xref: /dragonfly/sys/kern/kern_slaballoc.c (revision 2983445f)
1 /*
2  * (MPSAFE)
3  *
4  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
5  *
6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
7  *
8  * This code is derived from software contributed to The DragonFly Project
9  * by Matthew Dillon <dillon@backplane.com>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  *			API REQUIREMENTS AND SIDE EFFECTS
82  *
83  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
84  *    have remained compatible with the following API requirements:
85  *
86  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
87  *    + all power-of-2 sized allocations are power-of-2 aligned (twe)
88  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
89  *    + ability to allocate arbitrarily large chunks of memory
90  */
91 
92 #include "opt_vm.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/slaballoc.h>
98 #include <sys/mbuf.h>
99 #include <sys/vmmeter.h>
100 #include <sys/lock.h>
101 #include <sys/thread.h>
102 #include <sys/globaldata.h>
103 #include <sys/sysctl.h>
104 #include <sys/ktr.h>
105 
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_object.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_page.h>
114 #include <vm/vm_pageout.h>
115 
116 #include <machine/cpu.h>
117 
118 #include <sys/thread2.h>
119 
120 #define btokup(z)	(&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
121 
122 #define MEMORY_STRING	"ptr=%p type=%p size=%d flags=%04x"
123 #define MEMORY_ARG_SIZE	(sizeof(void *) * 2 + sizeof(unsigned long) + 	\
124 			sizeof(int))
125 
126 #if !defined(KTR_MEMORY)
127 #define KTR_MEMORY	KTR_ALL
128 #endif
129 KTR_INFO_MASTER(memory);
130 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0);
131 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARG_SIZE);
132 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARG_SIZE);
133 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARG_SIZE);
134 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARG_SIZE);
135 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARG_SIZE);
136 #ifdef SMP
137 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARG_SIZE);
138 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARG_SIZE);
139 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARG_SIZE);
140 #endif
141 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin", 0);
142 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end", 0);
143 
144 #define logmemory(name, ptr, type, size, flags)				\
145 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
146 #define logmemory_quick(name)						\
147 	KTR_LOG(memory_ ## name)
148 
149 /*
150  * Fixed globals (not per-cpu)
151  */
152 static int ZoneSize;
153 static int ZoneLimit;
154 static int ZonePageCount;
155 static uintptr_t ZoneMask;
156 static int ZoneBigAlloc;		/* in KB */
157 static int ZoneGenAlloc;		/* in KB */
158 struct malloc_type *kmemstatistics;	/* exported to vmstat */
159 static int32_t weirdary[16];
160 
161 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
162 static void kmem_slab_free(void *ptr, vm_size_t bytes);
163 
164 #if defined(INVARIANTS)
165 static void chunk_mark_allocated(SLZone *z, void *chunk);
166 static void chunk_mark_free(SLZone *z, void *chunk);
167 #else
168 #define chunk_mark_allocated(z, chunk)
169 #define chunk_mark_free(z, chunk)
170 #endif
171 
172 /*
173  * Misc constants.  Note that allocations that are exact multiples of
174  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
175  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
176  */
177 #define MIN_CHUNK_SIZE		8		/* in bytes */
178 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
179 #define ZONE_RELS_THRESH	2		/* threshold number of zones */
180 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
181 
182 /*
183  * The WEIRD_ADDR is used as known text to copy into free objects to
184  * try to create deterministic failure cases if the data is accessed after
185  * free.
186  */
187 #define WEIRD_ADDR      0xdeadc0de
188 #define MAX_COPY        sizeof(weirdary)
189 #define ZERO_LENGTH_PTR	((void *)-8)
190 
191 /*
192  * Misc global malloc buckets
193  */
194 
195 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
196 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
197 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
198 
199 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
200 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
201 
202 /*
203  * Initialize the slab memory allocator.  We have to choose a zone size based
204  * on available physical memory.  We choose a zone side which is approximately
205  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
206  * 128K.  The zone size is limited to the bounds set in slaballoc.h
207  * (typically 32K min, 128K max).
208  */
209 static void kmeminit(void *dummy);
210 
211 char *ZeroPage;
212 
213 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
214 
215 #ifdef INVARIANTS
216 /*
217  * If enabled any memory allocated without M_ZERO is initialized to -1.
218  */
219 static int  use_malloc_pattern;
220 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
221     &use_malloc_pattern, 0,
222     "Initialize memory to -1 if M_ZERO not specified");
223 #endif
224 
225 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
226 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
227 
228 static void
229 kmeminit(void *dummy)
230 {
231     size_t limsize;
232     int usesize;
233     int i;
234 
235     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
236     if (limsize > KvaSize)
237 	limsize = KvaSize;
238 
239     usesize = (int)(limsize / 1024);	/* convert to KB */
240 
241     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
242     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
243 	ZoneSize <<= 1;
244     ZoneLimit = ZoneSize / 4;
245     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
246 	ZoneLimit = ZALLOC_ZONE_LIMIT;
247     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
248     ZonePageCount = ZoneSize / PAGE_SIZE;
249 
250     for (i = 0; i < NELEM(weirdary); ++i)
251 	weirdary[i] = WEIRD_ADDR;
252 
253     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
254 
255     if (bootverbose)
256 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
257 }
258 
259 /*
260  * Initialize a malloc type tracking structure.
261  */
262 void
263 malloc_init(void *data)
264 {
265     struct malloc_type *type = data;
266     size_t limsize;
267 
268     if (type->ks_magic != M_MAGIC)
269 	panic("malloc type lacks magic");
270 
271     if (type->ks_limit != 0)
272 	return;
273 
274     if (vmstats.v_page_count == 0)
275 	panic("malloc_init not allowed before vm init");
276 
277     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
278     if (limsize > KvaSize)
279 	limsize = KvaSize;
280     type->ks_limit = limsize / 10;
281 
282     type->ks_next = kmemstatistics;
283     kmemstatistics = type;
284 }
285 
286 void
287 malloc_uninit(void *data)
288 {
289     struct malloc_type *type = data;
290     struct malloc_type *t;
291 #ifdef INVARIANTS
292     int i;
293     long ttl;
294 #endif
295 
296     if (type->ks_magic != M_MAGIC)
297 	panic("malloc type lacks magic");
298 
299     if (vmstats.v_page_count == 0)
300 	panic("malloc_uninit not allowed before vm init");
301 
302     if (type->ks_limit == 0)
303 	panic("malloc_uninit on uninitialized type");
304 
305 #ifdef SMP
306     /* Make sure that all pending kfree()s are finished. */
307     lwkt_synchronize_ipiqs("muninit");
308 #endif
309 
310 #ifdef INVARIANTS
311     /*
312      * memuse is only correct in aggregation.  Due to memory being allocated
313      * on one cpu and freed on another individual array entries may be
314      * negative or positive (canceling each other out).
315      */
316     for (i = ttl = 0; i < ncpus; ++i)
317 	ttl += type->ks_memuse[i];
318     if (ttl) {
319 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
320 	    ttl, type->ks_shortdesc, i);
321     }
322 #endif
323     if (type == kmemstatistics) {
324 	kmemstatistics = type->ks_next;
325     } else {
326 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
327 	    if (t->ks_next == type) {
328 		t->ks_next = type->ks_next;
329 		break;
330 	    }
331 	}
332     }
333     type->ks_next = NULL;
334     type->ks_limit = 0;
335 }
336 
337 /*
338  * Increase the kmalloc pool limit for the specified pool.  No changes
339  * are the made if the pool would shrink.
340  */
341 void
342 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
343 {
344     if (type->ks_limit == 0)
345 	malloc_init(type);
346     if (bytes == 0)
347 	bytes = KvaSize;
348     if (type->ks_limit < bytes)
349 	type->ks_limit = bytes;
350 }
351 
352 /*
353  * Dynamically create a malloc pool.  This function is a NOP if *typep is
354  * already non-NULL.
355  */
356 void
357 kmalloc_create(struct malloc_type **typep, const char *descr)
358 {
359 	struct malloc_type *type;
360 
361 	if (*typep == NULL) {
362 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
363 		type->ks_magic = M_MAGIC;
364 		type->ks_shortdesc = descr;
365 		malloc_init(type);
366 		*typep = type;
367 	}
368 }
369 
370 /*
371  * Destroy a dynamically created malloc pool.  This function is a NOP if
372  * the pool has already been destroyed.
373  */
374 void
375 kmalloc_destroy(struct malloc_type **typep)
376 {
377 	if (*typep != NULL) {
378 		malloc_uninit(*typep);
379 		kfree(*typep, M_TEMP);
380 		*typep = NULL;
381 	}
382 }
383 
384 /*
385  * Calculate the zone index for the allocation request size and set the
386  * allocation request size to that particular zone's chunk size.
387  */
388 static __inline int
389 zoneindex(unsigned long *bytes)
390 {
391     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
392     if (n < 128) {
393 	*bytes = n = (n + 7) & ~7;
394 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
395     }
396     if (n < 256) {
397 	*bytes = n = (n + 15) & ~15;
398 	return(n / 16 + 7);
399     }
400     if (n < 8192) {
401 	if (n < 512) {
402 	    *bytes = n = (n + 31) & ~31;
403 	    return(n / 32 + 15);
404 	}
405 	if (n < 1024) {
406 	    *bytes = n = (n + 63) & ~63;
407 	    return(n / 64 + 23);
408 	}
409 	if (n < 2048) {
410 	    *bytes = n = (n + 127) & ~127;
411 	    return(n / 128 + 31);
412 	}
413 	if (n < 4096) {
414 	    *bytes = n = (n + 255) & ~255;
415 	    return(n / 256 + 39);
416 	}
417 	*bytes = n = (n + 511) & ~511;
418 	return(n / 512 + 47);
419     }
420 #if ZALLOC_ZONE_LIMIT > 8192
421     if (n < 16384) {
422 	*bytes = n = (n + 1023) & ~1023;
423 	return(n / 1024 + 55);
424     }
425 #endif
426 #if ZALLOC_ZONE_LIMIT > 16384
427     if (n < 32768) {
428 	*bytes = n = (n + 2047) & ~2047;
429 	return(n / 2048 + 63);
430     }
431 #endif
432     panic("Unexpected byte count %d", n);
433     return(0);
434 }
435 
436 /*
437  * kmalloc()	(SLAB ALLOCATOR)
438  *
439  *	Allocate memory via the slab allocator.  If the request is too large,
440  *	or if it page-aligned beyond a certain size, we fall back to the
441  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
442  *	&SlabMisc if you don't care.
443  *
444  *	M_RNOWAIT	- don't block.
445  *	M_NULLOK	- return NULL instead of blocking.
446  *	M_ZERO		- zero the returned memory.
447  *	M_USE_RESERVE	- allow greater drawdown of the free list
448  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
449  *
450  * MPSAFE
451  */
452 void *
453 kmalloc(unsigned long size, struct malloc_type *type, int flags)
454 {
455     SLZone *z;
456     SLChunk *chunk;
457 #ifdef SMP
458     SLChunk *bchunk;
459 #endif
460     SLGlobalData *slgd;
461     struct globaldata *gd;
462     int zi;
463 #ifdef INVARIANTS
464     int i;
465 #endif
466 
467     logmemory_quick(malloc_beg);
468     gd = mycpu;
469     slgd = &gd->gd_slab;
470 
471     /*
472      * XXX silly to have this in the critical path.
473      */
474     if (type->ks_limit == 0) {
475 	crit_enter();
476 	if (type->ks_limit == 0)
477 	    malloc_init(type);
478 	crit_exit();
479     }
480     ++type->ks_calls;
481 
482     /*
483      * Handle the case where the limit is reached.  Panic if we can't return
484      * NULL.  The original malloc code looped, but this tended to
485      * simply deadlock the computer.
486      *
487      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
488      * to determine if a more complete limit check should be done.  The
489      * actual memory use is tracked via ks_memuse[cpu].
490      */
491     while (type->ks_loosememuse >= type->ks_limit) {
492 	int i;
493 	long ttl;
494 
495 	for (i = ttl = 0; i < ncpus; ++i)
496 	    ttl += type->ks_memuse[i];
497 	type->ks_loosememuse = ttl;	/* not MP synchronized */
498 	if ((ssize_t)ttl < 0)		/* deal with occassional race */
499 		ttl = 0;
500 	if (ttl >= type->ks_limit) {
501 	    if (flags & M_NULLOK) {
502 		logmemory(malloc_end, NULL, type, size, flags);
503 		return(NULL);
504 	    }
505 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
506 	}
507     }
508 
509     /*
510      * Handle the degenerate size == 0 case.  Yes, this does happen.
511      * Return a special pointer.  This is to maintain compatibility with
512      * the original malloc implementation.  Certain devices, such as the
513      * adaptec driver, not only allocate 0 bytes, they check for NULL and
514      * also realloc() later on.  Joy.
515      */
516     if (size == 0) {
517 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
518 	return(ZERO_LENGTH_PTR);
519     }
520 
521     /*
522      * Handle hysteresis from prior frees here in malloc().  We cannot
523      * safely manipulate the kernel_map in free() due to free() possibly
524      * being called via an IPI message or from sensitive interrupt code.
525      *
526      * NOTE: ku_pagecnt must be cleared before we free the slab or we
527      *	     might race another cpu allocating the kva and setting
528      *	     ku_pagecnt.
529      */
530     while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) {
531 	crit_enter();
532 	if (slgd->NFreeZones > ZONE_RELS_THRESH) {	/* crit sect race */
533 	    int *kup;
534 
535 	    z = slgd->FreeZones;
536 	    slgd->FreeZones = z->z_Next;
537 	    --slgd->NFreeZones;
538 	    kup = btokup(z);
539 	    *kup = 0;
540 	    kmem_slab_free(z, ZoneSize);	/* may block */
541 	    atomic_add_int(&ZoneGenAlloc, -(int)ZoneSize / 1024);
542 	}
543 	crit_exit();
544     }
545 
546     /*
547      * XXX handle oversized frees that were queued from kfree().
548      */
549     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
550 	crit_enter();
551 	if ((z = slgd->FreeOvZones) != NULL) {
552 	    vm_size_t tsize;
553 
554 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
555 	    slgd->FreeOvZones = z->z_Next;
556 	    tsize = z->z_ChunkSize;
557 	    kmem_slab_free(z, tsize);	/* may block */
558 	    atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
559 	}
560 	crit_exit();
561     }
562 
563     /*
564      * Handle large allocations directly.  There should not be very many of
565      * these so performance is not a big issue.
566      *
567      * The backend allocator is pretty nasty on a SMP system.   Use the
568      * slab allocator for one and two page-sized chunks even though we lose
569      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
570      */
571     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
572 	int *kup;
573 
574 	size = round_page(size);
575 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
576 	if (chunk == NULL) {
577 	    logmemory(malloc_end, NULL, type, size, flags);
578 	    return(NULL);
579 	}
580 	atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
581 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
582 	flags |= M_PASSIVE_ZERO;
583 	kup = btokup(chunk);
584 	*kup = size / PAGE_SIZE;
585 	crit_enter();
586 	goto done;
587     }
588 
589     /*
590      * Attempt to allocate out of an existing zone.  First try the free list,
591      * then allocate out of unallocated space.  If we find a good zone move
592      * it to the head of the list so later allocations find it quickly
593      * (we might have thousands of zones in the list).
594      *
595      * Note: zoneindex() will panic of size is too large.
596      */
597     zi = zoneindex(&size);
598     KKASSERT(zi < NZONES);
599     crit_enter();
600 
601     if ((z = slgd->ZoneAry[zi]) != NULL) {
602 	/*
603 	 * Locate a chunk - we have to have at least one.  If this is the
604 	 * last chunk go ahead and do the work to retrieve chunks freed
605 	 * from remote cpus, and if the zone is still empty move it off
606 	 * the ZoneAry.
607 	 */
608 	if (--z->z_NFree <= 0) {
609 	    KKASSERT(z->z_NFree == 0);
610 
611 #ifdef SMP
612 	    /*
613 	     * WARNING! This code competes with other cpus.  It is ok
614 	     * for us to not drain RChunks here but we might as well, and
615 	     * it is ok if more accumulate after we're done.
616 	     *
617 	     * Set RSignal before pulling rchunks off, indicating that we
618 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
619 	     * read RSignal before putting rchunks on thus interlocking
620 	     * their IPI signaling.
621 	     */
622 	    if (z->z_RChunks == NULL)
623 		atomic_swap_int(&z->z_RSignal, 1);
624 
625 	    while ((bchunk = z->z_RChunks) != NULL) {
626 		cpu_ccfence();
627 		if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
628 		    *z->z_LChunksp = bchunk;
629 		    while (bchunk) {
630 			chunk_mark_free(z, bchunk);
631 			z->z_LChunksp = &bchunk->c_Next;
632 			bchunk = bchunk->c_Next;
633 			++z->z_NFree;
634 		    }
635 		    break;
636 		}
637 	    }
638 #endif
639 	    /*
640 	     * Remove from the zone list if no free chunks remain.
641 	     * Clear RSignal
642 	     */
643 	    if (z->z_NFree == 0) {
644 		slgd->ZoneAry[zi] = z->z_Next;
645 		z->z_Next = NULL;
646 	    } else {
647 		z->z_RSignal = 0;
648 	    }
649 	}
650 
651 	/*
652 	 * Fast path, we have chunks available in z_LChunks.
653 	 */
654 	chunk = z->z_LChunks;
655 	if (chunk) {
656 		chunk_mark_allocated(z, chunk);
657 		z->z_LChunks = chunk->c_Next;
658 		if (z->z_LChunks == NULL)
659 			z->z_LChunksp = &z->z_LChunks;
660 		goto done;
661 	}
662 
663 	/*
664 	 * No chunks are available in LChunks, the free chunk MUST be
665 	 * in the never-before-used memory area, controlled by UIndex.
666 	 *
667 	 * The consequences are very serious if our zone got corrupted so
668 	 * we use an explicit panic rather than a KASSERT.
669 	 */
670 	if (z->z_UIndex + 1 != z->z_NMax)
671 	    ++z->z_UIndex;
672 	else
673 	    z->z_UIndex = 0;
674 
675 	if (z->z_UIndex == z->z_UEndIndex)
676 	    panic("slaballoc: corrupted zone");
677 
678 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
679 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
680 	    flags &= ~M_ZERO;
681 	    flags |= M_PASSIVE_ZERO;
682 	}
683 	chunk_mark_allocated(z, chunk);
684 	goto done;
685     }
686 
687     /*
688      * If all zones are exhausted we need to allocate a new zone for this
689      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
690      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
691      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
692      * we do not pre-zero it because we do not want to mess up the L1 cache.
693      *
694      * At least one subsystem, the tty code (see CROUND) expects power-of-2
695      * allocations to be power-of-2 aligned.  We maintain compatibility by
696      * adjusting the base offset below.
697      */
698     {
699 	int off;
700 	int *kup;
701 
702 	if ((z = slgd->FreeZones) != NULL) {
703 	    slgd->FreeZones = z->z_Next;
704 	    --slgd->NFreeZones;
705 	    bzero(z, sizeof(SLZone));
706 	    z->z_Flags |= SLZF_UNOTZEROD;
707 	} else {
708 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
709 	    if (z == NULL)
710 		goto fail;
711 	    atomic_add_int(&ZoneGenAlloc, (int)ZoneSize / 1024);
712 	}
713 
714 	/*
715 	 * How big is the base structure?
716 	 */
717 #if defined(INVARIANTS)
718 	/*
719 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
720 	 * complicated so don't make an exact calculation.
721 	 */
722 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
723 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
724 #else
725 	off = sizeof(SLZone);
726 #endif
727 
728 	/*
729 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
730 	 * Otherwise just 8-byte align the data.
731 	 */
732 	if ((size | (size - 1)) + 1 == (size << 1))
733 	    off = (off + size - 1) & ~(size - 1);
734 	else
735 	    off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
736 	z->z_Magic = ZALLOC_SLAB_MAGIC;
737 	z->z_ZoneIndex = zi;
738 	z->z_NMax = (ZoneSize - off) / size;
739 	z->z_NFree = z->z_NMax - 1;
740 	z->z_BasePtr = (char *)z + off;
741 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
742 	z->z_ChunkSize = size;
743 	z->z_CpuGd = gd;
744 	z->z_Cpu = gd->gd_cpuid;
745 	z->z_LChunksp = &z->z_LChunks;
746 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
747 	z->z_Next = slgd->ZoneAry[zi];
748 	slgd->ZoneAry[zi] = z;
749 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
750 	    flags &= ~M_ZERO;	/* already zero'd */
751 	    flags |= M_PASSIVE_ZERO;
752 	}
753 	kup = btokup(z);
754 	*kup = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
755 	chunk_mark_allocated(z, chunk);
756 
757 	/*
758 	 * Slide the base index for initial allocations out of the next
759 	 * zone we create so we do not over-weight the lower part of the
760 	 * cpu memory caches.
761 	 */
762 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
763 				& (ZALLOC_MAX_ZONE_SIZE - 1);
764     }
765 
766 done:
767     ++type->ks_inuse[gd->gd_cpuid];
768     type->ks_memuse[gd->gd_cpuid] += size;
769     type->ks_loosememuse += size;	/* not MP synchronized */
770     crit_exit();
771 
772     if (flags & M_ZERO)
773 	bzero(chunk, size);
774 #ifdef INVARIANTS
775     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
776 	if (use_malloc_pattern) {
777 	    for (i = 0; i < size; i += sizeof(int)) {
778 		*(int *)((char *)chunk + i) = -1;
779 	    }
780 	}
781 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
782     }
783 #endif
784     logmemory(malloc_end, chunk, type, size, flags);
785     return(chunk);
786 fail:
787     crit_exit();
788     logmemory(malloc_end, NULL, type, size, flags);
789     return(NULL);
790 }
791 
792 /*
793  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
794  *
795  * Generally speaking this routine is not called very often and we do
796  * not attempt to optimize it beyond reusing the same pointer if the
797  * new size fits within the chunking of the old pointer's zone.
798  */
799 void *
800 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
801 {
802     unsigned long osize;
803     SLZone *z;
804     void *nptr;
805     int *kup;
806 
807     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
808 
809     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
810 	return(kmalloc(size, type, flags));
811     if (size == 0) {
812 	kfree(ptr, type);
813 	return(NULL);
814     }
815 
816     /*
817      * Handle oversized allocations.  XXX we really should require that a
818      * size be passed to free() instead of this nonsense.
819      */
820     kup = btokup(ptr);
821     if (*kup > 0) {
822 	osize = *kup << PAGE_SHIFT;
823 	if (osize == round_page(size))
824 	    return(ptr);
825 	if ((nptr = kmalloc(size, type, flags)) == NULL)
826 	    return(NULL);
827 	bcopy(ptr, nptr, min(size, osize));
828 	kfree(ptr, type);
829 	return(nptr);
830     }
831 
832     /*
833      * Get the original allocation's zone.  If the new request winds up
834      * using the same chunk size we do not have to do anything.
835      */
836     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
837     kup = btokup(z);
838     KKASSERT(*kup < 0);
839     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
840 
841     /*
842      * Allocate memory for the new request size.  Note that zoneindex has
843      * already adjusted the request size to the appropriate chunk size, which
844      * should optimize our bcopy().  Then copy and return the new pointer.
845      *
846      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
847      * necessary align the result.
848      *
849      * We can only zoneindex (to align size to the chunk size) if the new
850      * size is not too large.
851      */
852     if (size < ZoneLimit) {
853 	zoneindex(&size);
854 	if (z->z_ChunkSize == size)
855 	    return(ptr);
856     }
857     if ((nptr = kmalloc(size, type, flags)) == NULL)
858 	return(NULL);
859     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
860     kfree(ptr, type);
861     return(nptr);
862 }
863 
864 /*
865  * Return the kmalloc limit for this type, in bytes.
866  */
867 long
868 kmalloc_limit(struct malloc_type *type)
869 {
870     if (type->ks_limit == 0) {
871 	crit_enter();
872 	if (type->ks_limit == 0)
873 	    malloc_init(type);
874 	crit_exit();
875     }
876     return(type->ks_limit);
877 }
878 
879 /*
880  * Allocate a copy of the specified string.
881  *
882  * (MP SAFE) (MAY BLOCK)
883  */
884 char *
885 kstrdup(const char *str, struct malloc_type *type)
886 {
887     int zlen;	/* length inclusive of terminating NUL */
888     char *nstr;
889 
890     if (str == NULL)
891 	return(NULL);
892     zlen = strlen(str) + 1;
893     nstr = kmalloc(zlen, type, M_WAITOK);
894     bcopy(str, nstr, zlen);
895     return(nstr);
896 }
897 
898 #ifdef SMP
899 /*
900  * Notify our cpu that a remote cpu has freed some chunks in a zone that
901  * we own.  RCount will be bumped so the memory should be good, but validate
902  * that it really is.
903  */
904 static
905 void
906 kfree_remote(void *ptr)
907 {
908     SLGlobalData *slgd;
909     SLChunk *bchunk;
910     SLZone *z;
911     int nfree;
912     int *kup;
913 
914     slgd = &mycpu->gd_slab;
915     z = ptr;
916     kup = btokup(z);
917     KKASSERT(*kup == -((int)mycpuid + 1));
918     KKASSERT(z->z_RCount > 0);
919     atomic_subtract_int(&z->z_RCount, 1);
920 
921     logmemory(free_rem_beg, z, NULL, 0, 0);
922     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
923     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
924     nfree = z->z_NFree;
925 
926     /*
927      * Indicate that we will no longer be off of the ZoneAry by
928      * clearing RSignal.
929      */
930     if (z->z_RChunks)
931 	z->z_RSignal = 0;
932 
933     /*
934      * Atomically extract the bchunks list and then process it back
935      * into the lchunks list.  We want to append our bchunks to the
936      * lchunks list and not prepend since we likely do not have
937      * cache mastership of the related data (not that it helps since
938      * we are using c_Next).
939      */
940     while ((bchunk = z->z_RChunks) != NULL) {
941 	cpu_ccfence();
942 	if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
943 	    *z->z_LChunksp = bchunk;
944 	    while (bchunk) {
945 		    chunk_mark_free(z, bchunk);
946 		    z->z_LChunksp = &bchunk->c_Next;
947 		    bchunk = bchunk->c_Next;
948 		    ++z->z_NFree;
949 	    }
950 	    break;
951 	}
952     }
953     if (z->z_NFree && nfree == 0) {
954 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
955 	slgd->ZoneAry[z->z_ZoneIndex] = z;
956     }
957 
958     /*
959      * If the zone becomes totally free, and there are other zones we
960      * can allocate from, move this zone to the FreeZones list.  Since
961      * this code can be called from an IPI callback, do *NOT* try to mess
962      * with kernel_map here.  Hysteresis will be performed at malloc() time.
963      *
964      * Do not move the zone if there is an IPI inflight, otherwise MP
965      * races can result in our free_remote code accessing a destroyed
966      * zone.
967      */
968     if (z->z_NFree == z->z_NMax &&
969 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
970 	z->z_RCount == 0
971     ) {
972 	SLZone **pz;
973 	int *kup;
974 
975 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex];
976 	     z != *pz;
977 	     pz = &(*pz)->z_Next) {
978 	    ;
979 	}
980 	*pz = z->z_Next;
981 	z->z_Magic = -1;
982 	z->z_Next = slgd->FreeZones;
983 	slgd->FreeZones = z;
984 	++slgd->NFreeZones;
985 	kup = btokup(z);
986 	*kup = 0;
987     }
988     logmemory(free_rem_end, z, bchunk, 0, 0);
989 }
990 
991 #endif
992 
993 /*
994  * free (SLAB ALLOCATOR)
995  *
996  * Free a memory block previously allocated by malloc.  Note that we do not
997  * attempt to update ks_loosememuse as MP races could prevent us from
998  * checking memory limits in malloc.
999  *
1000  * MPSAFE
1001  */
1002 void
1003 kfree(void *ptr, struct malloc_type *type)
1004 {
1005     SLZone *z;
1006     SLChunk *chunk;
1007     SLGlobalData *slgd;
1008     struct globaldata *gd;
1009     int *kup;
1010     unsigned long size;
1011 #ifdef SMP
1012     SLChunk *bchunk;
1013     int rsignal;
1014 #endif
1015 
1016     logmemory_quick(free_beg);
1017     gd = mycpu;
1018     slgd = &gd->gd_slab;
1019 
1020     if (ptr == NULL)
1021 	panic("trying to free NULL pointer");
1022 
1023     /*
1024      * Handle special 0-byte allocations
1025      */
1026     if (ptr == ZERO_LENGTH_PTR) {
1027 	logmemory(free_zero, ptr, type, -1, 0);
1028 	logmemory_quick(free_end);
1029 	return;
1030     }
1031 
1032     /*
1033      * Panic on bad malloc type
1034      */
1035     if (type->ks_magic != M_MAGIC)
1036 	panic("free: malloc type lacks magic");
1037 
1038     /*
1039      * Handle oversized allocations.  XXX we really should require that a
1040      * size be passed to free() instead of this nonsense.
1041      *
1042      * This code is never called via an ipi.
1043      */
1044     kup = btokup(ptr);
1045     if (*kup > 0) {
1046 	size = *kup << PAGE_SHIFT;
1047 	*kup = 0;
1048 #ifdef INVARIANTS
1049 	KKASSERT(sizeof(weirdary) <= size);
1050 	bcopy(weirdary, ptr, sizeof(weirdary));
1051 #endif
1052 	/*
1053 	 * NOTE: For oversized allocations we do not record the
1054 	 *	     originating cpu.  It gets freed on the cpu calling
1055 	 *	     kfree().  The statistics are in aggregate.
1056 	 *
1057 	 * note: XXX we have still inherited the interrupts-can't-block
1058 	 * assumption.  An interrupt thread does not bump
1059 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1060 	 * primarily until we can fix softupdate's assumptions about free().
1061 	 */
1062 	crit_enter();
1063 	--type->ks_inuse[gd->gd_cpuid];
1064 	type->ks_memuse[gd->gd_cpuid] -= size;
1065 	if (mycpu->gd_intr_nesting_level ||
1066 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1067 	{
1068 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1069 	    z = (SLZone *)ptr;
1070 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1071 	    z->z_Next = slgd->FreeOvZones;
1072 	    z->z_ChunkSize = size;
1073 	    slgd->FreeOvZones = z;
1074 	    crit_exit();
1075 	} else {
1076 	    crit_exit();
1077 	    logmemory(free_ovsz, ptr, type, size, 0);
1078 	    kmem_slab_free(ptr, size);	/* may block */
1079 	    atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1080 	}
1081 	logmemory_quick(free_end);
1082 	return;
1083     }
1084 
1085     /*
1086      * Zone case.  Figure out the zone based on the fact that it is
1087      * ZoneSize aligned.
1088      */
1089     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1090     kup = btokup(z);
1091     KKASSERT(*kup < 0);
1092     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1093 
1094     /*
1095      * If we do not own the zone then use atomic ops to free to the
1096      * remote cpu linked list and notify the target zone using a
1097      * passive message.
1098      *
1099      * The target zone cannot be deallocated while we own a chunk of it,
1100      * so the zone header's storage is stable until the very moment
1101      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1102      *
1103      * (no critical section needed)
1104      */
1105     if (z->z_CpuGd != gd) {
1106 #ifdef SMP
1107 	/*
1108 	 * Making these adjustments now allow us to avoid passing (type)
1109 	 * to the remote cpu.  Note that ks_inuse/ks_memuse is being
1110 	 * adjusted on OUR cpu, not the zone cpu, but it should all still
1111 	 * sum up properly and cancel out.
1112 	 */
1113 	crit_enter();
1114 	--type->ks_inuse[gd->gd_cpuid];
1115 	type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize;
1116 	crit_exit();
1117 
1118 	/*
1119 	 * WARNING! This code competes with other cpus.  Once we
1120 	 *	    successfully link the chunk to RChunks the remote
1121 	 *	    cpu can rip z's storage out from under us.
1122 	 *
1123 	 *	    Bumping RCount prevents z's storage from getting
1124 	 *	    ripped out.
1125 	 */
1126 	rsignal = z->z_RSignal;
1127 	cpu_lfence();
1128 	if (rsignal)
1129 		atomic_add_int(&z->z_RCount, 1);
1130 
1131 	chunk = ptr;
1132 	for (;;) {
1133 	    bchunk = z->z_RChunks;
1134 	    cpu_ccfence();
1135 	    chunk->c_Next = bchunk;
1136 	    cpu_sfence();
1137 
1138 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1139 		break;
1140 	}
1141 
1142 	/*
1143 	 * We have to signal the remote cpu if our actions will cause
1144 	 * the remote zone to be placed back on ZoneAry so it can
1145 	 * move the zone back on.
1146 	 *
1147 	 * We only need to deal with NULL->non-NULL RChunk transitions
1148 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1149 	 * before adding our chunk to RChunks.  This should result in
1150 	 * virtually no IPI traffic.
1151 	 *
1152 	 * We can use a passive IPI to reduce overhead even further.
1153 	 */
1154 	if (bchunk == NULL && rsignal) {
1155 	    logmemory(free_request, ptr, type, z->z_ChunkSize, 0);
1156 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1157 	    /* z can get ripped out from under us from this point on */
1158 	} else if (rsignal) {
1159 	    atomic_subtract_int(&z->z_RCount, 1);
1160 	    /* z can get ripped out from under us from this point on */
1161 	}
1162 #else
1163 	panic("Corrupt SLZone");
1164 #endif
1165 	logmemory_quick(free_end);
1166 	return;
1167     }
1168 
1169     /*
1170      * kfree locally
1171      */
1172     logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0);
1173 
1174     crit_enter();
1175     chunk = ptr;
1176     chunk_mark_free(z, chunk);
1177 
1178     /*
1179      * Put weird data into the memory to detect modifications after freeing,
1180      * illegal pointer use after freeing (we should fault on the odd address),
1181      * and so forth.  XXX needs more work, see the old malloc code.
1182      */
1183 #ifdef INVARIANTS
1184     if (z->z_ChunkSize < sizeof(weirdary))
1185 	bcopy(weirdary, chunk, z->z_ChunkSize);
1186     else
1187 	bcopy(weirdary, chunk, sizeof(weirdary));
1188 #endif
1189 
1190     /*
1191      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1192      * to the front of the linked list so it is more likely to be
1193      * reallocated, since it is already in our L1 cache.
1194      */
1195 #ifdef INVARIANTS
1196     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1197 	panic("BADFREE %p", chunk);
1198 #endif
1199     chunk->c_Next = z->z_LChunks;
1200     z->z_LChunks = chunk;
1201     if (chunk->c_Next == NULL)
1202 	    z->z_LChunksp = &chunk->c_Next;
1203 
1204 #ifdef INVARIANTS
1205     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1206 	panic("BADFREE2");
1207 #endif
1208 
1209     /*
1210      * Bump the number of free chunks.  If it becomes non-zero the zone
1211      * must be added back onto the appropriate list.
1212      */
1213     if (z->z_NFree++ == 0) {
1214 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1215 	slgd->ZoneAry[z->z_ZoneIndex] = z;
1216     }
1217 
1218     --type->ks_inuse[z->z_Cpu];
1219     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1220 
1221     /*
1222      * If the zone becomes totally free, and there are other zones we
1223      * can allocate from, move this zone to the FreeZones list.  Since
1224      * this code can be called from an IPI callback, do *NOT* try to mess
1225      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1226      */
1227     if (z->z_NFree == z->z_NMax &&
1228 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1229 	z->z_RCount == 0
1230     ) {
1231 	SLZone **pz;
1232 	int *kup;
1233 
1234 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
1235 	    ;
1236 	*pz = z->z_Next;
1237 	z->z_Magic = -1;
1238 	z->z_Next = slgd->FreeZones;
1239 	slgd->FreeZones = z;
1240 	++slgd->NFreeZones;
1241 	kup = btokup(z);
1242 	*kup = 0;
1243     }
1244     logmemory_quick(free_end);
1245     crit_exit();
1246 }
1247 
1248 #if defined(INVARIANTS)
1249 
1250 /*
1251  * Helper routines for sanity checks
1252  */
1253 static
1254 void
1255 chunk_mark_allocated(SLZone *z, void *chunk)
1256 {
1257     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1258     __uint32_t *bitptr;
1259 
1260     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1261     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1262 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1263     bitptr = &z->z_Bitmap[bitdex >> 5];
1264     bitdex &= 31;
1265     KASSERT((*bitptr & (1 << bitdex)) == 0,
1266 	    ("memory chunk %p is already allocated!", chunk));
1267     *bitptr |= 1 << bitdex;
1268 }
1269 
1270 static
1271 void
1272 chunk_mark_free(SLZone *z, void *chunk)
1273 {
1274     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1275     __uint32_t *bitptr;
1276 
1277     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1278     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1279 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1280     bitptr = &z->z_Bitmap[bitdex >> 5];
1281     bitdex &= 31;
1282     KASSERT((*bitptr & (1 << bitdex)) != 0,
1283 	    ("memory chunk %p is already free!", chunk));
1284     *bitptr &= ~(1 << bitdex);
1285 }
1286 
1287 #endif
1288 
1289 /*
1290  * kmem_slab_alloc()
1291  *
1292  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1293  *	specified alignment.  M_* flags are expected in the flags field.
1294  *
1295  *	Alignment must be a multiple of PAGE_SIZE.
1296  *
1297  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1298  *	but when we move zalloc() over to use this function as its backend
1299  *	we will have to switch to kreserve/krelease and call reserve(0)
1300  *	after the new space is made available.
1301  *
1302  *	Interrupt code which has preempted other code is not allowed to
1303  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1304  *	non-preemptively or blocks and then runs non-preemptively, then
1305  *	it is free to use PQ_CACHE pages.
1306  */
1307 static void *
1308 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1309 {
1310     vm_size_t i;
1311     vm_offset_t addr;
1312     int count, vmflags, base_vmflags;
1313     vm_page_t mp[ZALLOC_MAX_ZONE_SIZE / PAGE_SIZE];
1314     thread_t td;
1315 
1316     size = round_page(size);
1317     addr = vm_map_min(&kernel_map);
1318 
1319     /*
1320      * Reserve properly aligned space from kernel_map.  RNOWAIT allocations
1321      * cannot block.
1322      */
1323     if (flags & M_RNOWAIT) {
1324 	if (lwkt_trytoken(&vm_token) == 0)
1325 	    return(NULL);
1326     } else {
1327 	lwkt_gettoken(&vm_token);
1328     }
1329     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1330     crit_enter();
1331     vm_map_lock(&kernel_map);
1332     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1333 	vm_map_unlock(&kernel_map);
1334 	if ((flags & M_NULLOK) == 0)
1335 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1336 	vm_map_entry_release(count);
1337 	crit_exit();
1338 	lwkt_reltoken(&vm_token);
1339 	return(NULL);
1340     }
1341 
1342     /*
1343      * kernel_object maps 1:1 to kernel_map.
1344      */
1345     vm_object_reference(&kernel_object);
1346     vm_map_insert(&kernel_map, &count,
1347 		    &kernel_object, addr, addr, addr + size,
1348 		    VM_MAPTYPE_NORMAL,
1349 		    VM_PROT_ALL, VM_PROT_ALL,
1350 		    0);
1351 
1352     td = curthread;
1353 
1354     base_vmflags = 0;
1355     if (flags & M_ZERO)
1356         base_vmflags |= VM_ALLOC_ZERO;
1357     if (flags & M_USE_RESERVE)
1358 	base_vmflags |= VM_ALLOC_SYSTEM;
1359     if (flags & M_USE_INTERRUPT_RESERVE)
1360         base_vmflags |= VM_ALLOC_INTERRUPT;
1361     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1362 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1363 	      flags, ((int **)&size)[-1]);
1364     }
1365 
1366 
1367     /*
1368      * Allocate the pages.  Do not mess with the PG_ZERO flag yet.
1369      */
1370     for (i = 0; i < size; i += PAGE_SIZE) {
1371 	vm_page_t m;
1372 
1373 	/*
1374 	 * VM_ALLOC_NORMAL can only be set if we are not preempting.
1375 	 *
1376 	 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1377 	 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1378 	 * implied in this case), though I'm not sure if we really need to
1379 	 * do that.
1380 	 */
1381 	vmflags = base_vmflags;
1382 	if (flags & M_WAITOK) {
1383 	    if (td->td_preempted)
1384 		vmflags |= VM_ALLOC_SYSTEM;
1385 	    else
1386 		vmflags |= VM_ALLOC_NORMAL;
1387 	}
1388 
1389 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1390 	if ((i / PAGE_SIZE) < (sizeof(mp) / sizeof(mp[0])))
1391 		mp[i / PAGE_SIZE] = m;
1392 
1393 	/*
1394 	 * If the allocation failed we either return NULL or we retry.
1395 	 *
1396 	 * If M_WAITOK is specified we wait for more memory and retry.
1397 	 * If M_WAITOK is specified from a preemption we yield instead of
1398 	 * wait.  Livelock will not occur because the interrupt thread
1399 	 * will not be preempting anyone the second time around after the
1400 	 * yield.
1401 	 */
1402 	if (m == NULL) {
1403 	    if (flags & M_WAITOK) {
1404 		if (td->td_preempted) {
1405 		    vm_map_unlock(&kernel_map);
1406 		    lwkt_switch();
1407 		    vm_map_lock(&kernel_map);
1408 		} else {
1409 		    vm_map_unlock(&kernel_map);
1410 		    vm_wait(0);
1411 		    vm_map_lock(&kernel_map);
1412 		}
1413 		i -= PAGE_SIZE;	/* retry */
1414 		continue;
1415 	    }
1416 
1417 	    /*
1418 	     * We were unable to recover, cleanup and return NULL
1419 	     *
1420 	     * (vm_token already held)
1421 	     */
1422 	    while (i != 0) {
1423 		i -= PAGE_SIZE;
1424 		m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1425 		/* page should already be busy */
1426 		vm_page_free(m);
1427 	    }
1428 	    vm_map_delete(&kernel_map, addr, addr + size, &count);
1429 	    vm_map_unlock(&kernel_map);
1430 	    vm_map_entry_release(count);
1431 	    crit_exit();
1432 	    lwkt_reltoken(&vm_token);
1433 	    return(NULL);
1434 	}
1435     }
1436 
1437     /*
1438      * Success!
1439      *
1440      * Mark the map entry as non-pageable using a routine that allows us to
1441      * populate the underlying pages.
1442      *
1443      * The pages were busied by the allocations above.
1444      */
1445     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1446     crit_exit();
1447 
1448     /*
1449      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1450      */
1451     for (i = 0; i < size; i += PAGE_SIZE) {
1452 	vm_page_t m;
1453 
1454 	if ((i / PAGE_SIZE) < (sizeof(mp) / sizeof(mp[0])))
1455 	   m = mp[i / PAGE_SIZE];
1456 	else
1457 	   m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1458 	m->valid = VM_PAGE_BITS_ALL;
1459 	/* page should already be busy */
1460 	vm_page_wire(m);
1461 	pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
1462 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1463 	    bzero((char *)addr + i, PAGE_SIZE);
1464 	vm_page_flag_clear(m, PG_ZERO);
1465 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1466 	vm_page_flag_set(m, PG_REFERENCED);
1467 	vm_page_wakeup(m);
1468     }
1469     vm_map_unlock(&kernel_map);
1470     vm_map_entry_release(count);
1471     lwkt_reltoken(&vm_token);
1472     return((void *)addr);
1473 }
1474 
1475 /*
1476  * kmem_slab_free()
1477  */
1478 static void
1479 kmem_slab_free(void *ptr, vm_size_t size)
1480 {
1481     crit_enter();
1482     lwkt_gettoken(&vm_token);
1483     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1484     lwkt_reltoken(&vm_token);
1485     crit_exit();
1486 }
1487 
1488