xref: /dragonfly/sys/kern/kern_slaballoc.c (revision 28c7b939)
1 /*
2  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
3  *
4  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.15 2004/01/20 05:04:06 dillon Exp $
29  *
30  * This module implements a slab allocator drop-in replacement for the
31  * kernel malloc().
32  *
33  * A slab allocator reserves a ZONE for each chunk size, then lays the
34  * chunks out in an array within the zone.  Allocation and deallocation
35  * is nearly instantanious, and fragmentation/overhead losses are limited
36  * to a fixed worst-case amount.
37  *
38  * The downside of this slab implementation is in the chunk size
39  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
40  * In a kernel implementation all this memory will be physical so
41  * the zone size is adjusted downward on machines with less physical
42  * memory.  The upside is that overhead is bounded... this is the *worst*
43  * case overhead.
44  *
45  * Slab management is done on a per-cpu basis and no locking or mutexes
46  * are required, only a critical section.  When one cpu frees memory
47  * belonging to another cpu's slab manager an asynchronous IPI message
48  * will be queued to execute the operation.   In addition, both the
49  * high level slab allocator and the low level zone allocator optimize
50  * M_ZERO requests, and the slab allocator does not have to pre initialize
51  * the linked list of chunks.
52  *
53  * XXX Balancing is needed between cpus.  Balance will be handled through
54  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
55  *
56  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
57  * the new zone should be restricted to M_USE_RESERVE requests only.
58  *
59  *	Alloc Size	Chunking        Number of zones
60  *	0-127		8		16
61  *	128-255		16		8
62  *	256-511		32		8
63  *	512-1023	64		8
64  *	1024-2047	128		8
65  *	2048-4095	256		8
66  *	4096-8191	512		8
67  *	8192-16383	1024		8
68  *	16384-32767	2048		8
69  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
70  *
71  *	Allocations >= ZoneLimit go directly to kmem.
72  *
73  *			API REQUIREMENTS AND SIDE EFFECTS
74  *
75  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
76  *    have remained compatible with the following API requirements:
77  *
78  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
79  *    + all power-of-2 sized allocations are power-of-2 aligned (twe)
80  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
81  *    + ability to allocate arbitrarily large chunks of memory
82  */
83 
84 #include "opt_vm.h"
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/slaballoc.h>
90 #include <sys/mbuf.h>
91 #include <sys/vmmeter.h>
92 #include <sys/lock.h>
93 #include <sys/thread.h>
94 #include <sys/globaldata.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_param.h>
98 #include <vm/vm_kern.h>
99 #include <vm/vm_extern.h>
100 #include <vm/vm_object.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 
106 #include <machine/cpu.h>
107 
108 #include <sys/thread2.h>
109 
110 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
111 
112 /*
113  * Fixed globals (not per-cpu)
114  */
115 static int ZoneSize;
116 static int ZoneLimit;
117 static int ZonePageCount;
118 static int ZonePageLimit;
119 static int ZoneMask;
120 static struct malloc_type *kmemstatistics;
121 static struct kmemusage *kmemusage;
122 static int32_t weirdary[16];
123 
124 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
125 static void kmem_slab_free(void *ptr, vm_size_t bytes);
126 
127 /*
128  * Misc constants.  Note that allocations that are exact multiples of
129  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
130  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
131  */
132 #define MIN_CHUNK_SIZE		8		/* in bytes */
133 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
134 #define ZONE_RELS_THRESH	2		/* threshold number of zones */
135 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
136 
137 /*
138  * The WEIRD_ADDR is used as known text to copy into free objects to
139  * try to create deterministic failure cases if the data is accessed after
140  * free.
141  */
142 #define WEIRD_ADDR      0xdeadc0de
143 #define MAX_COPY        sizeof(weirdary)
144 #define ZERO_LENGTH_PTR	((void *)-8)
145 
146 /*
147  * Misc global malloc buckets
148  */
149 
150 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
151 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
152 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
153 
154 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
155 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
156 
157 /*
158  * Initialize the slab memory allocator.  We have to choose a zone size based
159  * on available physical memory.  We choose a zone side which is approximately
160  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
161  * 128K.  The zone size is limited to the bounds set in slaballoc.h
162  * (typically 32K min, 128K max).
163  */
164 static void kmeminit(void *dummy);
165 
166 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
167 
168 static void
169 kmeminit(void *dummy)
170 {
171     vm_poff_t limsize;
172     int usesize;
173     int i;
174     vm_pindex_t npg;
175 
176     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
177     if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)
178 	limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
179 
180     usesize = (int)(limsize / 1024);	/* convert to KB */
181 
182     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
183     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
184 	ZoneSize <<= 1;
185     ZoneLimit = ZoneSize / 4;
186     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
187 	ZoneLimit = ZALLOC_ZONE_LIMIT;
188     ZoneMask = ZoneSize - 1;
189     ZonePageLimit = PAGE_SIZE * 4;
190     ZonePageCount = ZoneSize / PAGE_SIZE;
191 
192     npg = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE;
193     kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage), PAGE_SIZE, M_WAITOK|M_ZERO);
194 
195     for (i = 0; i < arysize(weirdary); ++i)
196 	weirdary[i] = WEIRD_ADDR;
197 
198     if (bootverbose)
199 	printf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
200 }
201 
202 /*
203  * Initialize a malloc type tracking structure.
204  */
205 void
206 malloc_init(void *data)
207 {
208     struct malloc_type *type = data;
209     vm_poff_t limsize;
210 
211     if (type->ks_magic != M_MAGIC)
212 	panic("malloc type lacks magic");
213 
214     if (type->ks_limit != 0)
215 	return;
216 
217     if (vmstats.v_page_count == 0)
218 	panic("malloc_init not allowed before vm init");
219 
220     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
221     if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)
222 	limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
223     type->ks_limit = limsize / 10;
224 
225     type->ks_next = kmemstatistics;
226     kmemstatistics = type;
227 }
228 
229 void
230 malloc_uninit(void *data)
231 {
232     struct malloc_type *type = data;
233     struct malloc_type *t;
234 #ifdef INVARIANTS
235     int i;
236     long ttl;
237 #endif
238 
239     if (type->ks_magic != M_MAGIC)
240 	panic("malloc type lacks magic");
241 
242     if (vmstats.v_page_count == 0)
243 	panic("malloc_uninit not allowed before vm init");
244 
245     if (type->ks_limit == 0)
246 	panic("malloc_uninit on uninitialized type");
247 
248 #ifdef INVARIANTS
249     /*
250      * memuse is only correct in aggregation.  Due to memory being allocated
251      * on one cpu and freed on another individual array entries may be
252      * negative or positive (canceling each other out).
253      */
254     for (i = ttl = 0; i < ncpus; ++i)
255 	ttl += type->ks_memuse[i];
256     if (ttl) {
257 	printf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
258 	    ttl, type->ks_shortdesc, i);
259     }
260 #endif
261     if (type == kmemstatistics) {
262 	kmemstatistics = type->ks_next;
263     } else {
264 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
265 	    if (t->ks_next == type) {
266 		t->ks_next = type->ks_next;
267 		break;
268 	    }
269 	}
270     }
271     type->ks_next = NULL;
272     type->ks_limit = 0;
273 }
274 
275 /*
276  * Calculate the zone index for the allocation request size and set the
277  * allocation request size to that particular zone's chunk size.
278  */
279 static __inline int
280 zoneindex(unsigned long *bytes)
281 {
282     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
283     if (n < 128) {
284 	*bytes = n = (n + 7) & ~7;
285 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
286     }
287     if (n < 256) {
288 	*bytes = n = (n + 15) & ~15;
289 	return(n / 16 + 7);
290     }
291     if (n < 8192) {
292 	if (n < 512) {
293 	    *bytes = n = (n + 31) & ~31;
294 	    return(n / 32 + 15);
295 	}
296 	if (n < 1024) {
297 	    *bytes = n = (n + 63) & ~63;
298 	    return(n / 64 + 23);
299 	}
300 	if (n < 2048) {
301 	    *bytes = n = (n + 127) & ~127;
302 	    return(n / 128 + 31);
303 	}
304 	if (n < 4096) {
305 	    *bytes = n = (n + 255) & ~255;
306 	    return(n / 256 + 39);
307 	}
308 	*bytes = n = (n + 511) & ~511;
309 	return(n / 512 + 47);
310     }
311 #if ZALLOC_ZONE_LIMIT > 8192
312     if (n < 16384) {
313 	*bytes = n = (n + 1023) & ~1023;
314 	return(n / 1024 + 55);
315     }
316 #endif
317 #if ZALLOC_ZONE_LIMIT > 16384
318     if (n < 32768) {
319 	*bytes = n = (n + 2047) & ~2047;
320 	return(n / 2048 + 63);
321     }
322 #endif
323     panic("Unexpected byte count %d", n);
324     return(0);
325 }
326 
327 /*
328  * malloc()	(SLAB ALLOCATOR)
329  *
330  *	Allocate memory via the slab allocator.  If the request is too large,
331  *	or if it page-aligned beyond a certain size, we fall back to the
332  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
333  *	&SlabMisc if you don't care.
334  *
335  *	M_RNOWAIT	- return NULL instead of blocking.
336  *	M_ZERO		- zero the returned memory.
337  *	M_USE_RESERVE	- allow greater drawdown of the free list
338  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
339  *
340  *	M_FAILSAFE	- Failsafe allocation, when the allocation must
341  *			  succeed attemp to get out of any preemption context
342  *			  and allocate from the cache, else block (even though
343  *			  we might be blocking from an interrupt), or panic.
344  */
345 void *
346 malloc(unsigned long size, struct malloc_type *type, int flags)
347 {
348     SLZone *z;
349     SLChunk *chunk;
350     SLGlobalData *slgd;
351     struct globaldata *gd;
352     int zi;
353 
354     gd = mycpu;
355     slgd = &gd->gd_slab;
356 
357     /*
358      * XXX silly to have this in the critical path.
359      */
360     if (type->ks_limit == 0) {
361 	crit_enter();
362 	if (type->ks_limit == 0)
363 	    malloc_init(type);
364 	crit_exit();
365     }
366     ++type->ks_calls;
367 
368     /*
369      * Handle the case where the limit is reached.  Panic if can't return
370      * NULL.  XXX the original malloc code looped, but this tended to
371      * simply deadlock the computer.
372      */
373     while (type->ks_loosememuse >= type->ks_limit) {
374 	int i;
375 	long ttl;
376 
377 	for (i = ttl = 0; i < ncpus; ++i)
378 	    ttl += type->ks_memuse[i];
379 	type->ks_loosememuse = ttl;
380 	if (ttl >= type->ks_limit) {
381 	    if (flags & (M_RNOWAIT|M_NULLOK))
382 		return(NULL);
383 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
384 	}
385     }
386 
387     /*
388      * Handle the degenerate size == 0 case.  Yes, this does happen.
389      * Return a special pointer.  This is to maintain compatibility with
390      * the original malloc implementation.  Certain devices, such as the
391      * adaptec driver, not only allocate 0 bytes, they check for NULL and
392      * also realloc() later on.  Joy.
393      */
394     if (size == 0)
395 	return(ZERO_LENGTH_PTR);
396 
397     /*
398      * Handle hysteresis from prior frees here in malloc().  We cannot
399      * safely manipulate the kernel_map in free() due to free() possibly
400      * being called via an IPI message or from sensitive interrupt code.
401      */
402     while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) {
403 	crit_enter();
404 	if (slgd->NFreeZones > ZONE_RELS_THRESH) {	/* crit sect race */
405 	    z = slgd->FreeZones;
406 	    slgd->FreeZones = z->z_Next;
407 	    --slgd->NFreeZones;
408 	    kmem_slab_free(z, ZoneSize);	/* may block */
409 	}
410 	crit_exit();
411     }
412     /*
413      * XXX handle oversized frees that were queued from free().
414      */
415     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
416 	crit_enter();
417 	if ((z = slgd->FreeOvZones) != NULL) {
418 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
419 	    slgd->FreeOvZones = z->z_Next;
420 	    kmem_slab_free(z, z->z_ChunkSize);	/* may block */
421 	}
422 	crit_exit();
423     }
424 
425     /*
426      * Handle large allocations directly.  There should not be very many of
427      * these so performance is not a big issue.
428      *
429      * Guarentee page alignment for allocations in multiples of PAGE_SIZE
430      */
431     if (size >= ZoneLimit || (size & PAGE_MASK) == 0) {
432 	struct kmemusage *kup;
433 
434 	size = round_page(size);
435 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
436 	if (chunk == NULL)
437 	    return(NULL);
438 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
439 	flags |= M_PASSIVE_ZERO;
440 	kup = btokup(chunk);
441 	kup->ku_pagecnt = size / PAGE_SIZE;
442 	kup->ku_cpu = gd->gd_cpuid;
443 	crit_enter();
444 	goto done;
445     }
446 
447     /*
448      * Attempt to allocate out of an existing zone.  First try the free list,
449      * then allocate out of unallocated space.  If we find a good zone move
450      * it to the head of the list so later allocations find it quickly
451      * (we might have thousands of zones in the list).
452      *
453      * Note: zoneindex() will panic of size is too large.
454      */
455     zi = zoneindex(&size);
456     KKASSERT(zi < NZONES);
457     crit_enter();
458     if ((z = slgd->ZoneAry[zi]) != NULL) {
459 	KKASSERT(z->z_NFree > 0);
460 
461 	/*
462 	 * Remove us from the ZoneAry[] when we become empty
463 	 */
464 	if (--z->z_NFree == 0) {
465 	    slgd->ZoneAry[zi] = z->z_Next;
466 	    z->z_Next = NULL;
467 	}
468 
469 	/*
470 	 * Locate a chunk in a free page.  This attempts to localize
471 	 * reallocations into earlier pages without us having to sort
472 	 * the chunk list.  A chunk may still overlap a page boundary.
473 	 */
474 	while (z->z_FirstFreePg < ZonePageCount) {
475 	    if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
476 #ifdef DIAGNOSTIC
477 		/*
478 		 * Diagnostic: c_Next is not total garbage.
479 		 */
480 		KKASSERT(chunk->c_Next == NULL ||
481 			((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
482 			((intptr_t)chunk & IN_SAME_PAGE_MASK));
483 #endif
484 #ifdef INVARIANTS
485 		if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS)
486 			panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount);
487 		if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS)
488 			panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount);
489 #endif
490 		z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
491 		goto done;
492 	    }
493 	    ++z->z_FirstFreePg;
494 	}
495 
496 	/*
497 	 * No chunks are available but NFree said we had some memory, so
498 	 * it must be available in the never-before-used-memory area
499 	 * governed by UIndex.  The consequences are very serious if our zone
500 	 * got corrupted so we use an explicit panic rather then a KASSERT.
501 	 */
502 	if (z->z_UIndex + 1 != z->z_NMax)
503 	    z->z_UIndex = z->z_UIndex + 1;
504 	else
505 	    z->z_UIndex = 0;
506 	if (z->z_UIndex == z->z_UEndIndex)
507 	    panic("slaballoc: corrupted zone");
508 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
509 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
510 	    flags &= ~M_ZERO;
511 	    flags |= M_PASSIVE_ZERO;
512 	}
513 	goto done;
514     }
515 
516     /*
517      * If all zones are exhausted we need to allocate a new zone for this
518      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
519      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
520      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
521      * we do not pre-zero it because we do not want to mess up the L1 cache.
522      *
523      * At least one subsystem, the tty code (see CROUND) expects power-of-2
524      * allocations to be power-of-2 aligned.  We maintain compatibility by
525      * adjusting the base offset below.
526      */
527     {
528 	int off;
529 
530 	if ((z = slgd->FreeZones) != NULL) {
531 	    slgd->FreeZones = z->z_Next;
532 	    --slgd->NFreeZones;
533 	    bzero(z, sizeof(SLZone));
534 	    z->z_Flags |= SLZF_UNOTZEROD;
535 	} else {
536 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
537 	    if (z == NULL)
538 		goto fail;
539 	}
540 
541 	/*
542 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
543 	 * Otherwise just 8-byte align the data.
544 	 */
545 	if ((size | (size - 1)) + 1 == (size << 1))
546 	    off = (sizeof(SLZone) + size - 1) & ~(size - 1);
547 	else
548 	    off = (sizeof(SLZone) + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
549 	z->z_Magic = ZALLOC_SLAB_MAGIC;
550 	z->z_ZoneIndex = zi;
551 	z->z_NMax = (ZoneSize - off) / size;
552 	z->z_NFree = z->z_NMax - 1;
553 	z->z_BasePtr = (char *)z + off;
554 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
555 	z->z_ChunkSize = size;
556 	z->z_FirstFreePg = ZonePageCount;
557 	z->z_Cpu = gd->gd_cpuid;
558 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
559 	z->z_Next = slgd->ZoneAry[zi];
560 	slgd->ZoneAry[zi] = z;
561 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
562 	    flags &= ~M_ZERO;	/* already zero'd */
563 	    flags |= M_PASSIVE_ZERO;
564 	}
565 
566 	/*
567 	 * Slide the base index for initial allocations out of the next
568 	 * zone we create so we do not over-weight the lower part of the
569 	 * cpu memory caches.
570 	 */
571 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
572 				& (ZALLOC_MAX_ZONE_SIZE - 1);
573     }
574 done:
575     ++type->ks_inuse[gd->gd_cpuid];
576     type->ks_memuse[gd->gd_cpuid] += size;
577     type->ks_loosememuse += size;
578     crit_exit();
579     if (flags & M_ZERO)
580 	bzero(chunk, size);
581 #ifdef INVARIANTS
582     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0)
583 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
584 #endif
585     return(chunk);
586 fail:
587     crit_exit();
588     return(NULL);
589 }
590 
591 void *
592 realloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
593 {
594     SLZone *z;
595     void *nptr;
596     unsigned long osize;
597 
598     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
599 	return(malloc(size, type, flags));
600     if (size == 0) {
601 	free(ptr, type);
602 	return(NULL);
603     }
604 
605     /*
606      * Handle oversized allocations.  XXX we really should require that a
607      * size be passed to free() instead of this nonsense.
608      */
609     {
610 	struct kmemusage *kup;
611 
612 	kup = btokup(ptr);
613 	if (kup->ku_pagecnt) {
614 	    osize = kup->ku_pagecnt << PAGE_SHIFT;
615 	    if (osize == round_page(size))
616 		return(ptr);
617 	    if ((nptr = malloc(size, type, flags)) == NULL)
618 		return(NULL);
619 	    bcopy(ptr, nptr, min(size, osize));
620 	    free(ptr, type);
621 	    return(nptr);
622 	}
623     }
624 
625     /*
626      * Get the original allocation's zone.  If the new request winds up
627      * using the same chunk size we do not have to do anything.
628      */
629     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
630     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
631 
632     zoneindex(&size);
633     if (z->z_ChunkSize == size)
634 	return(ptr);
635 
636     /*
637      * Allocate memory for the new request size.  Note that zoneindex has
638      * already adjusted the request size to the appropriate chunk size, which
639      * should optimize our bcopy().  Then copy and return the new pointer.
640      */
641     if ((nptr = malloc(size, type, flags)) == NULL)
642 	return(NULL);
643     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
644     free(ptr, type);
645     return(nptr);
646 }
647 
648 #ifdef SMP
649 /*
650  * free()	(SLAB ALLOCATOR)
651  *
652  *	Free the specified chunk of memory.
653  */
654 static
655 void
656 free_remote(void *ptr)
657 {
658     free(ptr, *(struct malloc_type **)ptr);
659 }
660 
661 #endif
662 
663 void
664 free(void *ptr, struct malloc_type *type)
665 {
666     SLZone *z;
667     SLChunk *chunk;
668     SLGlobalData *slgd;
669     struct globaldata *gd;
670     int pgno;
671 
672     gd = mycpu;
673     slgd = &gd->gd_slab;
674 
675     /*
676      * Handle special 0-byte allocations
677      */
678     if (ptr == ZERO_LENGTH_PTR)
679 	return;
680 
681     /*
682      * Handle oversized allocations.  XXX we really should require that a
683      * size be passed to free() instead of this nonsense.
684      *
685      * This code is never called via an ipi.
686      */
687     {
688 	struct kmemusage *kup;
689 	unsigned long size;
690 
691 	kup = btokup(ptr);
692 	if (kup->ku_pagecnt) {
693 	    size = kup->ku_pagecnt << PAGE_SHIFT;
694 	    kup->ku_pagecnt = 0;
695 #ifdef INVARIANTS
696 	    KKASSERT(sizeof(weirdary) <= size);
697 	    bcopy(weirdary, ptr, sizeof(weirdary));
698 #endif
699 	    /*
700 	     * note: we always adjust our cpu's slot, not the originating
701 	     * cpu (kup->ku_cpuid).  The statistics are in aggregate.
702 	     *
703 	     * note: XXX we have still inherited the interrupts-can't-block
704 	     * assumption.  An interrupt thread does not bump
705 	     * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
706 	     * primarily until we can fix softupdate's assumptions about free().
707 	     */
708 	    crit_enter();
709 	    --type->ks_inuse[gd->gd_cpuid];
710 	    type->ks_memuse[gd->gd_cpuid] -= size;
711 	    if (mycpu->gd_intr_nesting_level || (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
712 		z = (SLZone *)ptr;
713 		z->z_Magic = ZALLOC_OVSZ_MAGIC;
714 		z->z_Next = slgd->FreeOvZones;
715 		z->z_ChunkSize = size;
716 		slgd->FreeOvZones = z;
717 		crit_exit();
718 	    } else {
719 		crit_exit();
720 		kmem_slab_free(ptr, size);	/* may block */
721 	    }
722 	    return;
723 	}
724     }
725 
726     /*
727      * Zone case.  Figure out the zone based on the fact that it is
728      * ZoneSize aligned.
729      */
730     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
731     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
732 
733     /*
734      * If we do not own the zone then forward the request to the
735      * cpu that does.  The freeing code does not need the byte count
736      * unless DIAGNOSTIC is set.
737      */
738     if (z->z_Cpu != gd->gd_cpuid) {
739 	*(struct malloc_type **)ptr = type;
740 #ifdef SMP
741 	lwkt_send_ipiq(z->z_Cpu, free_remote, ptr);
742 #else
743 	panic("Corrupt SLZone");
744 #endif
745 	return;
746     }
747 
748     if (type->ks_magic != M_MAGIC)
749 	panic("free: malloc type lacks magic");
750 
751     crit_enter();
752     pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
753     chunk = ptr;
754 
755 #ifdef INVARIANTS
756     /*
757      * Attempt to detect a double-free.  To reduce overhead we only check
758      * if there appears to be link pointer at the base of the data.
759      */
760     if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
761 	SLChunk *scan;
762 	for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
763 	    if (scan == chunk)
764 		panic("Double free at %p", chunk);
765 	}
766     }
767 #endif
768 
769     /*
770      * Put weird data into the memory to detect modifications after freeing,
771      * illegal pointer use after freeing (we should fault on the odd address),
772      * and so forth.  XXX needs more work, see the old malloc code.
773      */
774 #ifdef INVARIANTS
775     if (z->z_ChunkSize < sizeof(weirdary))
776 	bcopy(weirdary, chunk, z->z_ChunkSize);
777     else
778 	bcopy(weirdary, chunk, sizeof(weirdary));
779 #endif
780 
781     /*
782      * Add this free non-zero'd chunk to a linked list for reuse, adjust
783      * z_FirstFreePg.
784      */
785 #ifdef INVARIANTS
786     if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS)
787 	panic("BADFREE %p\n", chunk);
788 #endif
789     chunk->c_Next = z->z_PageAry[pgno];
790     z->z_PageAry[pgno] = chunk;
791 #ifdef INVARIANTS
792     if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS)
793 	panic("BADFREE2");
794 #endif
795     if (z->z_FirstFreePg > pgno)
796 	z->z_FirstFreePg = pgno;
797 
798     /*
799      * Bump the number of free chunks.  If it becomes non-zero the zone
800      * must be added back onto the appropriate list.
801      */
802     if (z->z_NFree++ == 0) {
803 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
804 	slgd->ZoneAry[z->z_ZoneIndex] = z;
805     }
806 
807     --type->ks_inuse[z->z_Cpu];
808     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
809 
810     /*
811      * If the zone becomes totally free, and there are other zones we
812      * can allocate from, move this zone to the FreeZones list.  Since
813      * this code can be called from an IPI callback, do *NOT* try to mess
814      * with kernel_map here.  Hysteresis will be performed at malloc() time.
815      */
816     if (z->z_NFree == z->z_NMax &&
817 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
818     ) {
819 	SLZone **pz;
820 
821 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
822 	    ;
823 	*pz = z->z_Next;
824 	z->z_Magic = -1;
825 	z->z_Next = slgd->FreeZones;
826 	slgd->FreeZones = z;
827 	++slgd->NFreeZones;
828     }
829     crit_exit();
830 }
831 
832 /*
833  * kmem_slab_alloc()
834  *
835  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
836  *	specified alignment.  M_* flags are expected in the flags field.
837  *
838  *	Alignment must be a multiple of PAGE_SIZE.
839  *
840  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
841  *	but when we move zalloc() over to use this function as its backend
842  *	we will have to switch to kreserve/krelease and call reserve(0)
843  *	after the new space is made available.
844  *
845  *	Interrupt code which has preempted other code is not allowed to
846  *	message with CACHE pages, but if M_FAILSAFE is set we can do a
847  *	yield to become non-preempting and try again inclusive of
848  *	cache pages.
849  */
850 static void *
851 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
852 {
853     vm_size_t i;
854     vm_offset_t addr;
855     vm_offset_t offset;
856     int count;
857     int wanted_reserve;
858     thread_t td;
859     vm_map_t map = kernel_map;
860 
861     size = round_page(size);
862     addr = vm_map_min(map);
863 
864     /*
865      * Reserve properly aligned space from kernel_map
866      */
867     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
868     crit_enter();
869     vm_map_lock(map);
870     if (vm_map_findspace(map, vm_map_min(map), size, align, &addr)) {
871 	vm_map_unlock(map);
872 	if ((flags & (M_RNOWAIT|M_NULLOK)) == 0)
873 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
874 	crit_exit();
875 	vm_map_entry_release(count);
876 	if ((flags & (M_FAILSAFE|M_NULLOK)) == M_FAILSAFE)
877 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
878 	return(NULL);
879     }
880     offset = addr - VM_MIN_KERNEL_ADDRESS;
881     vm_object_reference(kernel_object);
882     vm_map_insert(map, &count,
883 		    kernel_object, offset, addr, addr + size,
884 		    VM_PROT_ALL, VM_PROT_ALL, 0);
885 
886     td = curthread;
887     wanted_reserve = 0;	/* non-zero = tried but unable to use system reserve */
888 
889     /*
890      * Allocate the pages.  Do not mess with the PG_ZERO flag yet.
891      */
892     for (i = 0; i < size; i += PAGE_SIZE) {
893 	vm_page_t m;
894 	vm_pindex_t idx = OFF_TO_IDX(offset + i);
895 	int vmflags = 0;
896 
897 	if (flags & M_ZERO)
898 	    vmflags |= VM_ALLOC_ZERO;
899 	if (flags & M_USE_RESERVE)
900 	    vmflags |= VM_ALLOC_SYSTEM;
901 	if (flags & M_USE_INTERRUPT_RESERVE)
902 	    vmflags |= VM_ALLOC_INTERRUPT;
903 	if ((flags & (M_RNOWAIT|M_WAITOK)) == 0)
904 		printf("kmem_slab_alloc: bad flags %08x (%p)\n", flags, ((int **)&size)[-1]);
905 	if (flags & (M_FAILSAFE|M_WAITOK)) {
906 	    if (td->td_preempted) {
907 		wanted_reserve = 1;
908 	    } else {
909 		vmflags |= VM_ALLOC_NORMAL;
910 		wanted_reserve = 0;
911 	    }
912 	}
913 
914 	m = vm_page_alloc(kernel_object, idx, vmflags);
915 
916 	/*
917 	 * If the allocation failed we either return NULL or we retry.
918 	 *
919 	 * If M_WAITOK or M_FAILSAFE is set we retry.  Note that M_WAITOK
920 	 * (and M_FAILSAFE) can be specified from an interrupt.  M_FAILSAFE
921 	 * generates a warning or a panic.
922 	 */
923 	if (m == NULL) {
924 	    if (flags & (M_FAILSAFE|M_WAITOK)) {
925 		if (wanted_reserve) {
926 		    if (flags & M_FAILSAFE)
927 			printf("malloc: no memory, try failsafe\n");
928 		    vm_map_unlock(map);
929 		    lwkt_yield();
930 		    vm_map_lock(map);
931 		} else {
932 		    if (flags & M_FAILSAFE)
933 			printf("malloc: no memory, block even tho we shouldn't\n");
934 		    vm_map_unlock(map);
935 		    vm_wait();
936 		    vm_map_lock(map);
937 		}
938 		i -= PAGE_SIZE;	/* retry */
939 		continue;
940 	    }
941 
942 	    /*
943 	     * We were unable to recover, cleanup and return NULL
944 	     */
945 	    while (i != 0) {
946 		i -= PAGE_SIZE;
947 		m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i));
948 		vm_page_free(m);
949 	    }
950 	    vm_map_delete(map, addr, addr + size, &count);
951 	    vm_map_unlock(map);
952 	    crit_exit();
953 	    vm_map_entry_release(count);
954 	    return(NULL);
955 	}
956     }
957 
958     /*
959      * Success!
960      *
961      * Mark the map entry as non-pageable using a routine that allows us to
962      * populate the underlying pages.
963      */
964     vm_map_set_wired_quick(map, addr, size, &count);
965     crit_exit();
966 
967     /*
968      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
969      */
970     for (i = 0; i < size; i += PAGE_SIZE) {
971 	vm_page_t m;
972 
973 	m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i));
974 	m->valid = VM_PAGE_BITS_ALL;
975 	vm_page_wire(m);
976 	vm_page_wakeup(m);
977 	pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
978 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
979 	    bzero((char *)addr + i, PAGE_SIZE);
980 	vm_page_flag_clear(m, PG_ZERO);
981 	vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
982     }
983     vm_map_unlock(map);
984     vm_map_entry_release(count);
985     return((void *)addr);
986 }
987 
988 static void
989 kmem_slab_free(void *ptr, vm_size_t size)
990 {
991     crit_enter();
992     vm_map_remove(kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
993     crit_exit();
994 }
995 
996