306 
307 #ifdef SMP
308     /* Make sure that all pending kfree()s are finished. */
309     lwkt_synchronize_ipiqs("muninit");
310 #endif
311 
312 #ifdef INVARIANTS
313     /*
314      * memuse is only correct in aggregation.  Due to memory being allocated
315      * on one cpu and freed on another individual array entries may be
316      * negative or positive (canceling each other out).
317      */
318     for (i = ttl = 0; i < ncpus; ++i)
319 	ttl += type->ks_memuse[i];
320     if (ttl) {
321 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
322 	    ttl, type->ks_shortdesc, i);
323     }
324 #endif
325     if (type == kmemstatistics) {
326 	kmemstatistics = type->ks_next;
327     } else {
328 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
329 	    if (t->ks_next == type) {
330 		t->ks_next = type->ks_next;
331 		break;
332 	    }
333 	}
334     }
335     type->ks_next = NULL;
336     type->ks_limit = 0;
337 }
338 
339 /*
340  * Increase the kmalloc pool limit for the specified pool.  No changes
341  * are the made if the pool would shrink.
342  */
343 void
344 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
345 {
346     if (type->ks_limit == 0)
347 	malloc_init(type);
348     if (bytes == 0)
349 	bytes = KvaSize;
350     if (type->ks_limit < bytes)
351 	type->ks_limit = bytes;
352 }
353 
354 /*
355  * Dynamically create a malloc pool.  This function is a NOP if *typep is
356  * already non-NULL.
357  */
358 void
359 kmalloc_create(struct malloc_type **typep, const char *descr)
360 {
361 	struct malloc_type *type;
362 
363 	if (*typep == NULL) {
364 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
365 		type->ks_magic = M_MAGIC;
366 		type->ks_shortdesc = descr;
367 		malloc_init(type);
368 		*typep = type;
369 	}
370 }
371 
372 /*
373  * Destroy a dynamically created malloc pool.  This function is a NOP if
374  * the pool has already been destroyed.
375  */
376 void
377 kmalloc_destroy(struct malloc_type **typep)
378 {
379 	if (*typep != NULL) {
380 		malloc_uninit(*typep);
381 		kfree(*typep, M_TEMP);
382 		*typep = NULL;
383 	}
384 }
385 
386 /*
387  * Calculate the zone index for the allocation request size and set the
388  * allocation request size to that particular zone's chunk size.
389  */
390 static __inline int
391 zoneindex(unsigned long *bytes)
392 {
393     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
394     if (n < 128) {
395 	*bytes = n = (n + 7) & ~7;
396 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
397     }
398     if (n < 256) {
399 	*bytes = n = (n + 15) & ~15;
400 	return(n / 16 + 7);
401     }
402     if (n < 8192) {
403 	if (n < 512) {
404 	    *bytes = n = (n + 31) & ~31;
405 	    return(n / 32 + 15);
406 	}
407 	if (n < 1024) {
408 	    *bytes = n = (n + 63) & ~63;
409 	    return(n / 64 + 23);
410 	}
411 	if (n < 2048) {
412 	    *bytes = n = (n + 127) & ~127;
413 	    return(n / 128 + 31);
414 	}
415 	if (n < 4096) {
416 	    *bytes = n = (n + 255) & ~255;
417 	    return(n / 256 + 39);
418 	}
419 	*bytes = n = (n + 511) & ~511;
420 	return(n / 512 + 47);
421     }
422 #if ZALLOC_ZONE_LIMIT > 8192
423     if (n < 16384) {
424 	*bytes = n = (n + 1023) & ~1023;
425 	return(n / 1024 + 55);
426     }
427 #endif
428 #if ZALLOC_ZONE_LIMIT > 16384
429     if (n < 32768) {
430 	*bytes = n = (n + 2047) & ~2047;
431 	return(n / 2048 + 63);
432     }
433 #endif
434     panic("Unexpected byte count %d", n);
435     return(0);
436 }
437 
438 /*
439  * kmalloc()	(SLAB ALLOCATOR)
440  *
441  *	Allocate memory via the slab allocator.  If the request is too large,
442  *	or if it page-aligned beyond a certain size, we fall back to the
443  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
444  *	&SlabMisc if you don't care.
445  *
446  *	M_RNOWAIT	- don't block.
447  *	M_NULLOK	- return NULL instead of blocking.
448  *	M_ZERO		- zero the returned memory.
449  *	M_USE_RESERVE	- allow greater drawdown of the free list
450  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
451  *
452  * MPSAFE
453  */
454 void *
455 kmalloc(unsigned long size, struct malloc_type *type, int flags)
456 {
457     SLZone *z;
458     SLChunk *chunk;
459 #ifdef SMP
460     SLChunk *bchunk;
461 #endif
462     SLGlobalData *slgd;
463     struct globaldata *gd;
464     int zi;
465 #ifdef INVARIANTS
466     int i;
467 #endif
468 
469     logmemory_quick(malloc_beg);
470     gd = mycpu;
471     slgd = &gd->gd_slab;
472 
473     /*
474      * XXX silly to have this in the critical path.
475      */
476     if (type->ks_limit == 0) {
477 	crit_enter();
478 	if (type->ks_limit == 0)
479 	    malloc_init(type);
480 	crit_exit();
481     }
482     ++type->ks_calls;
483 
484     /*
485      * Handle the case where the limit is reached.  Panic if we can't return
486      * NULL.  The original malloc code looped, but this tended to
487      * simply deadlock the computer.
488      *
489      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
490      * to determine if a more complete limit check should be done.  The
491      * actual memory use is tracked via ks_memuse[cpu].
492      */
493     while (type->ks_loosememuse >= type->ks_limit) {
494 	int i;
495 	long ttl;
496 
497 	for (i = ttl = 0; i < ncpus; ++i)
498 	    ttl += type->ks_memuse[i];
499 	type->ks_loosememuse = ttl;	/* not MP synchronized */
500 	if ((ssize_t)ttl < 0)		/* deal with occassional race */
501 		ttl = 0;
502 	if (ttl >= type->ks_limit) {
503 	    if (flags & M_NULLOK) {
504 		logmemory(malloc_end, NULL, type, size, flags);
505 		return(NULL);
506 	    }
507 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
508 	}
509     }
510 
511     /*
512      * Handle the degenerate size == 0 case.  Yes, this does happen.
513      * Return a special pointer.  This is to maintain compatibility with
514      * the original malloc implementation.  Certain devices, such as the
515      * adaptec driver, not only allocate 0 bytes, they check for NULL and
516      * also realloc() later on.  Joy.
517      */
518     if (size == 0) {
519 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
520 	return(ZERO_LENGTH_PTR);
521     }
522 
523     /*
524      * Handle hysteresis from prior frees here in malloc().  We cannot
525      * safely manipulate the kernel_map in free() due to free() possibly
526      * being called via an IPI message or from sensitive interrupt code.
527      *
528      * NOTE: ku_pagecnt must be cleared before we free the slab or we
529      *	     might race another cpu allocating the kva and setting
530      *	     ku_pagecnt.
531      */
532     while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) {
533 	crit_enter();
534 	if (slgd->NFreeZones > ZONE_RELS_THRESH) {	/* crit sect race */
535 	    int *kup;
536 
537 	    z = slgd->FreeZones;
538 	    slgd->FreeZones = z->z_Next;
539 	    --slgd->NFreeZones;
540 	    kup = btokup(z);
541 	    *kup = 0;
542 	    kmem_slab_free(z, ZoneSize);	/* may block */
543 	    atomic_add_int(&ZoneGenAlloc, -(int)ZoneSize / 1024);
544 	}
545 	crit_exit();
546     }
547 
548     /*
549      * XXX handle oversized frees that were queued from kfree().
550      */
551     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
552 	crit_enter();
553 	if ((z = slgd->FreeOvZones) != NULL) {
554 	    vm_size_t tsize;
555 
556 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
557 	    slgd->FreeOvZones = z->z_Next;
558 	    tsize = z->z_ChunkSize;
559 	    kmem_slab_free(z, tsize);	/* may block */
560 	    atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
561 	}
562 	crit_exit();
563     }
564 
565     /*
566      * Handle large allocations directly.  There should not be very many of
567      * these so performance is not a big issue.
568      *
569      * The backend allocator is pretty nasty on a SMP system.   Use the
570      * slab allocator for one and two page-sized chunks even though we lose
571      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
572      */
573     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
574 	int *kup;
575 
576 	size = round_page(size);
577 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
578 	if (chunk == NULL) {
579 	    logmemory(malloc_end, NULL, type, size, flags);
580 	    return(NULL);
581 	}
582 	atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
583 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
584 	flags |= M_PASSIVE_ZERO;
585 	kup = btokup(chunk);
586 	*kup = size / PAGE_SIZE;
587 	crit_enter();
588 	goto done;
589     }
590 
591     /*
592      * Attempt to allocate out of an existing zone.  First try the free list,
593      * then allocate out of unallocated space.  If we find a good zone move
594      * it to the head of the list so later allocations find it quickly
595      * (we might have thousands of zones in the list).
596      *
597      * Note: zoneindex() will panic of size is too large.
598      */
599     zi = zoneindex(&size);
600     KKASSERT(zi < NZONES);
601     crit_enter();
602 
603     if ((z = slgd->ZoneAry[zi]) != NULL) {
604 	/*
605 	 * Locate a chunk - we have to have at least one.  If this is the
606 	 * last chunk go ahead and do the work to retrieve chunks freed
607 	 * from remote cpus, and if the zone is still empty move it off
608 	 * the ZoneAry.
609 	 */
610 	if (--z->z_NFree <= 0) {
611 	    KKASSERT(z->z_NFree == 0);
612 
613 #ifdef SMP
614 	    /*
615 	     * WARNING! This code competes with other cpus.  It is ok
616 	     * for us to not drain RChunks here but we might as well, and
617 	     * it is ok if more accumulate after we're done.
618 	     *
619 	     * Set RSignal before pulling rchunks off, indicating that we
620 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
621 	     * read RSignal before putting rchunks on thus interlocking
622 	     * their IPI signaling.
623 	     */
624 	    if (z->z_RChunks == NULL)
625 		atomic_swap_int(&z->z_RSignal, 1);
626 
627 	    while ((bchunk = z->z_RChunks) != NULL) {
628 		cpu_ccfence();
629 		if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
630 		    *z->z_LChunksp = bchunk;
631 		    while (bchunk) {
632 			chunk_mark_free(z, bchunk);
633 			z->z_LChunksp = &bchunk->c_Next;
634 			bchunk = bchunk->c_Next;
635 			++z->z_NFree;
636 		    }
637 		    break;
638 		}
639 	    }
640 #endif
641 	    /*
642 	     * Remove from the zone list if no free chunks remain.
643 	     * Clear RSignal
644 	     */
645 	    if (z->z_NFree == 0) {
646 		slgd->ZoneAry[zi] = z->z_Next;
647 		z->z_Next = NULL;
648 	    } else {
649 		z->z_RSignal = 0;
650 	    }
651 	}
652 
653 	/*
654 	 * Fast path, we have chunks available in z_LChunks.
655 	 */
656 	chunk = z->z_LChunks;
657 	if (chunk) {
658 		chunk_mark_allocated(z, chunk);
659 		z->z_LChunks = chunk->c_Next;
660 		if (z->z_LChunks == NULL)
661 			z->z_LChunksp = &z->z_LChunks;
662 		goto done;
663 	}
664 
665 	/*
666 	 * No chunks are available in LChunks, the free chunk MUST be
667 	 * in the never-before-used memory area, controlled by UIndex.
668 	 *
669 	 * The consequences are very serious if our zone got corrupted so
670 	 * we use an explicit panic rather than a KASSERT.
671 	 */
672 	if (z->z_UIndex + 1 != z->z_NMax)
673 	    ++z->z_UIndex;
674 	else
675 	    z->z_UIndex = 0;
676 
677 	if (z->z_UIndex == z->z_UEndIndex)
678 	    panic("slaballoc: corrupted zone");
679 
680 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
681 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
682 	    flags &= ~M_ZERO;
683 	    flags |= M_PASSIVE_ZERO;
684 	}
685 	chunk_mark_allocated(z, chunk);
686 	goto done;
687     }
688 
689     /*
690      * If all zones are exhausted we need to allocate a new zone for this
691      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
692      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
693      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
694      * we do not pre-zero it because we do not want to mess up the L1 cache.
695      *
696      * At least one subsystem, the tty code (see CROUND) expects power-of-2
697      * allocations to be power-of-2 aligned.  We maintain compatibility by
698      * adjusting the base offset below.
699      */
700     {
701 	int off;
702 	int *kup;
703 
704 	if ((z = slgd->FreeZones) != NULL) {
705 	    slgd->FreeZones = z->z_Next;
706 	    --slgd->NFreeZones;
707 	    bzero(z, sizeof(SLZone));
708 	    z->z_Flags |= SLZF_UNOTZEROD;
709 	} else {
710 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
711 	    if (z == NULL)
712 		goto fail;
713 	    atomic_add_int(&ZoneGenAlloc, (int)ZoneSize / 1024);
714 	}
715 
716 	/*
717 	 * How big is the base structure?
718 	 */
719 #if defined(INVARIANTS)
720 	/*
721 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
722 	 * complicated so don't make an exact calculation.
723 	 */
724 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
725 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
726 #else
727 	off = sizeof(SLZone);
728 #endif
729 
730 	/*
731 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
732 	 * Otherwise just 8-byte align the data.
733 	 */
734 	if ((size | (size - 1)) + 1 == (size << 1))
735 	    off = (off + size - 1) & ~(size - 1);
736 	else
737 	    off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
738 	z->z_Magic = ZALLOC_SLAB_MAGIC;
739 	z->z_ZoneIndex = zi;
740 	z->z_NMax = (ZoneSize - off) / size;
741 	z->z_NFree = z->z_NMax - 1;
742 	z->z_BasePtr = (char *)z + off;
743 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
744 	z->z_ChunkSize = size;
745 	z->z_CpuGd = gd;
746 	z->z_Cpu = gd->gd_cpuid;
747 	z->z_LChunksp = &z->z_LChunks;
748 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
749 	z->z_Next = slgd->ZoneAry[zi];
750 	slgd->ZoneAry[zi] = z;
751 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
752 	    flags &= ~M_ZERO;	/* already zero'd */
753 	    flags |= M_PASSIVE_ZERO;
754 	}
755 	kup = btokup(z);
756 	*kup = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
757 	chunk_mark_allocated(z, chunk);
758 
759 	/*
760 	 * Slide the base index for initial allocations out of the next
761 	 * zone we create so we do not over-weight the lower part of the
762 	 * cpu memory caches.
763 	 */
764 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
765 				& (ZALLOC_MAX_ZONE_SIZE - 1);
766     }
767 
768 done:
769     ++type->ks_inuse[gd->gd_cpuid];
770     type->ks_memuse[gd->gd_cpuid] += size;
771     type->ks_loosememuse += size;	/* not MP synchronized */
772     crit_exit();
773 
774     if (flags & M_ZERO)
775 	bzero(chunk, size);
776 #ifdef INVARIANTS
777     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
778 	if (use_malloc_pattern) {
779 	    for (i = 0; i < size; i += sizeof(int)) {
780 		*(int *)((char *)chunk + i) = -1;
781 	    }
782 	}
783 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
784     }
785 #endif
786     logmemory(malloc_end, chunk, type, size, flags);
787     return(chunk);
788 fail:
789     crit_exit();
790     logmemory(malloc_end, NULL, type, size, flags);
791     return(NULL);
792 }
793 
794 /*
795  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
796  *
797  * Generally speaking this routine is not called very often and we do
798  * not attempt to optimize it beyond reusing the same pointer if the
799  * new size fits within the chunking of the old pointer's zone.
800  */
801 void *
802 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
803 {
804     unsigned long osize;
805     SLZone *z;
806     void *nptr;
807     int *kup;
808 
809     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
810 
811     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
812 	return(kmalloc(size, type, flags));
813     if (size == 0) {
814 	kfree(ptr, type);
815 	return(NULL);
816     }
817 
818     /*
819      * Handle oversized allocations.  XXX we really should require that a
820      * size be passed to free() instead of this nonsense.
821      */
822     kup = btokup(ptr);
823     if (*kup > 0) {
824 	osize = *kup << PAGE_SHIFT;
825 	if (osize == round_page(size))
826 	    return(ptr);
827 	if ((nptr = kmalloc(size, type, flags)) == NULL)
828 	    return(NULL);
829 	bcopy(ptr, nptr, min(size, osize));
830 	kfree(ptr, type);
831 	return(nptr);
832     }
833 
834     /*
835      * Get the original allocation's zone.  If the new request winds up
836      * using the same chunk size we do not have to do anything.
837      */
838     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
839     kup = btokup(z);
840     KKASSERT(*kup < 0);
841     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
842 
843     /*
844      * Allocate memory for the new request size.  Note that zoneindex has
845      * already adjusted the request size to the appropriate chunk size, which
846      * should optimize our bcopy().  Then copy and return the new pointer.
847      *
848      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
849      * necessary align the result.
850      *
851      * We can only zoneindex (to align size to the chunk size) if the new
852      * size is not too large.
853      */
854     if (size < ZoneLimit) {
855 	zoneindex(&size);
856 	if (z->z_ChunkSize == size)
857 	    return(ptr);
858     }
859     if ((nptr = kmalloc(size, type, flags)) == NULL)
860 	return(NULL);
861     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
862     kfree(ptr, type);
863     return(nptr);
864 }
865 
866 /*
867  * Return the kmalloc limit for this type, in bytes.
868  */
869 long
870 kmalloc_limit(struct malloc_type *type)
871 {
872     if (type->ks_limit == 0) {
873 	crit_enter();
874 	if (type->ks_limit == 0)
875 	    malloc_init(type);
876 	crit_exit();
877     }
878     return(type->ks_limit);
879 }
880 
881 /*
882  * Allocate a copy of the specified string.
883  *
884  * (MP SAFE) (MAY BLOCK)
885  */
886 char *
887 kstrdup(const char *str, struct malloc_type *type)
888 {
889     int zlen;	/* length inclusive of terminating NUL */
890     char *nstr;
891 
892     if (str == NULL)
893 	return(NULL);
894     zlen = strlen(str) + 1;
895     nstr = kmalloc(zlen, type, M_WAITOK);
896     bcopy(str, nstr, zlen);
897     return(nstr);
898 }
899 
900 #ifdef SMP
901 /*
902  * Notify our cpu that a remote cpu has freed some chunks in a zone that
903  * we own.  RCount will be bumped so the memory should be good, but validate
904  * that it really is.
905  */
906 static
907 void
908 kfree_remote(void *ptr)
909 {
910     SLGlobalData *slgd;
911     SLChunk *bchunk;
912     SLZone *z;
913     int nfree;
914     int *kup;
915 
916     slgd = &mycpu->gd_slab;
917     z = ptr;
918     kup = btokup(z);
919     KKASSERT(*kup == -((int)mycpuid + 1));
920     KKASSERT(z->z_RCount > 0);
921     atomic_subtract_int(&z->z_RCount, 1);
922 
923     logmemory(free_rem_beg, z, NULL, 0, 0);
924     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
925     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
926     nfree = z->z_NFree;
927 
928     /*
929      * Indicate that we will no longer be off of the ZoneAry by
930      * clearing RSignal.
931      */
932     if (z->z_RChunks)
933 	z->z_RSignal = 0;
934 
935     /*
936      * Atomically extract the bchunks list and then process it back
937      * into the lchunks list.  We want to append our bchunks to the
938      * lchunks list and not prepend since we likely do not have
939      * cache mastership of the related data (not that it helps since
940      * we are using c_Next).
941      */
942     while ((bchunk = z->z_RChunks) != NULL) {
943 	cpu_ccfence();
944 	if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
945 	    *z->z_LChunksp = bchunk;
946 	    while (bchunk) {
947 		    chunk_mark_free(z, bchunk);
948 		    z->z_LChunksp = &bchunk->c_Next;
949 		    bchunk = bchunk->c_Next;
950 		    ++z->z_NFree;
951 	    }
952 	    break;
953 	}
954     }
955     if (z->z_NFree && nfree == 0) {
956 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
957 	slgd->ZoneAry[z->z_ZoneIndex] = z;
958     }
959 
960     /*
961      * If the zone becomes totally free, and there are other zones we
962      * can allocate from, move this zone to the FreeZones list.  Since
963      * this code can be called from an IPI callback, do *NOT* try to mess
964      * with kernel_map here.  Hysteresis will be performed at malloc() time.
965      *
966      * Do not move the zone if there is an IPI inflight, otherwise MP
967      * races can result in our free_remote code accessing a destroyed
968      * zone.
969      */
970     if (z->z_NFree == z->z_NMax &&
971 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
972 	z->z_RCount == 0
973     ) {
974 	SLZone **pz;
975 	int *kup;
976 
977 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex];
978 	     z != *pz;
979 	     pz = &(*pz)->z_Next) {
980 	    ;
981 	}
982 	*pz = z->z_Next;
983 	z->z_Magic = -1;
984 	z->z_Next = slgd->FreeZones;
985 	slgd->FreeZones = z;
986 	++slgd->NFreeZones;
987 	kup = btokup(z);
988 	*kup = 0;
989     }
990     logmemory(free_rem_end, z, bchunk, 0, 0);
991 }
992 
993 #endif
994 
995 /*
996  * free (SLAB ALLOCATOR)
997  *
998  * Free a memory block previously allocated by malloc.  Note that we do not
999  * attempt to update ks_loosememuse as MP races could prevent us from
1000  * checking memory limits in malloc.
1001  *
1002  * MPSAFE
1003  */
1004 void
1005 kfree(void *ptr, struct malloc_type *type)
1006 {
1007     SLZone *z;
1008     SLChunk *chunk;
1009     SLGlobalData *slgd;
1010     struct globaldata *gd;
1011     int *kup;
1012     unsigned long size;
1013 #ifdef SMP
1014     SLChunk *bchunk;
1015     int rsignal;
1016 #endif
1017 
1018     logmemory_quick(free_beg);
1019     gd = mycpu;
1020     slgd = &gd->gd_slab;
1021 
1022     if (ptr == NULL)
1023 	panic("trying to free NULL pointer");
1024 
1025     /*
1026      * Handle special 0-byte allocations
1027      */
1028     if (ptr == ZERO_LENGTH_PTR) {
1029 	logmemory(free_zero, ptr, type, -1, 0);
1030 	logmemory_quick(free_end);
1031 	return;
1032     }
1033 
1034     /*
1035      * Panic on bad malloc type
1036      */
1037     if (type->ks_magic != M_MAGIC)
1038 	panic("free: malloc type lacks magic");
1039 
1040     /*
1041      * Handle oversized allocations.  XXX we really should require that a
1042      * size be passed to free() instead of this nonsense.
1043      *
1044      * This code is never called via an ipi.
1045      */
1046     kup = btokup(ptr);
1047     if (*kup > 0) {
1048 	size = *kup << PAGE_SHIFT;
1049 	*kup = 0;
1050 #ifdef INVARIANTS
1051 	KKASSERT(sizeof(weirdary) <= size);
1052 	bcopy(weirdary, ptr, sizeof(weirdary));
1053 #endif
1054 	/*
1055 	 * NOTE: For oversized allocations we do not record the
1056 	 *	     originating cpu.  It gets freed on the cpu calling
1057 	 *	     kfree().  The statistics are in aggregate.
1058 	 *
1059 	 * note: XXX we have still inherited the interrupts-can't-block
1060 	 * assumption.  An interrupt thread does not bump
1061 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1062 	 * primarily until we can fix softupdate's assumptions about free().
1063 	 */
1064 	crit_enter();
1065 	--type->ks_inuse[gd->gd_cpuid];
1066 	type->ks_memuse[gd->gd_cpuid] -= size;
1067 	if (mycpu->gd_intr_nesting_level ||
1068 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1069 	{
1070 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1071 	    z = (SLZone *)ptr;
1072 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1073 	    z->z_Next = slgd->FreeOvZones;
1074 	    z->z_ChunkSize = size;
1075 	    slgd->FreeOvZones = z;
1076 	    crit_exit();
1077 	} else {
1078 	    crit_exit();
1079 	    logmemory(free_ovsz, ptr, type, size, 0);
1080 	    kmem_slab_free(ptr, size);	/* may block */
1081 	    atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1082 	}
1083 	logmemory_quick(free_end);
1084 	return;
1085     }
1086 
1087     /*
1088      * Zone case.  Figure out the zone based on the fact that it is
1089      * ZoneSize aligned.
1090      */
1091     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1092     kup = btokup(z);
1093     KKASSERT(*kup < 0);
1094     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1095 
1096     /*
1097      * If we do not own the zone then use atomic ops to free to the
1098      * remote cpu linked list and notify the target zone using a
1099      * passive message.
1100      *
1101      * The target zone cannot be deallocated while we own a chunk of it,
1102      * so the zone header's storage is stable until the very moment
1103      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1104      *
1105      * (no critical section needed)
1106      */
1107     if (z->z_CpuGd != gd) {
1108 #ifdef SMP
1109 	/*
1110 	 * Making these adjustments now allow us to avoid passing (type)
1111 	 * to the remote cpu.  Note that ks_inuse/ks_memuse is being
1112 	 * adjusted on OUR cpu, not the zone cpu, but it should all still
1113 	 * sum up properly and cancel out.
1114 	 */
1115 	crit_enter();
1116 	--type->ks_inuse[gd->gd_cpuid];
1117 	type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize;
1118 	crit_exit();
1119 
1120 	/*
1121 	 * WARNING! This code competes with other cpus.  Once we
1122 	 *	    successfully link the chunk to RChunks the remote
1123 	 *	    cpu can rip z's storage out from under us.
1124 	 *
1125 	 *	    Bumping RCount prevents z's storage from getting
1126 	 *	    ripped out.
1127 	 */
1128 	rsignal = z->z_RSignal;
1129 	cpu_lfence();
1130 	if (rsignal)
1131 		atomic_add_int(&z->z_RCount, 1);
1132 
1133 	chunk = ptr;
1134 	for (;;) {
1135 	    bchunk = z->z_RChunks;
1136 	    cpu_ccfence();
1137 	    chunk->c_Next = bchunk;
1138 	    cpu_sfence();
1139 
1140 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1141 		break;
1142 	}
1143 
1144 	/*
1145 	 * We have to signal the remote cpu if our actions will cause
1146 	 * the remote zone to be placed back on ZoneAry so it can
1147 	 * move the zone back on.
1148 	 *
1149 	 * We only need to deal with NULL->non-NULL RChunk transitions
1150 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1151 	 * before adding our chunk to RChunks.  This should result in
1152 	 * virtually no IPI traffic.
1153 	 *
1154 	 * We can use a passive IPI to reduce overhead even further.
1155 	 */
1156 	if (bchunk == NULL && rsignal) {
1157 	    logmemory(free_request, ptr, type, z->z_ChunkSize, 0);
1158 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1159 	    /* z can get ripped out from under us from this point on */
1160 	} else if (rsignal) {
1161 	    atomic_subtract_int(&z->z_RCount, 1);
1162 	    /* z can get ripped out from under us from this point on */
1163 	}
1164 #else
1165 	panic("Corrupt SLZone");
1166 #endif
1167 	logmemory_quick(free_end);
1168 	return;
1169     }
1170 
1171     /*
1172      * kfree locally
1173      */
1174     logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0);
1175 
1176     crit_enter();
1177     chunk = ptr;
1178     chunk_mark_free(z, chunk);
1179 
1180     /*
1181      * Put weird data into the memory to detect modifications after freeing,
1182      * illegal pointer use after freeing (we should fault on the odd address),
1183      * and so forth.  XXX needs more work, see the old malloc code.
1184      */
1185 #ifdef INVARIANTS
1186     if (z->z_ChunkSize < sizeof(weirdary))
1187 	bcopy(weirdary, chunk, z->z_ChunkSize);
1188     else
1189 	bcopy(weirdary, chunk, sizeof(weirdary));
1190 #endif
1191 
1192     /*
1193      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1194      * to the front of the linked list so it is more likely to be
1195      * reallocated, since it is already in our L1 cache.
1196      */
1197 #ifdef INVARIANTS
1198     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1199 	panic("BADFREE %p", chunk);
1200 #endif
1201     chunk->c_Next = z->z_LChunks;
1202     z->z_LChunks = chunk;
1203     if (chunk->c_Next == NULL)
1204 	    z->z_LChunksp = &chunk->c_Next;
1205 
1206 #ifdef INVARIANTS
1207     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1208 	panic("BADFREE2");
1209 #endif
1210 
1211     /*
1212      * Bump the number of free chunks.  If it becomes non-zero the zone
1213      * must be added back onto the appropriate list.
1214      */
1215     if (z->z_NFree++ == 0) {
1216 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1217 	slgd->ZoneAry[z->z_ZoneIndex] = z;
1218     }
1219 
1220     --type->ks_inuse[z->z_Cpu];
1221     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1222 
1223     /*
1224      * If the zone becomes totally free, and there are other zones we
1225      * can allocate from, move this zone to the FreeZones list.  Since
1226      * this code can be called from an IPI callback, do *NOT* try to mess
1227      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1228      */
1229     if (z->z_NFree == z->z_NMax &&
1230 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1231 	z->z_RCount == 0
1232     ) {
1233 	SLZone **pz;
1234 	int *kup;
1235 
1236 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
1237 	    ;
1238 	*pz = z->z_Next;
1239 	z->z_Magic = -1;
1240 	z->z_Next = slgd->FreeZones;
1241 	slgd->FreeZones = z;
1242 	++slgd->NFreeZones;
1243 	kup = btokup(z);
1244 	*kup = 0;
1245     }
1246     logmemory_quick(free_end);
1247     crit_exit();
1248 }
1249 
1250 #if defined(INVARIANTS)
1251 
1252 /*
1253  * Helper routines for sanity checks
1254  */
1255 static
1256 void
1257 chunk_mark_allocated(SLZone *z, void *chunk)
1258 {
1259     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1260     __uint32_t *bitptr;
1261 
1262     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1263     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1264 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1265     bitptr = &z->z_Bitmap[bitdex >> 5];
1266     bitdex &= 31;
1267     KASSERT((*bitptr & (1 << bitdex)) == 0,
1268 	    ("memory chunk %p is already allocated!", chunk));
1269     *bitptr |= 1 << bitdex;
1270 }
1271 
1272 static
1273 void
1274 chunk_mark_free(SLZone *z, void *chunk)
1275 {
1276     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1277     __uint32_t *bitptr;
1278 
1279     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1280     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1281 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1282     bitptr = &z->z_Bitmap[bitdex >> 5];
1283     bitdex &= 31;
1284     KASSERT((*bitptr & (1 << bitdex)) != 0,
1285 	    ("memory chunk %p is already free!", chunk));
1286     *bitptr &= ~(1 << bitdex);
1287 }
1288 
1289 #endif
1290 
1291 /*
1292  * kmem_slab_alloc()
1293  *
1294  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1295  *	specified alignment.  M_* flags are expected in the flags field.
1296  *
1297  *	Alignment must be a multiple of PAGE_SIZE.
1298  *
1299  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1300  *	but when we move zalloc() over to use this function as its backend
1301  *	we will have to switch to kreserve/krelease and call reserve(0)
1302  *	after the new space is made available.
1303  *
1304  *	Interrupt code which has preempted other code is not allowed to
1305  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1306  *	non-preemptively or blocks and then runs non-preemptively, then
1307  *	it is free to use PQ_CACHE pages.
1308  */
1309 static void *
1310 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1311 {
1312     vm_size_t i;
1313     vm_offset_t addr;
1314     int count, vmflags, base_vmflags;
1315     vm_page_t mp[ZALLOC_MAX_ZONE_SIZE / PAGE_SIZE];
1316     thread_t td;
1317 
1318     size = round_page(size);
1319     addr = vm_map_min(&kernel_map);
1320 
1321     /*
1322      * Reserve properly aligned space from kernel_map.  RNOWAIT allocations
1323      * cannot block.
1324      */
1325     if (flags & M_RNOWAIT) {
1326 	if (lwkt_trytoken(&vm_token) == 0)
1327 	    return(NULL);
1328     } else {
1329 	lwkt_gettoken(&vm_token);
1330     }
1331     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1332     crit_enter();
1333     vm_map_lock(&kernel_map);
1334     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1335 	vm_map_unlock(&kernel_map);
1336 	if ((flags & M_NULLOK) == 0)
1337 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1338 	vm_map_entry_release(count);
1339 	crit_exit();
1340 	lwkt_reltoken(&vm_token);
1341 	return(NULL);
1342     }
1343 
1344     /*
1345      * kernel_object maps 1:1 to kernel_map.
1346      */
1347     vm_object_reference(&kernel_object);
1348     vm_map_insert(&kernel_map, &count,
1349 		    &kernel_object, addr, addr, addr + size,
1350 		    VM_MAPTYPE_NORMAL,
1351 		    VM_PROT_ALL, VM_PROT_ALL,
1352 		    0);
1353 
1354     td = curthread;
1355 
1356     base_vmflags = 0;
1357     if (flags & M_ZERO)
1358         base_vmflags |= VM_ALLOC_ZERO;
1359     if (flags & M_USE_RESERVE)
1360 	base_vmflags |= VM_ALLOC_SYSTEM;
1361     if (flags & M_USE_INTERRUPT_RESERVE)
1362         base_vmflags |= VM_ALLOC_INTERRUPT;
1363     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1364 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1365 	      flags, ((int **)&size)[-1]);
1366     }
1367 
1368 
1369     /*
1370      * Allocate the pages.  Do not mess with the PG_ZERO flag yet.
1371      */
1372     for (i = 0; i < size; i += PAGE_SIZE) {
1373 	vm_page_t m;
1374 
1375 	/*
1376 	 * VM_ALLOC_NORMAL can only be set if we are not preempting.
1377 	 *
1378 	 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1379 	 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1380 	 * implied in this case), though I'm not sure if we really need to
1381 	 * do that.
1382 	 */
1383 	vmflags = base_vmflags;
1384 	if (flags & M_WAITOK) {
1385 	    if (td->td_preempted)
1386 		vmflags |= VM_ALLOC_SYSTEM;
1387 	    else
1388 		vmflags |= VM_ALLOC_NORMAL;
1389 	}
1390 
1391 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1392 	if ((i / PAGE_SIZE) < (sizeof(mp) / sizeof(mp[0])))
1393 		mp[i / PAGE_SIZE] = m;
1394 
1395 	/*
1396 	 * If the allocation failed we either return NULL or we retry.
1397 	 *
1398 	 * If M_WAITOK is specified we wait for more memory and retry.
1399 	 * If M_WAITOK is specified from a preemption we yield instead of
1400 	 * wait.  Livelock will not occur because the interrupt thread
1401 	 * will not be preempting anyone the second time around after the
1402 	 * yield.
1403 	 */
1404 	if (m == NULL) {
1405 	    if (flags & M_WAITOK) {
1406 		if (td->td_preempted) {
1407 		    vm_map_unlock(&kernel_map);
1408 		    lwkt_switch();
1409 		    vm_map_lock(&kernel_map);
1410 		} else {
1411 		    vm_map_unlock(&kernel_map);
1412 		    vm_wait(0);
1413 		    vm_map_lock(&kernel_map);
1414 		}
1415 		i -= PAGE_SIZE;	/* retry */
1416 		continue;
1417 	    }
1418 
1419 	    /*
1420 	     * We were unable to recover, cleanup and return NULL
1421 	     *
1422 	     * (vm_token already held)
1423 	     */
1424 	    while (i != 0) {
1425 		i -= PAGE_SIZE;
1426 		m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1427 		/* page should already be busy */
1428 		vm_page_free(m);
1429 	    }
1430 	    vm_map_delete(&kernel_map, addr, addr + size, &count);
1431 	    vm_map_unlock(&kernel_map);
1432 	    vm_map_entry_release(count);
1433 	    crit_exit();
1434 	    lwkt_reltoken(&vm_token);
1435 	    return(NULL);
1436 	}
1437     }
1438 
1439     /*
1440      * Success!
1441      *
1442      * Mark the map entry as non-pageable using a routine that allows us to
1443      * populate the underlying pages.
1444      *
1445      * The pages were busied by the allocations above.
1446      */
1447     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1448     crit_exit();
1449 
1450     /*
1451      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1452      */
1453     for (i = 0; i < size; i += PAGE_SIZE) {
1454 	vm_page_t m;
1455 
1456 	if ((i / PAGE_SIZE) < (sizeof(mp) / sizeof(mp[0])))
1457 	   m = mp[i / PAGE_SIZE];
1458 	else
1459 	   m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1460 	m->valid = VM_PAGE_BITS_ALL;
1461 	/* page should already be busy */
1462 	vm_page_wire(m);
1463 	vm_page_wakeup(m);
1464 	pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
1465 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1466 	    bzero((char *)addr + i, PAGE_SIZE);
1467 	vm_page_flag_clear(m, PG_ZERO);
1468 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1469 	vm_page_flag_set(m, PG_REFERENCED);
1470     }
1471     vm_map_unlock(&kernel_map);
1472     vm_map_entry_release(count);
1473     lwkt_reltoken(&vm_token);
1474     return((void *)addr);
1475 }
1476 
1477 /*
1478  * kmem_slab_free()
1479  */
1480 static void
1481 kmem_slab_free(void *ptr, vm_size_t size)
1482 {
1483     crit_enter();
1484     lwkt_gettoken(&vm_token);
1485     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1486     lwkt_reltoken(&vm_token);
1487     crit_exit();
1488 }
1489 
1490