xref: /dragonfly/sys/kern/kern_slaballoc.c (revision 2dac8a3e)
1 /*
2  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
3  *
4  * Copyright (c) 2003,2004,2010-2019 The DragonFly Project.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Matthew Dillon <dillon@backplane.com>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * This module implements a slab allocator drop-in replacement for the
38  * kernel malloc().
39  *
40  * A slab allocator reserves a ZONE for each chunk size, then lays the
41  * chunks out in an array within the zone.  Allocation and deallocation
42  * is nearly instantanious, and fragmentation/overhead losses are limited
43  * to a fixed worst-case amount.
44  *
45  * The downside of this slab implementation is in the chunk size
46  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
47  * In a kernel implementation all this memory will be physical so
48  * the zone size is adjusted downward on machines with less physical
49  * memory.  The upside is that overhead is bounded... this is the *worst*
50  * case overhead.
51  *
52  * Slab management is done on a per-cpu basis and no locking or mutexes
53  * are required, only a critical section.  When one cpu frees memory
54  * belonging to another cpu's slab manager an asynchronous IPI message
55  * will be queued to execute the operation.   In addition, both the
56  * high level slab allocator and the low level zone allocator optimize
57  * M_ZERO requests, and the slab allocator does not have to pre initialize
58  * the linked list of chunks.
59  *
60  * XXX Balancing is needed between cpus.  Balance will be handled through
61  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
62  *
63  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
64  * the new zone should be restricted to M_USE_RESERVE requests only.
65  *
66  *	Alloc Size	Chunking        Number of zones
67  *	0-127		8		16
68  *	128-255		16		8
69  *	256-511		32		8
70  *	512-1023	64		8
71  *	1024-2047	128		8
72  *	2048-4095	256		8
73  *	4096-8191	512		8
74  *	8192-16383	1024		8
75  *	16384-32767	2048		8
76  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
77  *
78  *	Allocations >= ZoneLimit go directly to kmem.
79  *	(n * PAGE_SIZE, n > 2) allocations go directly to kmem.
80  *
81  * Alignment properties:
82  * - All power-of-2 sized allocations are power-of-2 aligned.
83  * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84  *   power-of-2 round up of 'size'.
85  * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86  *   above table 'Chunking' column).
87  *
88  *			API REQUIREMENTS AND SIDE EFFECTS
89  *
90  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91  *    have remained compatible with the following API requirements:
92  *
93  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
94  *    + ability to allocate arbitrarily large chunks of memory
95  */
96 
97 #include "opt_vm.h"
98 
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/kernel.h>
102 #include <sys/slaballoc.h>
103 #include <sys/mbuf.h>
104 #include <sys/vmmeter.h>
105 #include <sys/lock.h>
106 #include <sys/thread.h>
107 #include <sys/globaldata.h>
108 #include <sys/sysctl.h>
109 #include <sys/ktr.h>
110 #include <sys/malloc.h>
111 
112 #include <vm/vm.h>
113 #include <vm/vm_param.h>
114 #include <vm/vm_kern.h>
115 #include <vm/vm_extern.h>
116 #include <vm/vm_object.h>
117 #include <vm/pmap.h>
118 #include <vm/vm_map.h>
119 #include <vm/vm_page.h>
120 #include <vm/vm_pageout.h>
121 
122 #include <machine/cpu.h>
123 
124 #include <sys/thread2.h>
125 #include <vm/vm_page2.h>
126 
127 #if (__VM_CACHELINE_SIZE == 32)
128 #define CAN_CACHEALIGN(sz)	((sz) >= 256)
129 #elif (__VM_CACHELINE_SIZE == 64)
130 #define CAN_CACHEALIGN(sz)	((sz) >= 512)
131 #elif (__VM_CACHELINE_SIZE == 128)
132 #define CAN_CACHEALIGN(sz)	((sz) >= 1024)
133 #else
134 #error "unsupported cacheline size"
135 #endif
136 
137 #define btokup(z)	(&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
138 
139 #define MEMORY_STRING	"ptr=%p type=%p size=%lu flags=%04x"
140 #define MEMORY_ARGS	void *ptr, void *type, unsigned long size, int flags
141 
142 #if !defined(KTR_MEMORY)
143 #define KTR_MEMORY	KTR_ALL
144 #endif
145 KTR_INFO_MASTER(memory);
146 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
147 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
148 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
149 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
150 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
151 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
152 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
153 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
154 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
155 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
156 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
157 
158 #define logmemory(name, ptr, type, size, flags)				\
159 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
160 #define logmemory_quick(name)						\
161 	KTR_LOG(memory_ ## name)
162 
163 /*
164  * Fixed globals (not per-cpu)
165  */
166 __read_frequently static int ZoneSize;
167 __read_frequently static int ZoneLimit;
168 __read_frequently static int ZonePageCount;
169 __read_frequently static uintptr_t ZoneMask;
170 __read_frequently struct malloc_type *kmemstatistics;	/* exported to vmstat */
171 
172 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
173 static void kmem_slab_free(void *ptr, vm_size_t bytes);
174 
175 #if defined(INVARIANTS)
176 static void chunk_mark_allocated(SLZone *z, void *chunk);
177 static void chunk_mark_free(SLZone *z, void *chunk);
178 #else
179 #define chunk_mark_allocated(z, chunk)
180 #define chunk_mark_free(z, chunk)
181 #endif
182 
183 /*
184  * Misc constants.  Note that allocations that are exact multiples of
185  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
186  */
187 #define ZONE_RELS_THRESH	32		/* threshold number of zones */
188 
189 #ifdef INVARIANTS
190 /*
191  * The WEIRD_ADDR is used as known text to copy into free objects to
192  * try to create deterministic failure cases if the data is accessed after
193  * free.
194  */
195 #define WEIRD_ADDR      0xdeadc0de
196 #endif
197 #define ZERO_LENGTH_PTR	((void *)-8)
198 
199 /*
200  * Misc global malloc buckets
201  */
202 
203 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
204 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
205 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
206 MALLOC_DEFINE(M_DRM, "m_drm", "DRM memory allocations");
207 
208 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
209 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
210 
211 /*
212  * Initialize the slab memory allocator.  We have to choose a zone size based
213  * on available physical memory.  We choose a zone side which is approximately
214  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
215  * 128K.  The zone size is limited to the bounds set in slaballoc.h
216  * (typically 32K min, 128K max).
217  */
218 static void kmeminit(void *dummy);
219 
220 char *ZeroPage;
221 
222 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL);
223 
224 #ifdef INVARIANTS
225 /*
226  * If enabled any memory allocated without M_ZERO is initialized to -1.
227  */
228 __read_frequently static int  use_malloc_pattern;
229 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
230     &use_malloc_pattern, 0,
231     "Initialize memory to -1 if M_ZERO not specified");
232 
233 __read_frequently static int32_t weirdary[16];
234 __read_frequently static int  use_weird_array;
235 SYSCTL_INT(_debug, OID_AUTO, use_weird_array, CTLFLAG_RW,
236     &use_weird_array, 0,
237     "Initialize memory to weird values on kfree()");
238 #endif
239 
240 __read_frequently static int ZoneRelsThresh = ZONE_RELS_THRESH;
241 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
242 
243 static struct spinlock kmemstat_spin =
244 			SPINLOCK_INITIALIZER(&kmemstat_spin, "malinit");
245 
246 /*
247  * Returns the kernel memory size limit for the purposes of initializing
248  * various subsystem caches.  The smaller of available memory and the KVM
249  * memory space is returned.
250  *
251  * The size in megabytes is returned.
252  */
253 size_t
254 kmem_lim_size(void)
255 {
256     size_t limsize;
257 
258     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
259     if (limsize > KvaSize)
260 	limsize = KvaSize;
261     return (limsize / (1024 * 1024));
262 }
263 
264 static void
265 kmeminit(void *dummy)
266 {
267     size_t limsize;
268     int usesize;
269 #ifdef INVARIANTS
270     int i;
271 #endif
272 
273     limsize = kmem_lim_size();
274     usesize = (int)(limsize * 1024);	/* convert to KB */
275 
276     /*
277      * If the machine has a large KVM space and more than 8G of ram,
278      * double the zone release threshold to reduce SMP invalidations.
279      * If more than 16G of ram, do it again.
280      *
281      * The BIOS eats a little ram so add some slop.  We want 8G worth of
282      * memory sticks to trigger the first adjustment.
283      */
284     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
285 	    if (limsize >= 7 * 1024)
286 		    ZoneRelsThresh *= 2;
287 	    if (limsize >= 15 * 1024)
288 		    ZoneRelsThresh *= 2;
289 	    if (limsize >= 31 * 1024)
290 		    ZoneRelsThresh *= 2;
291 	    if (limsize >= 63 * 1024)
292 		    ZoneRelsThresh *= 2;
293 	    if (limsize >= 127 * 1024)
294 		    ZoneRelsThresh *= 2;
295     }
296 
297     /*
298      * Calculate the zone size.  This typically calculates to
299      * ZALLOC_MAX_ZONE_SIZE
300      */
301     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
302     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
303 	ZoneSize <<= 1;
304     ZoneLimit = ZoneSize / 4;
305     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
306 	ZoneLimit = ZALLOC_ZONE_LIMIT;
307     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
308     ZonePageCount = ZoneSize / PAGE_SIZE;
309 
310 #ifdef INVARIANTS
311     for (i = 0; i < NELEM(weirdary); ++i)
312 	weirdary[i] = WEIRD_ADDR;
313 #endif
314 
315     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
316 
317     if (bootverbose)
318 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
319 }
320 
321 /*
322  * (low level) Initialize slab-related elements in the globaldata structure.
323  *
324  * Occurs after kmeminit().
325  */
326 void
327 slab_gdinit(globaldata_t gd)
328 {
329 	SLGlobalData *slgd;
330 	int i;
331 
332 	slgd = &gd->gd_slab;
333 	for (i = 0; i < NZONES; ++i)
334 		TAILQ_INIT(&slgd->ZoneAry[i]);
335 	TAILQ_INIT(&slgd->FreeZones);
336 	TAILQ_INIT(&slgd->FreeOvZones);
337 }
338 
339 /*
340  * Initialize a malloc type tracking structure.
341  */
342 void
343 malloc_init(void *data)
344 {
345     struct malloc_type *type = data;
346     struct kmalloc_use *use;
347     size_t limsize;
348 
349     if (type->ks_magic != M_MAGIC)
350 	panic("malloc type lacks magic");
351 
352     if (type->ks_limit != 0)
353 	return;
354 
355     if (vmstats.v_page_count == 0)
356 	panic("malloc_init not allowed before vm init");
357 
358     limsize = kmem_lim_size() * (1024 * 1024);
359     type->ks_limit = limsize / 10;
360 
361     if (ncpus == 1)
362 	use = &type->ks_use0;
363     else
364 	use = kmalloc(ncpus * sizeof(*use), M_TEMP, M_WAITOK | M_ZERO);
365 
366     spin_lock(&kmemstat_spin);
367     type->ks_next = kmemstatistics;
368     type->ks_use = use;
369     kmemstatistics = type;
370     spin_unlock(&kmemstat_spin);
371 }
372 
373 void
374 malloc_uninit(void *data)
375 {
376     struct malloc_type *type = data;
377     struct malloc_type *t;
378 #ifdef INVARIANTS
379     int i;
380     long ttl;
381 #endif
382 
383     if (type->ks_magic != M_MAGIC)
384 	panic("malloc type lacks magic");
385 
386     if (vmstats.v_page_count == 0)
387 	panic("malloc_uninit not allowed before vm init");
388 
389     if (type->ks_limit == 0)
390 	panic("malloc_uninit on uninitialized type");
391 
392     /* Make sure that all pending kfree()s are finished. */
393     lwkt_synchronize_ipiqs("muninit");
394 
395 #ifdef INVARIANTS
396     /*
397      * memuse is only correct in aggregation.  Due to memory being allocated
398      * on one cpu and freed on another individual array entries may be
399      * negative or positive (canceling each other out).
400      */
401     for (i = ttl = 0; i < ncpus; ++i)
402 	ttl += type->ks_use[i].memuse;
403     if (ttl) {
404 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
405 	    ttl, type->ks_shortdesc, i);
406     }
407 #endif
408     spin_lock(&kmemstat_spin);
409     if (type == kmemstatistics) {
410 	kmemstatistics = type->ks_next;
411     } else {
412 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
413 	    if (t->ks_next == type) {
414 		t->ks_next = type->ks_next;
415 		break;
416 	    }
417 	}
418     }
419     type->ks_next = NULL;
420     type->ks_limit = 0;
421     spin_unlock(&kmemstat_spin);
422 
423     if (type->ks_use != &type->ks_use0) {
424 	kfree(type->ks_use, M_TEMP);
425 	type->ks_use = NULL;
426     }
427 }
428 
429 /*
430  * Reinitialize all installed malloc regions after ncpus has been
431  * determined.  type->ks_use0 is initially set to &type->ks_use0,
432  * this function will dynamically allocate it as appropriate for ncpus.
433  */
434 void
435 malloc_reinit_ncpus(void)
436 {
437     struct malloc_type *t;
438     struct kmalloc_use *use;
439 
440     /*
441      * If only one cpu we can leave ks_use set to ks_use0
442      */
443     if (ncpus <= 1)
444 	return;
445 
446     /*
447      * Expand ks_use for all kmalloc blocks
448      */
449     for (t = kmemstatistics; t; t = t->ks_next) {
450 	KKASSERT(t->ks_use == &t->ks_use0);
451 	t->ks_use = kmalloc(sizeof(*use) * ncpus, M_TEMP, M_WAITOK|M_ZERO);
452 	t->ks_use[0] = t->ks_use0;
453     }
454 }
455 
456 /*
457  * Increase the kmalloc pool limit for the specified pool.  No changes
458  * are the made if the pool would shrink.
459  */
460 void
461 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
462 {
463     KKASSERT(type->ks_limit != 0);
464     if (bytes == 0)
465 	bytes = KvaSize;
466     if (type->ks_limit < bytes)
467 	type->ks_limit = bytes;
468 }
469 
470 void
471 kmalloc_set_unlimited(struct malloc_type *type)
472 {
473     type->ks_limit = kmem_lim_size() * (1024 * 1024);
474 }
475 
476 /*
477  * Dynamically create a malloc pool.  This function is a NOP if *typep is
478  * already non-NULL.
479  */
480 void
481 kmalloc_create(struct malloc_type **typep, const char *descr)
482 {
483 	struct malloc_type *type;
484 
485 	if (*typep == NULL) {
486 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
487 		type->ks_magic = M_MAGIC;
488 		type->ks_shortdesc = descr;
489 		malloc_init(type);
490 		*typep = type;
491 	}
492 }
493 
494 /*
495  * Destroy a dynamically created malloc pool.  This function is a NOP if
496  * the pool has already been destroyed.
497  */
498 void
499 kmalloc_destroy(struct malloc_type **typep)
500 {
501 	if (*typep != NULL) {
502 		malloc_uninit(*typep);
503 		kfree(*typep, M_TEMP);
504 		*typep = NULL;
505 	}
506 }
507 
508 /*
509  * Calculate the zone index for the allocation request size and set the
510  * allocation request size to that particular zone's chunk size.
511  */
512 static __inline int
513 zoneindex(unsigned long *bytes, unsigned long *align)
514 {
515     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
516 
517     if (n < 128) {
518 	*bytes = n = (n + 7) & ~7;
519 	*align = 8;
520 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
521     }
522     if (n < 256) {
523 	*bytes = n = (n + 15) & ~15;
524 	*align = 16;
525 	return(n / 16 + 7);
526     }
527     if (n < 8192) {
528 	if (n < 512) {
529 	    *bytes = n = (n + 31) & ~31;
530 	    *align = 32;
531 	    return(n / 32 + 15);
532 	}
533 	if (n < 1024) {
534 	    *bytes = n = (n + 63) & ~63;
535 	    *align = 64;
536 	    return(n / 64 + 23);
537 	}
538 	if (n < 2048) {
539 	    *bytes = n = (n + 127) & ~127;
540 	    *align = 128;
541 	    return(n / 128 + 31);
542 	}
543 	if (n < 4096) {
544 	    *bytes = n = (n + 255) & ~255;
545 	    *align = 256;
546 	    return(n / 256 + 39);
547 	}
548 	*bytes = n = (n + 511) & ~511;
549 	*align = 512;
550 	return(n / 512 + 47);
551     }
552 #if ZALLOC_ZONE_LIMIT > 8192
553     if (n < 16384) {
554 	*bytes = n = (n + 1023) & ~1023;
555 	*align = 1024;
556 	return(n / 1024 + 55);
557     }
558 #endif
559 #if ZALLOC_ZONE_LIMIT > 16384
560     if (n < 32768) {
561 	*bytes = n = (n + 2047) & ~2047;
562 	*align = 2048;
563 	return(n / 2048 + 63);
564     }
565 #endif
566     panic("Unexpected byte count %d", n);
567     return(0);
568 }
569 
570 static __inline void
571 clean_zone_rchunks(SLZone *z)
572 {
573     SLChunk *bchunk;
574 
575     while ((bchunk = z->z_RChunks) != NULL) {
576 	cpu_ccfence();
577 	if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
578 	    *z->z_LChunksp = bchunk;
579 	    while (bchunk) {
580 		chunk_mark_free(z, bchunk);
581 		z->z_LChunksp = &bchunk->c_Next;
582 		bchunk = bchunk->c_Next;
583 		++z->z_NFree;
584 	    }
585 	    break;
586 	}
587 	/* retry */
588     }
589 }
590 
591 /*
592  * If the zone becomes totally free and is not the only zone listed for a
593  * chunk size we move it to the FreeZones list.  We always leave at least
594  * one zone per chunk size listed, even if it is freeable.
595  *
596  * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
597  * otherwise MP races can result in our free_remote code accessing a
598  * destroyed zone.  The remote end interlocks z_RCount with z_RChunks
599  * so one has to test both z_NFree and z_RCount.
600  *
601  * Since this code can be called from an IPI callback, do *NOT* try to mess
602  * with kernel_map here.  Hysteresis will be performed at kmalloc() time.
603  */
604 static __inline SLZone *
605 check_zone_free(SLGlobalData *slgd, SLZone *z)
606 {
607     SLZone *znext;
608 
609     znext = TAILQ_NEXT(z, z_Entry);
610     if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
611 	(TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || znext)) {
612 	int *kup;
613 
614 	TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
615 
616 	z->z_Magic = -1;
617 	TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
618 	++slgd->NFreeZones;
619 	kup = btokup(z);
620 	*kup = 0;
621     }
622     return znext;
623 }
624 
625 #ifdef SLAB_DEBUG
626 /*
627  * Used to debug memory corruption issues.  Record up to (typically 32)
628  * allocation sources for this zone (for a particular chunk size).
629  */
630 
631 static void
632 slab_record_source(SLZone *z, const char *file, int line)
633 {
634     int i;
635     int b = line & (SLAB_DEBUG_ENTRIES - 1);
636 
637     i = b;
638     do {
639 	if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
640 		return;
641 	if (z->z_Sources[i].file == NULL)
642 		break;
643 	i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
644     } while (i != b);
645     z->z_Sources[i].file = file;
646     z->z_Sources[i].line = line;
647 }
648 
649 #endif
650 
651 static __inline unsigned long
652 powerof2_size(unsigned long size)
653 {
654 	int i;
655 
656 	if (size == 0 || powerof2(size))
657 		return size;
658 
659 	i = flsl(size);
660 	return (1UL << i);
661 }
662 
663 /*
664  * kmalloc()	(SLAB ALLOCATOR)
665  *
666  *	Allocate memory via the slab allocator.  If the request is too large,
667  *	or if it page-aligned beyond a certain size, we fall back to the
668  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
669  *	&SlabMisc if you don't care.
670  *
671  *	M_RNOWAIT	- don't block.
672  *	M_NULLOK	- return NULL instead of blocking.
673  *	M_ZERO		- zero the returned memory.
674  *	M_USE_RESERVE	- allow greater drawdown of the free list
675  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
676  *	M_POWEROF2	- roundup size to the nearest power of 2
677  *
678  * MPSAFE
679  */
680 
681 /* don't let kmalloc macro mess up function declaration */
682 #undef kmalloc
683 
684 #ifdef SLAB_DEBUG
685 void *
686 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
687 	      const char *file, int line)
688 #else
689 void *
690 kmalloc(unsigned long size, struct malloc_type *type, int flags)
691 #endif
692 {
693     SLZone *z;
694     SLChunk *chunk;
695     SLGlobalData *slgd;
696     struct globaldata *gd;
697     unsigned long align;
698     int zi;
699 #ifdef INVARIANTS
700     int i;
701 #endif
702 
703     logmemory_quick(malloc_beg);
704     gd = mycpu;
705     slgd = &gd->gd_slab;
706 
707     /*
708      * XXX silly to have this in the critical path.
709      */
710     KKASSERT(type->ks_limit != 0);
711     ++type->ks_use[gd->gd_cpuid].calls;
712 
713     /*
714      * Flagged for cache-alignment
715      */
716     if (flags & M_CACHEALIGN) {
717 	if (size < __VM_CACHELINE_SIZE)
718 		size = __VM_CACHELINE_SIZE;
719 	else if (!CAN_CACHEALIGN(size))
720 		flags |= M_POWEROF2;
721     }
722 
723     /*
724      * Flagged to force nearest power-of-2 (higher or same)
725      */
726     if (flags & M_POWEROF2)
727 	size = powerof2_size(size);
728 
729     /*
730      * Handle the case where the limit is reached.  Panic if we can't return
731      * NULL.  The original malloc code looped, but this tended to
732      * simply deadlock the computer.
733      *
734      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
735      * to determine if a more complete limit check should be done.  The
736      * actual memory use is tracked via ks_use[cpu].memuse.
737      */
738     while (type->ks_loosememuse >= type->ks_limit) {
739 	int i;
740 	long ttl;
741 
742 	for (i = ttl = 0; i < ncpus; ++i)
743 	    ttl += type->ks_use[i].memuse;
744 	type->ks_loosememuse = ttl;	/* not MP synchronized */
745 	if ((ssize_t)ttl < 0)		/* deal with occassional race */
746 		ttl = 0;
747 	if (ttl >= type->ks_limit) {
748 	    if (flags & M_NULLOK) {
749 		logmemory(malloc_end, NULL, type, size, flags);
750 		return(NULL);
751 	    }
752 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
753 	}
754     }
755 
756     /*
757      * Handle the degenerate size == 0 case.  Yes, this does happen.
758      * Return a special pointer.  This is to maintain compatibility with
759      * the original malloc implementation.  Certain devices, such as the
760      * adaptec driver, not only allocate 0 bytes, they check for NULL and
761      * also realloc() later on.  Joy.
762      */
763     if (size == 0) {
764 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
765 	return(ZERO_LENGTH_PTR);
766     }
767 
768     /*
769      * Handle hysteresis from prior frees here in malloc().  We cannot
770      * safely manipulate the kernel_map in free() due to free() possibly
771      * being called via an IPI message or from sensitive interrupt code.
772      *
773      * NOTE: ku_pagecnt must be cleared before we free the slab or we
774      *	     might race another cpu allocating the kva and setting
775      *	     ku_pagecnt.
776      */
777     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
778 	crit_enter();
779 	if (slgd->NFreeZones > ZoneRelsThresh) {	/* crit sect race */
780 	    int *kup;
781 
782 	    z = TAILQ_LAST(&slgd->FreeZones, SLZoneList);
783 	    KKASSERT(z != NULL);
784 	    TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
785 	    --slgd->NFreeZones;
786 	    kup = btokup(z);
787 	    *kup = 0;
788 	    kmem_slab_free(z, ZoneSize);	/* may block */
789 	}
790 	crit_exit();
791     }
792 
793     /*
794      * XXX handle oversized frees that were queued from kfree().
795      */
796     while (TAILQ_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) {
797 	crit_enter();
798 	if ((z = TAILQ_LAST(&slgd->FreeOvZones, SLZoneList)) != NULL) {
799 	    vm_size_t tsize;
800 
801 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
802 	    TAILQ_REMOVE(&slgd->FreeOvZones, z, z_Entry);
803 	    tsize = z->z_ChunkSize;
804 	    kmem_slab_free(z, tsize);	/* may block */
805 	}
806 	crit_exit();
807     }
808 
809     /*
810      * Handle large allocations directly.  There should not be very many of
811      * these so performance is not a big issue.
812      *
813      * The backend allocator is pretty nasty on a SMP system.   Use the
814      * slab allocator for one and two page-sized chunks even though we lose
815      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
816      */
817     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
818 	int *kup;
819 
820 	size = round_page(size);
821 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
822 	if (chunk == NULL) {
823 	    logmemory(malloc_end, NULL, type, size, flags);
824 	    return(NULL);
825 	}
826 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
827 	flags |= M_PASSIVE_ZERO;
828 	kup = btokup(chunk);
829 	*kup = size / PAGE_SIZE;
830 	crit_enter();
831 	goto done;
832     }
833 
834     /*
835      * Attempt to allocate out of an existing zone.  First try the free list,
836      * then allocate out of unallocated space.  If we find a good zone move
837      * it to the head of the list so later allocations find it quickly
838      * (we might have thousands of zones in the list).
839      *
840      * Note: zoneindex() will panic of size is too large.
841      */
842     zi = zoneindex(&size, &align);
843     KKASSERT(zi < NZONES);
844     crit_enter();
845 
846     if ((z = TAILQ_LAST(&slgd->ZoneAry[zi], SLZoneList)) != NULL) {
847 	/*
848 	 * Locate a chunk - we have to have at least one.  If this is the
849 	 * last chunk go ahead and do the work to retrieve chunks freed
850 	 * from remote cpus, and if the zone is still empty move it off
851 	 * the ZoneAry.
852 	 */
853 	if (--z->z_NFree <= 0) {
854 	    KKASSERT(z->z_NFree == 0);
855 
856 	    /*
857 	     * WARNING! This code competes with other cpus.  It is ok
858 	     * for us to not drain RChunks here but we might as well, and
859 	     * it is ok if more accumulate after we're done.
860 	     *
861 	     * Set RSignal before pulling rchunks off, indicating that we
862 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
863 	     * read RSignal before putting rchunks on thus interlocking
864 	     * their IPI signaling.
865 	     */
866 	    if (z->z_RChunks == NULL)
867 		atomic_swap_int(&z->z_RSignal, 1);
868 
869 	    clean_zone_rchunks(z);
870 
871 	    /*
872 	     * Remove from the zone list if no free chunks remain.
873 	     * Clear RSignal
874 	     */
875 	    if (z->z_NFree == 0) {
876 		TAILQ_REMOVE(&slgd->ZoneAry[zi], z, z_Entry);
877 	    } else {
878 		z->z_RSignal = 0;
879 	    }
880 	}
881 
882 	/*
883 	 * Fast path, we have chunks available in z_LChunks.
884 	 */
885 	chunk = z->z_LChunks;
886 	if (chunk) {
887 		chunk_mark_allocated(z, chunk);
888 		z->z_LChunks = chunk->c_Next;
889 		if (z->z_LChunks == NULL)
890 			z->z_LChunksp = &z->z_LChunks;
891 #ifdef SLAB_DEBUG
892 		slab_record_source(z, file, line);
893 #endif
894 		goto done;
895 	}
896 
897 	/*
898 	 * No chunks are available in LChunks, the free chunk MUST be
899 	 * in the never-before-used memory area, controlled by UIndex.
900 	 *
901 	 * The consequences are very serious if our zone got corrupted so
902 	 * we use an explicit panic rather than a KASSERT.
903 	 */
904 	if (z->z_UIndex + 1 != z->z_NMax)
905 	    ++z->z_UIndex;
906 	else
907 	    z->z_UIndex = 0;
908 
909 	if (z->z_UIndex == z->z_UEndIndex)
910 	    panic("slaballoc: corrupted zone");
911 
912 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
913 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
914 	    flags &= ~M_ZERO;
915 	    flags |= M_PASSIVE_ZERO;
916 	}
917 	chunk_mark_allocated(z, chunk);
918 #ifdef SLAB_DEBUG
919 	slab_record_source(z, file, line);
920 #endif
921 	goto done;
922     }
923 
924     /*
925      * If all zones are exhausted we need to allocate a new zone for this
926      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
927      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
928      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
929      * we do not pre-zero it because we do not want to mess up the L1 cache.
930      *
931      * At least one subsystem, the tty code (see CROUND) expects power-of-2
932      * allocations to be power-of-2 aligned.  We maintain compatibility by
933      * adjusting the base offset below.
934      */
935     {
936 	int off;
937 	int *kup;
938 
939 	if ((z = TAILQ_FIRST(&slgd->FreeZones)) != NULL) {
940 	    TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
941 	    --slgd->NFreeZones;
942 	    bzero(z, sizeof(SLZone));
943 	    z->z_Flags |= SLZF_UNOTZEROD;
944 	} else {
945 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
946 	    if (z == NULL)
947 		goto fail;
948 	}
949 
950 	/*
951 	 * How big is the base structure?
952 	 */
953 #if defined(INVARIANTS)
954 	/*
955 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
956 	 * complicated so don't make an exact calculation.
957 	 */
958 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
959 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
960 #else
961 	off = sizeof(SLZone);
962 #endif
963 
964 	/*
965 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
966 	 * Otherwise properly align the data according to the chunk size.
967 	 */
968 	if (powerof2(size))
969 	    align = size;
970 	off = roundup2(off, align);
971 
972 	z->z_Magic = ZALLOC_SLAB_MAGIC;
973 	z->z_ZoneIndex = zi;
974 	z->z_NMax = (ZoneSize - off) / size;
975 	z->z_NFree = z->z_NMax - 1;
976 	z->z_BasePtr = (char *)z + off;
977 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
978 	z->z_ChunkSize = size;
979 	z->z_CpuGd = gd;
980 	z->z_Cpu = gd->gd_cpuid;
981 	z->z_LChunksp = &z->z_LChunks;
982 #ifdef SLAB_DEBUG
983 	bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
984 	bzero(z->z_Sources, sizeof(z->z_Sources));
985 #endif
986 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
987 	TAILQ_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry);
988 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
989 	    flags &= ~M_ZERO;	/* already zero'd */
990 	    flags |= M_PASSIVE_ZERO;
991 	}
992 	kup = btokup(z);
993 	*kup = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
994 	chunk_mark_allocated(z, chunk);
995 #ifdef SLAB_DEBUG
996 	slab_record_source(z, file, line);
997 #endif
998 
999 	/*
1000 	 * Slide the base index for initial allocations out of the next
1001 	 * zone we create so we do not over-weight the lower part of the
1002 	 * cpu memory caches.
1003 	 */
1004 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
1005 				& (ZALLOC_MAX_ZONE_SIZE - 1);
1006     }
1007 
1008 done:
1009     ++type->ks_use[gd->gd_cpuid].inuse;
1010     type->ks_use[gd->gd_cpuid].memuse += size;
1011     type->ks_use[gd->gd_cpuid].loosememuse += size;
1012     if (type->ks_use[gd->gd_cpuid].loosememuse >= ZoneSize) {
1013 	/* not MP synchronized */
1014 	type->ks_loosememuse += type->ks_use[gd->gd_cpuid].loosememuse;
1015 	type->ks_use[gd->gd_cpuid].loosememuse = 0;
1016     }
1017     crit_exit();
1018 
1019     if (flags & M_ZERO)
1020 	bzero(chunk, size);
1021 #ifdef INVARIANTS
1022     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
1023 	if (use_malloc_pattern) {
1024 	    for (i = 0; i < size; i += sizeof(int)) {
1025 		*(int *)((char *)chunk + i) = -1;
1026 	    }
1027 	}
1028 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
1029     }
1030 #endif
1031     logmemory(malloc_end, chunk, type, size, flags);
1032     return(chunk);
1033 fail:
1034     crit_exit();
1035     logmemory(malloc_end, NULL, type, size, flags);
1036     return(NULL);
1037 }
1038 
1039 /*
1040  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
1041  *
1042  * Generally speaking this routine is not called very often and we do
1043  * not attempt to optimize it beyond reusing the same pointer if the
1044  * new size fits within the chunking of the old pointer's zone.
1045  */
1046 #ifdef SLAB_DEBUG
1047 void *
1048 krealloc_debug(void *ptr, unsigned long size,
1049 	       struct malloc_type *type, int flags,
1050 	       const char *file, int line)
1051 #else
1052 void *
1053 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
1054 #endif
1055 {
1056     unsigned long osize;
1057     unsigned long align;
1058     SLZone *z;
1059     void *nptr;
1060     int *kup;
1061 
1062     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
1063 
1064     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
1065 	return(kmalloc_debug(size, type, flags, file, line));
1066     if (size == 0) {
1067 	kfree(ptr, type);
1068 	return(NULL);
1069     }
1070 
1071     /*
1072      * Handle oversized allocations.  XXX we really should require that a
1073      * size be passed to free() instead of this nonsense.
1074      */
1075     kup = btokup(ptr);
1076     if (*kup > 0) {
1077 	osize = *kup << PAGE_SHIFT;
1078 	if (osize == round_page(size))
1079 	    return(ptr);
1080 	if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1081 	    return(NULL);
1082 	bcopy(ptr, nptr, min(size, osize));
1083 	kfree(ptr, type);
1084 	return(nptr);
1085     }
1086 
1087     /*
1088      * Get the original allocation's zone.  If the new request winds up
1089      * using the same chunk size we do not have to do anything.
1090      */
1091     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1092     kup = btokup(z);
1093     KKASSERT(*kup < 0);
1094     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1095 
1096     /*
1097      * Allocate memory for the new request size.  Note that zoneindex has
1098      * already adjusted the request size to the appropriate chunk size, which
1099      * should optimize our bcopy().  Then copy and return the new pointer.
1100      *
1101      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
1102      * necessary align the result.
1103      *
1104      * We can only zoneindex (to align size to the chunk size) if the new
1105      * size is not too large.
1106      */
1107     if (size < ZoneLimit) {
1108 	zoneindex(&size, &align);
1109 	if (z->z_ChunkSize == size)
1110 	    return(ptr);
1111     }
1112     if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1113 	return(NULL);
1114     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
1115     kfree(ptr, type);
1116     return(nptr);
1117 }
1118 
1119 /*
1120  * Return the kmalloc limit for this type, in bytes.
1121  */
1122 long
1123 kmalloc_limit(struct malloc_type *type)
1124 {
1125     KKASSERT(type->ks_limit != 0);
1126     return(type->ks_limit);
1127 }
1128 
1129 /*
1130  * Allocate a copy of the specified string.
1131  *
1132  * (MP SAFE) (MAY BLOCK)
1133  */
1134 #ifdef SLAB_DEBUG
1135 char *
1136 kstrdup_debug(const char *str, struct malloc_type *type,
1137 	      const char *file, int line)
1138 #else
1139 char *
1140 kstrdup(const char *str, struct malloc_type *type)
1141 #endif
1142 {
1143     int zlen;	/* length inclusive of terminating NUL */
1144     char *nstr;
1145 
1146     if (str == NULL)
1147 	return(NULL);
1148     zlen = strlen(str) + 1;
1149     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1150     bcopy(str, nstr, zlen);
1151     return(nstr);
1152 }
1153 
1154 #ifdef SLAB_DEBUG
1155 char *
1156 kstrndup_debug(const char *str, size_t maxlen, struct malloc_type *type,
1157 	      const char *file, int line)
1158 #else
1159 char *
1160 kstrndup(const char *str, size_t maxlen, struct malloc_type *type)
1161 #endif
1162 {
1163     int zlen;	/* length inclusive of terminating NUL */
1164     char *nstr;
1165 
1166     if (str == NULL)
1167 	return(NULL);
1168     zlen = strnlen(str, maxlen) + 1;
1169     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1170     bcopy(str, nstr, zlen);
1171     nstr[zlen - 1] = '\0';
1172     return(nstr);
1173 }
1174 
1175 /*
1176  * Notify our cpu that a remote cpu has freed some chunks in a zone that
1177  * we own.  RCount will be bumped so the memory should be good, but validate
1178  * that it really is.
1179  */
1180 static void
1181 kfree_remote(void *ptr)
1182 {
1183     SLGlobalData *slgd;
1184     SLZone *z;
1185     int nfree;
1186     int *kup;
1187 
1188     slgd = &mycpu->gd_slab;
1189     z = ptr;
1190     kup = btokup(z);
1191     KKASSERT(*kup == -((int)mycpuid + 1));
1192     KKASSERT(z->z_RCount > 0);
1193     atomic_subtract_int(&z->z_RCount, 1);
1194 
1195     logmemory(free_rem_beg, z, NULL, 0L, 0);
1196     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1197     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
1198     nfree = z->z_NFree;
1199 
1200     /*
1201      * Indicate that we will no longer be off of the ZoneAry by
1202      * clearing RSignal.
1203      */
1204     if (z->z_RChunks)
1205 	z->z_RSignal = 0;
1206 
1207     /*
1208      * Atomically extract the bchunks list and then process it back
1209      * into the lchunks list.  We want to append our bchunks to the
1210      * lchunks list and not prepend since we likely do not have
1211      * cache mastership of the related data (not that it helps since
1212      * we are using c_Next).
1213      */
1214     clean_zone_rchunks(z);
1215     if (z->z_NFree && nfree == 0) {
1216 	TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1217     }
1218 
1219     check_zone_free(slgd, z);
1220     logmemory(free_rem_end, z, NULL, 0L, 0);
1221 }
1222 
1223 /*
1224  * free (SLAB ALLOCATOR)
1225  *
1226  * Free a memory block previously allocated by malloc.
1227  *
1228  * Note: We do not attempt to update ks_loosememuse as MP races could
1229  * prevent us from checking memory limits in malloc.   YYY we may
1230  * consider updating ks_cpu.loosememuse.
1231  *
1232  * MPSAFE
1233  */
1234 void
1235 kfree(void *ptr, struct malloc_type *type)
1236 {
1237     SLZone *z;
1238     SLChunk *chunk;
1239     SLGlobalData *slgd;
1240     struct globaldata *gd;
1241     int *kup;
1242     unsigned long size;
1243     SLChunk *bchunk;
1244     int rsignal;
1245 
1246     logmemory_quick(free_beg);
1247     gd = mycpu;
1248     slgd = &gd->gd_slab;
1249 
1250     if (ptr == NULL)
1251 	panic("trying to free NULL pointer");
1252 
1253     /*
1254      * Handle special 0-byte allocations
1255      */
1256     if (ptr == ZERO_LENGTH_PTR) {
1257 	logmemory(free_zero, ptr, type, -1UL, 0);
1258 	logmemory_quick(free_end);
1259 	return;
1260     }
1261 
1262     /*
1263      * Panic on bad malloc type
1264      */
1265     if (type->ks_magic != M_MAGIC)
1266 	panic("free: malloc type lacks magic");
1267 
1268     /*
1269      * Handle oversized allocations.  XXX we really should require that a
1270      * size be passed to free() instead of this nonsense.
1271      *
1272      * This code is never called via an ipi.
1273      */
1274     kup = btokup(ptr);
1275     if (*kup > 0) {
1276 	size = *kup << PAGE_SHIFT;
1277 	*kup = 0;
1278 #ifdef INVARIANTS
1279 	if (use_weird_array) {
1280 		KKASSERT(sizeof(weirdary) <= size);
1281 		bcopy(weirdary, ptr, sizeof(weirdary));
1282 	}
1283 #endif
1284 	/*
1285 	 * NOTE: For oversized allocations we do not record the
1286 	 *	     originating cpu.  It gets freed on the cpu calling
1287 	 *	     kfree().  The statistics are in aggregate.
1288 	 *
1289 	 * note: XXX we have still inherited the interrupts-can't-block
1290 	 * assumption.  An interrupt thread does not bump
1291 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1292 	 * primarily until we can fix softupdate's assumptions about free().
1293 	 */
1294 	crit_enter();
1295 	--type->ks_use[gd->gd_cpuid].inuse;
1296 	type->ks_use[gd->gd_cpuid].memuse -= size;
1297 	if (mycpu->gd_intr_nesting_level ||
1298 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
1299 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1300 	    z = (SLZone *)ptr;
1301 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1302 	    z->z_ChunkSize = size;
1303 
1304 	    TAILQ_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry);
1305 	    crit_exit();
1306 	} else {
1307 	    crit_exit();
1308 	    logmemory(free_ovsz, ptr, type, size, 0);
1309 	    kmem_slab_free(ptr, size);	/* may block */
1310 	}
1311 	logmemory_quick(free_end);
1312 	return;
1313     }
1314 
1315     /*
1316      * Zone case.  Figure out the zone based on the fact that it is
1317      * ZoneSize aligned.
1318      */
1319     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1320     kup = btokup(z);
1321     KKASSERT(*kup < 0);
1322     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1323 
1324     /*
1325      * If we do not own the zone then use atomic ops to free to the
1326      * remote cpu linked list and notify the target zone using a
1327      * passive message.
1328      *
1329      * The target zone cannot be deallocated while we own a chunk of it,
1330      * so the zone header's storage is stable until the very moment
1331      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1332      *
1333      * (no critical section needed)
1334      */
1335     if (z->z_CpuGd != gd) {
1336 	/*
1337 	 * Making these adjustments now allow us to avoid passing (type)
1338 	 * to the remote cpu.  Note that inuse/memuse is being
1339 	 * adjusted on OUR cpu, not the zone cpu, but it should all still
1340 	 * sum up properly and cancel out.
1341 	 */
1342 	crit_enter();
1343 	--type->ks_use[gd->gd_cpuid].inuse;
1344 	type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1345 	crit_exit();
1346 
1347 	/*
1348 	 * WARNING! This code competes with other cpus.  Once we
1349 	 *	    successfully link the chunk to RChunks the remote
1350 	 *	    cpu can rip z's storage out from under us.
1351 	 *
1352 	 *	    Bumping RCount prevents z's storage from getting
1353 	 *	    ripped out.
1354 	 */
1355 	rsignal = z->z_RSignal;
1356 	cpu_lfence();
1357 	if (rsignal)
1358 		atomic_add_int(&z->z_RCount, 1);
1359 
1360 	chunk = ptr;
1361 	for (;;) {
1362 	    bchunk = z->z_RChunks;
1363 	    cpu_ccfence();
1364 	    chunk->c_Next = bchunk;
1365 	    cpu_sfence();
1366 
1367 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1368 		break;
1369 	}
1370 
1371 	/*
1372 	 * We have to signal the remote cpu if our actions will cause
1373 	 * the remote zone to be placed back on ZoneAry so it can
1374 	 * move the zone back on.
1375 	 *
1376 	 * We only need to deal with NULL->non-NULL RChunk transitions
1377 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1378 	 * before adding our chunk to RChunks.  This should result in
1379 	 * virtually no IPI traffic.
1380 	 *
1381 	 * We can use a passive IPI to reduce overhead even further.
1382 	 */
1383 	if (bchunk == NULL && rsignal) {
1384 	    logmemory(free_request, ptr, type,
1385 		      (unsigned long)z->z_ChunkSize, 0);
1386 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1387 	    /* z can get ripped out from under us from this point on */
1388 	} else if (rsignal) {
1389 	    atomic_subtract_int(&z->z_RCount, 1);
1390 	    /* z can get ripped out from under us from this point on */
1391 	}
1392 	logmemory_quick(free_end);
1393 	return;
1394     }
1395 
1396     /*
1397      * kfree locally
1398      */
1399     logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1400 
1401     crit_enter();
1402     chunk = ptr;
1403     chunk_mark_free(z, chunk);
1404 
1405     /*
1406      * Put weird data into the memory to detect modifications after freeing,
1407      * illegal pointer use after freeing (we should fault on the odd address),
1408      * and so forth.  XXX needs more work, see the old malloc code.
1409      */
1410 #ifdef INVARIANTS
1411     if (use_weird_array) {
1412 	    if (z->z_ChunkSize < sizeof(weirdary))
1413 		bcopy(weirdary, chunk, z->z_ChunkSize);
1414 	    else
1415 		bcopy(weirdary, chunk, sizeof(weirdary));
1416     }
1417 #endif
1418 
1419     /*
1420      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1421      * to the front of the linked list so it is more likely to be
1422      * reallocated, since it is already in our L1 cache.
1423      */
1424 #ifdef INVARIANTS
1425     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1426 	panic("BADFREE %p", chunk);
1427 #endif
1428     chunk->c_Next = z->z_LChunks;
1429     z->z_LChunks = chunk;
1430     if (chunk->c_Next == NULL)
1431 	z->z_LChunksp = &chunk->c_Next;
1432 
1433 #ifdef INVARIANTS
1434     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1435 	panic("BADFREE2");
1436 #endif
1437 
1438     /*
1439      * Bump the number of free chunks.  If it becomes non-zero the zone
1440      * must be added back onto the appropriate list.  A fully allocated
1441      * zone that sees its first free is considered 'mature' and is placed
1442      * at the head, giving the system time to potentially free the remaining
1443      * entries even while other allocations are going on and making the zone
1444      * freeable.
1445      */
1446     if (z->z_NFree++ == 0)
1447 	    TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1448 
1449     --type->ks_use[gd->gd_cpuid].inuse;
1450     type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1451 
1452     check_zone_free(slgd, z);
1453     logmemory_quick(free_end);
1454     crit_exit();
1455 }
1456 
1457 /*
1458  * Cleanup slabs which are hanging around due to RChunks or which are wholely
1459  * free and can be moved to the free list if not moved by other means.
1460  *
1461  * Called once every 10 seconds on all cpus.
1462  */
1463 void
1464 slab_cleanup(void)
1465 {
1466     SLGlobalData *slgd = &mycpu->gd_slab;
1467     SLZone *z;
1468     int i;
1469 
1470     crit_enter();
1471     for (i = 0; i < NZONES; ++i) {
1472 	if ((z = TAILQ_FIRST(&slgd->ZoneAry[i])) == NULL)
1473 		continue;
1474 
1475 	/*
1476 	 * Scan zones.
1477 	 */
1478 	while (z) {
1479 	    /*
1480 	     * Shift all RChunks to the end of the LChunks list.  This is
1481 	     * an O(1) operation.
1482 	     *
1483 	     * Then free the zone if possible.
1484 	     */
1485 	    clean_zone_rchunks(z);
1486 	    z = check_zone_free(slgd, z);
1487 	}
1488     }
1489     crit_exit();
1490 }
1491 
1492 #if defined(INVARIANTS)
1493 
1494 /*
1495  * Helper routines for sanity checks
1496  */
1497 static void
1498 chunk_mark_allocated(SLZone *z, void *chunk)
1499 {
1500     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1501     uint32_t *bitptr;
1502 
1503     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1504     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1505 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1506     bitptr = &z->z_Bitmap[bitdex >> 5];
1507     bitdex &= 31;
1508     KASSERT((*bitptr & (1 << bitdex)) == 0,
1509 	    ("memory chunk %p is already allocated!", chunk));
1510     *bitptr |= 1 << bitdex;
1511 }
1512 
1513 static void
1514 chunk_mark_free(SLZone *z, void *chunk)
1515 {
1516     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1517     uint32_t *bitptr;
1518 
1519     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1520     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1521 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1522     bitptr = &z->z_Bitmap[bitdex >> 5];
1523     bitdex &= 31;
1524     KASSERT((*bitptr & (1 << bitdex)) != 0,
1525 	    ("memory chunk %p is already free!", chunk));
1526     *bitptr &= ~(1 << bitdex);
1527 }
1528 
1529 #endif
1530 
1531 /*
1532  * kmem_slab_alloc()
1533  *
1534  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1535  *	specified alignment.  M_* flags are expected in the flags field.
1536  *
1537  *	Alignment must be a multiple of PAGE_SIZE.
1538  *
1539  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1540  *	but when we move zalloc() over to use this function as its backend
1541  *	we will have to switch to kreserve/krelease and call reserve(0)
1542  *	after the new space is made available.
1543  *
1544  *	Interrupt code which has preempted other code is not allowed to
1545  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1546  *	non-preemptively or blocks and then runs non-preemptively, then
1547  *	it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
1548  */
1549 static void *
1550 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1551 {
1552     vm_size_t i;
1553     vm_offset_t addr;
1554     int count, vmflags, base_vmflags;
1555     vm_page_t mbase = NULL;
1556     vm_page_t m;
1557     thread_t td;
1558 
1559     size = round_page(size);
1560     addr = vm_map_min(&kernel_map);
1561 
1562     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1563     crit_enter();
1564     vm_map_lock(&kernel_map);
1565     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1566 	vm_map_unlock(&kernel_map);
1567 	if ((flags & M_NULLOK) == 0)
1568 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1569 	vm_map_entry_release(count);
1570 	crit_exit();
1571 	return(NULL);
1572     }
1573 
1574     /*
1575      * kernel_object maps 1:1 to kernel_map.
1576      */
1577     vm_object_hold(&kernel_object);
1578     vm_object_reference_locked(&kernel_object);
1579     vm_map_insert(&kernel_map, &count,
1580 		  &kernel_object, NULL,
1581 		  addr, NULL,
1582 		  addr, addr + size,
1583 		  VM_MAPTYPE_NORMAL,
1584 		  VM_SUBSYS_KMALLOC,
1585 		  VM_PROT_ALL, VM_PROT_ALL, 0);
1586     vm_object_drop(&kernel_object);
1587     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1588     vm_map_unlock(&kernel_map);
1589 
1590     td = curthread;
1591 
1592     base_vmflags = 0;
1593     if (flags & M_ZERO)
1594         base_vmflags |= VM_ALLOC_ZERO;
1595     if (flags & M_USE_RESERVE)
1596 	base_vmflags |= VM_ALLOC_SYSTEM;
1597     if (flags & M_USE_INTERRUPT_RESERVE)
1598         base_vmflags |= VM_ALLOC_INTERRUPT;
1599     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1600 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1601 	      flags, ((int **)&size)[-1]);
1602     }
1603 
1604     /*
1605      * Allocate the pages.  Do not map them yet.  VM_ALLOC_NORMAL can only
1606      * be set if we are not preempting.
1607      *
1608      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1609      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1610      * implied in this case), though I'm not sure if we really need to
1611      * do that.
1612      */
1613     vmflags = base_vmflags;
1614     if (flags & M_WAITOK) {
1615 	if (td->td_preempted)
1616 	    vmflags |= VM_ALLOC_SYSTEM;
1617 	else
1618 	    vmflags |= VM_ALLOC_NORMAL;
1619     }
1620 
1621     vm_object_hold(&kernel_object);
1622     for (i = 0; i < size; i += PAGE_SIZE) {
1623 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1624 	if (i == 0)
1625 		mbase = m;
1626 
1627 	/*
1628 	 * If the allocation failed we either return NULL or we retry.
1629 	 *
1630 	 * If M_WAITOK is specified we wait for more memory and retry.
1631 	 * If M_WAITOK is specified from a preemption we yield instead of
1632 	 * wait.  Livelock will not occur because the interrupt thread
1633 	 * will not be preempting anyone the second time around after the
1634 	 * yield.
1635 	 */
1636 	if (m == NULL) {
1637 	    if (flags & M_WAITOK) {
1638 		if (td->td_preempted) {
1639 		    lwkt_switch();
1640 		} else {
1641 		    vm_wait(0);
1642 		}
1643 		i -= PAGE_SIZE;	/* retry */
1644 		continue;
1645 	    }
1646 	    break;
1647 	}
1648     }
1649 
1650     /*
1651      * Check and deal with an allocation failure
1652      */
1653     if (i != size) {
1654 	while (i != 0) {
1655 	    i -= PAGE_SIZE;
1656 	    m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1657 	    /* page should already be busy */
1658 	    vm_page_free(m);
1659 	}
1660 	vm_map_lock(&kernel_map);
1661 	vm_map_delete(&kernel_map, addr, addr + size, &count);
1662 	vm_map_unlock(&kernel_map);
1663 	vm_object_drop(&kernel_object);
1664 
1665 	vm_map_entry_release(count);
1666 	crit_exit();
1667 	return(NULL);
1668     }
1669 
1670     /*
1671      * Success!
1672      *
1673      * NOTE: The VM pages are still busied.  mbase points to the first one
1674      *	     but we have to iterate via vm_page_next()
1675      */
1676     vm_object_drop(&kernel_object);
1677     crit_exit();
1678 
1679     /*
1680      * Enter the pages into the pmap and deal with M_ZERO.
1681      */
1682     m = mbase;
1683     i = 0;
1684 
1685     while (i < size) {
1686 	/*
1687 	 * page should already be busy
1688 	 */
1689 	m->valid = VM_PAGE_BITS_ALL;
1690 	vm_page_wire(m);
1691 	pmap_enter(&kernel_pmap, addr + i, m,
1692 		   VM_PROT_ALL | VM_PROT_NOSYNC, 1, NULL);
1693 	if (flags & M_ZERO)
1694 		pagezero((char *)addr + i);
1695 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1696 	vm_page_flag_set(m, PG_REFERENCED);
1697 	vm_page_wakeup(m);
1698 
1699 	i += PAGE_SIZE;
1700 	vm_object_hold(&kernel_object);
1701 	m = vm_page_next(m);
1702 	vm_object_drop(&kernel_object);
1703     }
1704     smp_invltlb();
1705     vm_map_entry_release(count);
1706     return((void *)addr);
1707 }
1708 
1709 /*
1710  * kmem_slab_free()
1711  */
1712 static void
1713 kmem_slab_free(void *ptr, vm_size_t size)
1714 {
1715     crit_enter();
1716     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1717     crit_exit();
1718 }
1719