xref: /dragonfly/sys/kern/kern_slaballoc.c (revision 4d0c54c1)
1 /*
2  * (MPSAFE)
3  *
4  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
5  *
6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
7  *
8  * This code is derived from software contributed to The DragonFly Project
9  * by Matthew Dillon <dillon@backplane.com>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  * Alignment properties:
82  * - All power-of-2 sized allocations are power-of-2 aligned.
83  * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84  *   power-of-2 round up of 'size'.
85  * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86  *   above table 'Chunking' column).
87  *
88  *			API REQUIREMENTS AND SIDE EFFECTS
89  *
90  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91  *    have remained compatible with the following API requirements:
92  *
93  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
94  *    + ability to allocate arbitrarily large chunks of memory
95  */
96 
97 #include "opt_vm.h"
98 
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/kernel.h>
102 #include <sys/slaballoc.h>
103 #include <sys/mbuf.h>
104 #include <sys/vmmeter.h>
105 #include <sys/lock.h>
106 #include <sys/thread.h>
107 #include <sys/globaldata.h>
108 #include <sys/sysctl.h>
109 #include <sys/ktr.h>
110 
111 #include <vm/vm.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_extern.h>
115 #include <vm/vm_object.h>
116 #include <vm/pmap.h>
117 #include <vm/vm_map.h>
118 #include <vm/vm_page.h>
119 #include <vm/vm_pageout.h>
120 
121 #include <machine/cpu.h>
122 
123 #include <sys/thread2.h>
124 
125 #define btokup(z)	(&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
126 
127 #define MEMORY_STRING	"ptr=%p type=%p size=%lu flags=%04x"
128 #define MEMORY_ARGS	void *ptr, void *type, unsigned long size, int flags
129 
130 #if !defined(KTR_MEMORY)
131 #define KTR_MEMORY	KTR_ALL
132 #endif
133 KTR_INFO_MASTER(memory);
134 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
135 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
136 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
137 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
138 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
139 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
140 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
141 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
142 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
143 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
144 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
145 
146 #define logmemory(name, ptr, type, size, flags)				\
147 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
148 #define logmemory_quick(name)						\
149 	KTR_LOG(memory_ ## name)
150 
151 /*
152  * Fixed globals (not per-cpu)
153  */
154 static int ZoneSize;
155 static int ZoneLimit;
156 static int ZonePageCount;
157 static uintptr_t ZoneMask;
158 static int ZoneBigAlloc;		/* in KB */
159 static int ZoneGenAlloc;		/* in KB */
160 struct malloc_type *kmemstatistics;	/* exported to vmstat */
161 static int32_t weirdary[16];
162 
163 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
164 static void kmem_slab_free(void *ptr, vm_size_t bytes);
165 
166 #if defined(INVARIANTS)
167 static void chunk_mark_allocated(SLZone *z, void *chunk);
168 static void chunk_mark_free(SLZone *z, void *chunk);
169 #else
170 #define chunk_mark_allocated(z, chunk)
171 #define chunk_mark_free(z, chunk)
172 #endif
173 
174 /*
175  * Misc constants.  Note that allocations that are exact multiples of
176  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
177  */
178 #define ZONE_RELS_THRESH	32		/* threshold number of zones */
179 
180 /*
181  * The WEIRD_ADDR is used as known text to copy into free objects to
182  * try to create deterministic failure cases if the data is accessed after
183  * free.
184  */
185 #define WEIRD_ADDR      0xdeadc0de
186 #define MAX_COPY        sizeof(weirdary)
187 #define ZERO_LENGTH_PTR	((void *)-8)
188 
189 /*
190  * Misc global malloc buckets
191  */
192 
193 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
194 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
195 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
196 
197 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
198 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
199 
200 /*
201  * Initialize the slab memory allocator.  We have to choose a zone size based
202  * on available physical memory.  We choose a zone side which is approximately
203  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
204  * 128K.  The zone size is limited to the bounds set in slaballoc.h
205  * (typically 32K min, 128K max).
206  */
207 static void kmeminit(void *dummy);
208 
209 char *ZeroPage;
210 
211 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
212 
213 #ifdef INVARIANTS
214 /*
215  * If enabled any memory allocated without M_ZERO is initialized to -1.
216  */
217 static int  use_malloc_pattern;
218 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
219     &use_malloc_pattern, 0,
220     "Initialize memory to -1 if M_ZERO not specified");
221 #endif
222 
223 static int ZoneRelsThresh = ZONE_RELS_THRESH;
224 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
225 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
226 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
227 
228 /*
229  * Returns the kernel memory size limit for the purposes of initializing
230  * various subsystem caches.  The smaller of available memory and the KVM
231  * memory space is returned.
232  *
233  * The size in megabytes is returned.
234  */
235 size_t
236 kmem_lim_size(void)
237 {
238     size_t limsize;
239 
240     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
241     if (limsize > KvaSize)
242 	limsize = KvaSize;
243     return (limsize / (1024 * 1024));
244 }
245 
246 static void
247 kmeminit(void *dummy)
248 {
249     size_t limsize;
250     int usesize;
251     int i;
252 
253     limsize = kmem_lim_size();
254     usesize = (int)(limsize * 1024);	/* convert to KB */
255 
256     /*
257      * If the machine has a large KVM space and more than 8G of ram,
258      * double the zone release threshold to reduce SMP invalidations.
259      * If more than 16G of ram, do it again.
260      *
261      * The BIOS eats a little ram so add some slop.  We want 8G worth of
262      * memory sticks to trigger the first adjustment.
263      */
264     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
265 	    if (limsize >= 7 * 1024)
266 		    ZoneRelsThresh *= 2;
267 	    if (limsize >= 15 * 1024)
268 		    ZoneRelsThresh *= 2;
269     }
270 
271     /*
272      * Calculate the zone size.  This typically calculates to
273      * ZALLOC_MAX_ZONE_SIZE
274      */
275     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
276     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
277 	ZoneSize <<= 1;
278     ZoneLimit = ZoneSize / 4;
279     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
280 	ZoneLimit = ZALLOC_ZONE_LIMIT;
281     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
282     ZonePageCount = ZoneSize / PAGE_SIZE;
283 
284     for (i = 0; i < NELEM(weirdary); ++i)
285 	weirdary[i] = WEIRD_ADDR;
286 
287     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
288 
289     if (bootverbose)
290 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
291 }
292 
293 /*
294  * Initialize a malloc type tracking structure.
295  */
296 void
297 malloc_init(void *data)
298 {
299     struct malloc_type *type = data;
300     size_t limsize;
301 
302     if (type->ks_magic != M_MAGIC)
303 	panic("malloc type lacks magic");
304 
305     if (type->ks_limit != 0)
306 	return;
307 
308     if (vmstats.v_page_count == 0)
309 	panic("malloc_init not allowed before vm init");
310 
311     limsize = kmem_lim_size() * (1024 * 1024);
312     type->ks_limit = limsize / 10;
313 
314     type->ks_next = kmemstatistics;
315     kmemstatistics = type;
316 }
317 
318 void
319 malloc_uninit(void *data)
320 {
321     struct malloc_type *type = data;
322     struct malloc_type *t;
323 #ifdef INVARIANTS
324     int i;
325     long ttl;
326 #endif
327 
328     if (type->ks_magic != M_MAGIC)
329 	panic("malloc type lacks magic");
330 
331     if (vmstats.v_page_count == 0)
332 	panic("malloc_uninit not allowed before vm init");
333 
334     if (type->ks_limit == 0)
335 	panic("malloc_uninit on uninitialized type");
336 
337     /* Make sure that all pending kfree()s are finished. */
338     lwkt_synchronize_ipiqs("muninit");
339 
340 #ifdef INVARIANTS
341     /*
342      * memuse is only correct in aggregation.  Due to memory being allocated
343      * on one cpu and freed on another individual array entries may be
344      * negative or positive (canceling each other out).
345      */
346     for (i = ttl = 0; i < ncpus; ++i)
347 	ttl += type->ks_memuse[i];
348     if (ttl) {
349 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
350 	    ttl, type->ks_shortdesc, i);
351     }
352 #endif
353     if (type == kmemstatistics) {
354 	kmemstatistics = type->ks_next;
355     } else {
356 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
357 	    if (t->ks_next == type) {
358 		t->ks_next = type->ks_next;
359 		break;
360 	    }
361 	}
362     }
363     type->ks_next = NULL;
364     type->ks_limit = 0;
365 }
366 
367 /*
368  * Increase the kmalloc pool limit for the specified pool.  No changes
369  * are the made if the pool would shrink.
370  */
371 void
372 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
373 {
374     if (type->ks_limit == 0)
375 	malloc_init(type);
376     if (bytes == 0)
377 	bytes = KvaSize;
378     if (type->ks_limit < bytes)
379 	type->ks_limit = bytes;
380 }
381 
382 /*
383  * Dynamically create a malloc pool.  This function is a NOP if *typep is
384  * already non-NULL.
385  */
386 void
387 kmalloc_create(struct malloc_type **typep, const char *descr)
388 {
389 	struct malloc_type *type;
390 
391 	if (*typep == NULL) {
392 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
393 		type->ks_magic = M_MAGIC;
394 		type->ks_shortdesc = descr;
395 		malloc_init(type);
396 		*typep = type;
397 	}
398 }
399 
400 /*
401  * Destroy a dynamically created malloc pool.  This function is a NOP if
402  * the pool has already been destroyed.
403  */
404 void
405 kmalloc_destroy(struct malloc_type **typep)
406 {
407 	if (*typep != NULL) {
408 		malloc_uninit(*typep);
409 		kfree(*typep, M_TEMP);
410 		*typep = NULL;
411 	}
412 }
413 
414 /*
415  * Calculate the zone index for the allocation request size and set the
416  * allocation request size to that particular zone's chunk size.
417  */
418 static __inline int
419 zoneindex(unsigned long *bytes, unsigned long *align)
420 {
421     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
422     if (n < 128) {
423 	*bytes = n = (n + 7) & ~7;
424 	*align = 8;
425 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
426     }
427     if (n < 256) {
428 	*bytes = n = (n + 15) & ~15;
429 	*align = 16;
430 	return(n / 16 + 7);
431     }
432     if (n < 8192) {
433 	if (n < 512) {
434 	    *bytes = n = (n + 31) & ~31;
435 	    *align = 32;
436 	    return(n / 32 + 15);
437 	}
438 	if (n < 1024) {
439 	    *bytes = n = (n + 63) & ~63;
440 	    *align = 64;
441 	    return(n / 64 + 23);
442 	}
443 	if (n < 2048) {
444 	    *bytes = n = (n + 127) & ~127;
445 	    *align = 128;
446 	    return(n / 128 + 31);
447 	}
448 	if (n < 4096) {
449 	    *bytes = n = (n + 255) & ~255;
450 	    *align = 256;
451 	    return(n / 256 + 39);
452 	}
453 	*bytes = n = (n + 511) & ~511;
454 	*align = 512;
455 	return(n / 512 + 47);
456     }
457 #if ZALLOC_ZONE_LIMIT > 8192
458     if (n < 16384) {
459 	*bytes = n = (n + 1023) & ~1023;
460 	*align = 1024;
461 	return(n / 1024 + 55);
462     }
463 #endif
464 #if ZALLOC_ZONE_LIMIT > 16384
465     if (n < 32768) {
466 	*bytes = n = (n + 2047) & ~2047;
467 	*align = 2048;
468 	return(n / 2048 + 63);
469     }
470 #endif
471     panic("Unexpected byte count %d", n);
472     return(0);
473 }
474 
475 #ifdef SLAB_DEBUG
476 /*
477  * Used to debug memory corruption issues.  Record up to (typically 32)
478  * allocation sources for this zone (for a particular chunk size).
479  */
480 
481 static void
482 slab_record_source(SLZone *z, const char *file, int line)
483 {
484     int i;
485     int b = line & (SLAB_DEBUG_ENTRIES - 1);
486 
487     i = b;
488     do {
489 	if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
490 		return;
491 	if (z->z_Sources[i].file == NULL)
492 		break;
493 	i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
494     } while (i != b);
495     z->z_Sources[i].file = file;
496     z->z_Sources[i].line = line;
497 }
498 
499 #endif
500 
501 static __inline unsigned long
502 powerof2_size(unsigned long size)
503 {
504 	int i;
505 
506 	if (size == 0 || powerof2(size))
507 		return size;
508 
509 	i = flsl(size);
510 	return (1UL << i);
511 }
512 
513 /*
514  * kmalloc()	(SLAB ALLOCATOR)
515  *
516  *	Allocate memory via the slab allocator.  If the request is too large,
517  *	or if it page-aligned beyond a certain size, we fall back to the
518  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
519  *	&SlabMisc if you don't care.
520  *
521  *	M_RNOWAIT	- don't block.
522  *	M_NULLOK	- return NULL instead of blocking.
523  *	M_ZERO		- zero the returned memory.
524  *	M_USE_RESERVE	- allow greater drawdown of the free list
525  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
526  *	M_POWEROF2	- roundup size to the nearest power of 2
527  *
528  * MPSAFE
529  */
530 
531 #ifdef SLAB_DEBUG
532 void *
533 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
534 	      const char *file, int line)
535 #else
536 void *
537 kmalloc(unsigned long size, struct malloc_type *type, int flags)
538 #endif
539 {
540     SLZone *z;
541     SLChunk *chunk;
542     SLChunk *bchunk;
543     SLGlobalData *slgd;
544     struct globaldata *gd;
545     unsigned long align;
546     int zi;
547 #ifdef INVARIANTS
548     int i;
549 #endif
550 
551     logmemory_quick(malloc_beg);
552     gd = mycpu;
553     slgd = &gd->gd_slab;
554 
555     /*
556      * XXX silly to have this in the critical path.
557      */
558     if (type->ks_limit == 0) {
559 	crit_enter();
560 	if (type->ks_limit == 0)
561 	    malloc_init(type);
562 	crit_exit();
563     }
564     ++type->ks_calls;
565 
566     if (flags & M_POWEROF2)
567 	size = powerof2_size(size);
568 
569     /*
570      * Handle the case where the limit is reached.  Panic if we can't return
571      * NULL.  The original malloc code looped, but this tended to
572      * simply deadlock the computer.
573      *
574      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
575      * to determine if a more complete limit check should be done.  The
576      * actual memory use is tracked via ks_memuse[cpu].
577      */
578     while (type->ks_loosememuse >= type->ks_limit) {
579 	int i;
580 	long ttl;
581 
582 	for (i = ttl = 0; i < ncpus; ++i)
583 	    ttl += type->ks_memuse[i];
584 	type->ks_loosememuse = ttl;	/* not MP synchronized */
585 	if ((ssize_t)ttl < 0)		/* deal with occassional race */
586 		ttl = 0;
587 	if (ttl >= type->ks_limit) {
588 	    if (flags & M_NULLOK) {
589 		logmemory(malloc_end, NULL, type, size, flags);
590 		return(NULL);
591 	    }
592 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
593 	}
594     }
595 
596     /*
597      * Handle the degenerate size == 0 case.  Yes, this does happen.
598      * Return a special pointer.  This is to maintain compatibility with
599      * the original malloc implementation.  Certain devices, such as the
600      * adaptec driver, not only allocate 0 bytes, they check for NULL and
601      * also realloc() later on.  Joy.
602      */
603     if (size == 0) {
604 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
605 	return(ZERO_LENGTH_PTR);
606     }
607 
608     /*
609      * Handle hysteresis from prior frees here in malloc().  We cannot
610      * safely manipulate the kernel_map in free() due to free() possibly
611      * being called via an IPI message or from sensitive interrupt code.
612      *
613      * NOTE: ku_pagecnt must be cleared before we free the slab or we
614      *	     might race another cpu allocating the kva and setting
615      *	     ku_pagecnt.
616      */
617     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
618 	crit_enter();
619 	if (slgd->NFreeZones > ZoneRelsThresh) {	/* crit sect race */
620 	    int *kup;
621 
622 	    z = slgd->FreeZones;
623 	    slgd->FreeZones = z->z_Next;
624 	    --slgd->NFreeZones;
625 	    kup = btokup(z);
626 	    *kup = 0;
627 	    kmem_slab_free(z, ZoneSize);	/* may block */
628 	    atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024);
629 	}
630 	crit_exit();
631     }
632 
633     /*
634      * XXX handle oversized frees that were queued from kfree().
635      */
636     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
637 	crit_enter();
638 	if ((z = slgd->FreeOvZones) != NULL) {
639 	    vm_size_t tsize;
640 
641 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
642 	    slgd->FreeOvZones = z->z_Next;
643 	    tsize = z->z_ChunkSize;
644 	    kmem_slab_free(z, tsize);	/* may block */
645 	    atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
646 	}
647 	crit_exit();
648     }
649 
650     /*
651      * Handle large allocations directly.  There should not be very many of
652      * these so performance is not a big issue.
653      *
654      * The backend allocator is pretty nasty on a SMP system.   Use the
655      * slab allocator for one and two page-sized chunks even though we lose
656      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
657      */
658     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
659 	int *kup;
660 
661 	size = round_page(size);
662 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
663 	if (chunk == NULL) {
664 	    logmemory(malloc_end, NULL, type, size, flags);
665 	    return(NULL);
666 	}
667 	atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
668 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
669 	flags |= M_PASSIVE_ZERO;
670 	kup = btokup(chunk);
671 	*kup = size / PAGE_SIZE;
672 	crit_enter();
673 	goto done;
674     }
675 
676     /*
677      * Attempt to allocate out of an existing zone.  First try the free list,
678      * then allocate out of unallocated space.  If we find a good zone move
679      * it to the head of the list so later allocations find it quickly
680      * (we might have thousands of zones in the list).
681      *
682      * Note: zoneindex() will panic of size is too large.
683      */
684     zi = zoneindex(&size, &align);
685     KKASSERT(zi < NZONES);
686     crit_enter();
687 
688     if ((z = slgd->ZoneAry[zi]) != NULL) {
689 	/*
690 	 * Locate a chunk - we have to have at least one.  If this is the
691 	 * last chunk go ahead and do the work to retrieve chunks freed
692 	 * from remote cpus, and if the zone is still empty move it off
693 	 * the ZoneAry.
694 	 */
695 	if (--z->z_NFree <= 0) {
696 	    KKASSERT(z->z_NFree == 0);
697 
698 	    /*
699 	     * WARNING! This code competes with other cpus.  It is ok
700 	     * for us to not drain RChunks here but we might as well, and
701 	     * it is ok if more accumulate after we're done.
702 	     *
703 	     * Set RSignal before pulling rchunks off, indicating that we
704 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
705 	     * read RSignal before putting rchunks on thus interlocking
706 	     * their IPI signaling.
707 	     */
708 	    if (z->z_RChunks == NULL)
709 		atomic_swap_int(&z->z_RSignal, 1);
710 
711 	    while ((bchunk = z->z_RChunks) != NULL) {
712 		cpu_ccfence();
713 		if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
714 		    *z->z_LChunksp = bchunk;
715 		    while (bchunk) {
716 			chunk_mark_free(z, bchunk);
717 			z->z_LChunksp = &bchunk->c_Next;
718 			bchunk = bchunk->c_Next;
719 			++z->z_NFree;
720 		    }
721 		    break;
722 		}
723 	    }
724 	    /*
725 	     * Remove from the zone list if no free chunks remain.
726 	     * Clear RSignal
727 	     */
728 	    if (z->z_NFree == 0) {
729 		slgd->ZoneAry[zi] = z->z_Next;
730 		z->z_Next = NULL;
731 	    } else {
732 		z->z_RSignal = 0;
733 	    }
734 	}
735 
736 	/*
737 	 * Fast path, we have chunks available in z_LChunks.
738 	 */
739 	chunk = z->z_LChunks;
740 	if (chunk) {
741 		chunk_mark_allocated(z, chunk);
742 		z->z_LChunks = chunk->c_Next;
743 		if (z->z_LChunks == NULL)
744 			z->z_LChunksp = &z->z_LChunks;
745 #ifdef SLAB_DEBUG
746 		slab_record_source(z, file, line);
747 #endif
748 		goto done;
749 	}
750 
751 	/*
752 	 * No chunks are available in LChunks, the free chunk MUST be
753 	 * in the never-before-used memory area, controlled by UIndex.
754 	 *
755 	 * The consequences are very serious if our zone got corrupted so
756 	 * we use an explicit panic rather than a KASSERT.
757 	 */
758 	if (z->z_UIndex + 1 != z->z_NMax)
759 	    ++z->z_UIndex;
760 	else
761 	    z->z_UIndex = 0;
762 
763 	if (z->z_UIndex == z->z_UEndIndex)
764 	    panic("slaballoc: corrupted zone");
765 
766 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
767 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
768 	    flags &= ~M_ZERO;
769 	    flags |= M_PASSIVE_ZERO;
770 	}
771 	chunk_mark_allocated(z, chunk);
772 #ifdef SLAB_DEBUG
773 	slab_record_source(z, file, line);
774 #endif
775 	goto done;
776     }
777 
778     /*
779      * If all zones are exhausted we need to allocate a new zone for this
780      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
781      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
782      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
783      * we do not pre-zero it because we do not want to mess up the L1 cache.
784      *
785      * At least one subsystem, the tty code (see CROUND) expects power-of-2
786      * allocations to be power-of-2 aligned.  We maintain compatibility by
787      * adjusting the base offset below.
788      */
789     {
790 	int off;
791 	int *kup;
792 
793 	if ((z = slgd->FreeZones) != NULL) {
794 	    slgd->FreeZones = z->z_Next;
795 	    --slgd->NFreeZones;
796 	    bzero(z, sizeof(SLZone));
797 	    z->z_Flags |= SLZF_UNOTZEROD;
798 	} else {
799 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
800 	    if (z == NULL)
801 		goto fail;
802 	    atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024);
803 	}
804 
805 	/*
806 	 * How big is the base structure?
807 	 */
808 #if defined(INVARIANTS)
809 	/*
810 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
811 	 * complicated so don't make an exact calculation.
812 	 */
813 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
814 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
815 #else
816 	off = sizeof(SLZone);
817 #endif
818 
819 	/*
820 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
821 	 * Otherwise properly align the data according to the chunk size.
822 	 */
823 	if (powerof2(size))
824 	    align = size;
825 	off = (off + align - 1) & ~(align - 1);
826 
827 	z->z_Magic = ZALLOC_SLAB_MAGIC;
828 	z->z_ZoneIndex = zi;
829 	z->z_NMax = (ZoneSize - off) / size;
830 	z->z_NFree = z->z_NMax - 1;
831 	z->z_BasePtr = (char *)z + off;
832 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
833 	z->z_ChunkSize = size;
834 	z->z_CpuGd = gd;
835 	z->z_Cpu = gd->gd_cpuid;
836 	z->z_LChunksp = &z->z_LChunks;
837 #ifdef SLAB_DEBUG
838 	bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
839 	bzero(z->z_Sources, sizeof(z->z_Sources));
840 #endif
841 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
842 	z->z_Next = slgd->ZoneAry[zi];
843 	slgd->ZoneAry[zi] = z;
844 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
845 	    flags &= ~M_ZERO;	/* already zero'd */
846 	    flags |= M_PASSIVE_ZERO;
847 	}
848 	kup = btokup(z);
849 	*kup = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
850 	chunk_mark_allocated(z, chunk);
851 #ifdef SLAB_DEBUG
852 	slab_record_source(z, file, line);
853 #endif
854 
855 	/*
856 	 * Slide the base index for initial allocations out of the next
857 	 * zone we create so we do not over-weight the lower part of the
858 	 * cpu memory caches.
859 	 */
860 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
861 				& (ZALLOC_MAX_ZONE_SIZE - 1);
862     }
863 
864 done:
865     ++type->ks_inuse[gd->gd_cpuid];
866     type->ks_memuse[gd->gd_cpuid] += size;
867     type->ks_loosememuse += size;	/* not MP synchronized */
868     crit_exit();
869 
870     if (flags & M_ZERO)
871 	bzero(chunk, size);
872 #ifdef INVARIANTS
873     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
874 	if (use_malloc_pattern) {
875 	    for (i = 0; i < size; i += sizeof(int)) {
876 		*(int *)((char *)chunk + i) = -1;
877 	    }
878 	}
879 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
880     }
881 #endif
882     logmemory(malloc_end, chunk, type, size, flags);
883     return(chunk);
884 fail:
885     crit_exit();
886     logmemory(malloc_end, NULL, type, size, flags);
887     return(NULL);
888 }
889 
890 /*
891  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
892  *
893  * Generally speaking this routine is not called very often and we do
894  * not attempt to optimize it beyond reusing the same pointer if the
895  * new size fits within the chunking of the old pointer's zone.
896  */
897 #ifdef SLAB_DEBUG
898 void *
899 krealloc_debug(void *ptr, unsigned long size,
900 	       struct malloc_type *type, int flags,
901 	       const char *file, int line)
902 #else
903 void *
904 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
905 #endif
906 {
907     unsigned long osize;
908     unsigned long align;
909     SLZone *z;
910     void *nptr;
911     int *kup;
912 
913     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
914 
915     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
916 	return(kmalloc_debug(size, type, flags, file, line));
917     if (size == 0) {
918 	kfree(ptr, type);
919 	return(NULL);
920     }
921 
922     /*
923      * Handle oversized allocations.  XXX we really should require that a
924      * size be passed to free() instead of this nonsense.
925      */
926     kup = btokup(ptr);
927     if (*kup > 0) {
928 	osize = *kup << PAGE_SHIFT;
929 	if (osize == round_page(size))
930 	    return(ptr);
931 	if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
932 	    return(NULL);
933 	bcopy(ptr, nptr, min(size, osize));
934 	kfree(ptr, type);
935 	return(nptr);
936     }
937 
938     /*
939      * Get the original allocation's zone.  If the new request winds up
940      * using the same chunk size we do not have to do anything.
941      */
942     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
943     kup = btokup(z);
944     KKASSERT(*kup < 0);
945     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
946 
947     /*
948      * Allocate memory for the new request size.  Note that zoneindex has
949      * already adjusted the request size to the appropriate chunk size, which
950      * should optimize our bcopy().  Then copy and return the new pointer.
951      *
952      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
953      * necessary align the result.
954      *
955      * We can only zoneindex (to align size to the chunk size) if the new
956      * size is not too large.
957      */
958     if (size < ZoneLimit) {
959 	zoneindex(&size, &align);
960 	if (z->z_ChunkSize == size)
961 	    return(ptr);
962     }
963     if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
964 	return(NULL);
965     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
966     kfree(ptr, type);
967     return(nptr);
968 }
969 
970 /*
971  * Return the kmalloc limit for this type, in bytes.
972  */
973 long
974 kmalloc_limit(struct malloc_type *type)
975 {
976     if (type->ks_limit == 0) {
977 	crit_enter();
978 	if (type->ks_limit == 0)
979 	    malloc_init(type);
980 	crit_exit();
981     }
982     return(type->ks_limit);
983 }
984 
985 /*
986  * Allocate a copy of the specified string.
987  *
988  * (MP SAFE) (MAY BLOCK)
989  */
990 #ifdef SLAB_DEBUG
991 char *
992 kstrdup_debug(const char *str, struct malloc_type *type,
993 	      const char *file, int line)
994 #else
995 char *
996 kstrdup(const char *str, struct malloc_type *type)
997 #endif
998 {
999     int zlen;	/* length inclusive of terminating NUL */
1000     char *nstr;
1001 
1002     if (str == NULL)
1003 	return(NULL);
1004     zlen = strlen(str) + 1;
1005     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1006     bcopy(str, nstr, zlen);
1007     return(nstr);
1008 }
1009 
1010 /*
1011  * Notify our cpu that a remote cpu has freed some chunks in a zone that
1012  * we own.  RCount will be bumped so the memory should be good, but validate
1013  * that it really is.
1014  */
1015 static
1016 void
1017 kfree_remote(void *ptr)
1018 {
1019     SLGlobalData *slgd;
1020     SLChunk *bchunk;
1021     SLZone *z;
1022     int nfree;
1023     int *kup;
1024 
1025     slgd = &mycpu->gd_slab;
1026     z = ptr;
1027     kup = btokup(z);
1028     KKASSERT(*kup == -((int)mycpuid + 1));
1029     KKASSERT(z->z_RCount > 0);
1030     atomic_subtract_int(&z->z_RCount, 1);
1031 
1032     logmemory(free_rem_beg, z, NULL, 0L, 0);
1033     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1034     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
1035     nfree = z->z_NFree;
1036 
1037     /*
1038      * Indicate that we will no longer be off of the ZoneAry by
1039      * clearing RSignal.
1040      */
1041     if (z->z_RChunks)
1042 	z->z_RSignal = 0;
1043 
1044     /*
1045      * Atomically extract the bchunks list and then process it back
1046      * into the lchunks list.  We want to append our bchunks to the
1047      * lchunks list and not prepend since we likely do not have
1048      * cache mastership of the related data (not that it helps since
1049      * we are using c_Next).
1050      */
1051     while ((bchunk = z->z_RChunks) != NULL) {
1052 	cpu_ccfence();
1053 	if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
1054 	    *z->z_LChunksp = bchunk;
1055 	    while (bchunk) {
1056 		    chunk_mark_free(z, bchunk);
1057 		    z->z_LChunksp = &bchunk->c_Next;
1058 		    bchunk = bchunk->c_Next;
1059 		    ++z->z_NFree;
1060 	    }
1061 	    break;
1062 	}
1063     }
1064     if (z->z_NFree && nfree == 0) {
1065 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1066 	slgd->ZoneAry[z->z_ZoneIndex] = z;
1067     }
1068 
1069     /*
1070      * If the zone becomes totally free, and there are other zones we
1071      * can allocate from, move this zone to the FreeZones list.  Since
1072      * this code can be called from an IPI callback, do *NOT* try to mess
1073      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1074      *
1075      * Do not move the zone if there is an IPI inflight, otherwise MP
1076      * races can result in our free_remote code accessing a destroyed
1077      * zone.
1078      */
1079     if (z->z_NFree == z->z_NMax &&
1080 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1081 	z->z_RCount == 0
1082     ) {
1083 	SLZone **pz;
1084 	int *kup;
1085 
1086 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex];
1087 	     z != *pz;
1088 	     pz = &(*pz)->z_Next) {
1089 	    ;
1090 	}
1091 	*pz = z->z_Next;
1092 	z->z_Magic = -1;
1093 	z->z_Next = slgd->FreeZones;
1094 	slgd->FreeZones = z;
1095 	++slgd->NFreeZones;
1096 	kup = btokup(z);
1097 	*kup = 0;
1098     }
1099     logmemory(free_rem_end, z, bchunk, 0L, 0);
1100 }
1101 
1102 /*
1103  * free (SLAB ALLOCATOR)
1104  *
1105  * Free a memory block previously allocated by malloc.  Note that we do not
1106  * attempt to update ks_loosememuse as MP races could prevent us from
1107  * checking memory limits in malloc.
1108  *
1109  * MPSAFE
1110  */
1111 void
1112 kfree(void *ptr, struct malloc_type *type)
1113 {
1114     SLZone *z;
1115     SLChunk *chunk;
1116     SLGlobalData *slgd;
1117     struct globaldata *gd;
1118     int *kup;
1119     unsigned long size;
1120     SLChunk *bchunk;
1121     int rsignal;
1122 
1123     logmemory_quick(free_beg);
1124     gd = mycpu;
1125     slgd = &gd->gd_slab;
1126 
1127     if (ptr == NULL)
1128 	panic("trying to free NULL pointer");
1129 
1130     /*
1131      * Handle special 0-byte allocations
1132      */
1133     if (ptr == ZERO_LENGTH_PTR) {
1134 	logmemory(free_zero, ptr, type, -1UL, 0);
1135 	logmemory_quick(free_end);
1136 	return;
1137     }
1138 
1139     /*
1140      * Panic on bad malloc type
1141      */
1142     if (type->ks_magic != M_MAGIC)
1143 	panic("free: malloc type lacks magic");
1144 
1145     /*
1146      * Handle oversized allocations.  XXX we really should require that a
1147      * size be passed to free() instead of this nonsense.
1148      *
1149      * This code is never called via an ipi.
1150      */
1151     kup = btokup(ptr);
1152     if (*kup > 0) {
1153 	size = *kup << PAGE_SHIFT;
1154 	*kup = 0;
1155 #ifdef INVARIANTS
1156 	KKASSERT(sizeof(weirdary) <= size);
1157 	bcopy(weirdary, ptr, sizeof(weirdary));
1158 #endif
1159 	/*
1160 	 * NOTE: For oversized allocations we do not record the
1161 	 *	     originating cpu.  It gets freed on the cpu calling
1162 	 *	     kfree().  The statistics are in aggregate.
1163 	 *
1164 	 * note: XXX we have still inherited the interrupts-can't-block
1165 	 * assumption.  An interrupt thread does not bump
1166 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1167 	 * primarily until we can fix softupdate's assumptions about free().
1168 	 */
1169 	crit_enter();
1170 	--type->ks_inuse[gd->gd_cpuid];
1171 	type->ks_memuse[gd->gd_cpuid] -= size;
1172 	if (mycpu->gd_intr_nesting_level ||
1173 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1174 	{
1175 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1176 	    z = (SLZone *)ptr;
1177 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1178 	    z->z_Next = slgd->FreeOvZones;
1179 	    z->z_ChunkSize = size;
1180 	    slgd->FreeOvZones = z;
1181 	    crit_exit();
1182 	} else {
1183 	    crit_exit();
1184 	    logmemory(free_ovsz, ptr, type, size, 0);
1185 	    kmem_slab_free(ptr, size);	/* may block */
1186 	    atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1187 	}
1188 	logmemory_quick(free_end);
1189 	return;
1190     }
1191 
1192     /*
1193      * Zone case.  Figure out the zone based on the fact that it is
1194      * ZoneSize aligned.
1195      */
1196     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1197     kup = btokup(z);
1198     KKASSERT(*kup < 0);
1199     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1200 
1201     /*
1202      * If we do not own the zone then use atomic ops to free to the
1203      * remote cpu linked list and notify the target zone using a
1204      * passive message.
1205      *
1206      * The target zone cannot be deallocated while we own a chunk of it,
1207      * so the zone header's storage is stable until the very moment
1208      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1209      *
1210      * (no critical section needed)
1211      */
1212     if (z->z_CpuGd != gd) {
1213 	/*
1214 	 * Making these adjustments now allow us to avoid passing (type)
1215 	 * to the remote cpu.  Note that ks_inuse/ks_memuse is being
1216 	 * adjusted on OUR cpu, not the zone cpu, but it should all still
1217 	 * sum up properly and cancel out.
1218 	 */
1219 	crit_enter();
1220 	--type->ks_inuse[gd->gd_cpuid];
1221 	type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize;
1222 	crit_exit();
1223 
1224 	/*
1225 	 * WARNING! This code competes with other cpus.  Once we
1226 	 *	    successfully link the chunk to RChunks the remote
1227 	 *	    cpu can rip z's storage out from under us.
1228 	 *
1229 	 *	    Bumping RCount prevents z's storage from getting
1230 	 *	    ripped out.
1231 	 */
1232 	rsignal = z->z_RSignal;
1233 	cpu_lfence();
1234 	if (rsignal)
1235 		atomic_add_int(&z->z_RCount, 1);
1236 
1237 	chunk = ptr;
1238 	for (;;) {
1239 	    bchunk = z->z_RChunks;
1240 	    cpu_ccfence();
1241 	    chunk->c_Next = bchunk;
1242 	    cpu_sfence();
1243 
1244 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1245 		break;
1246 	}
1247 
1248 	/*
1249 	 * We have to signal the remote cpu if our actions will cause
1250 	 * the remote zone to be placed back on ZoneAry so it can
1251 	 * move the zone back on.
1252 	 *
1253 	 * We only need to deal with NULL->non-NULL RChunk transitions
1254 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1255 	 * before adding our chunk to RChunks.  This should result in
1256 	 * virtually no IPI traffic.
1257 	 *
1258 	 * We can use a passive IPI to reduce overhead even further.
1259 	 */
1260 	if (bchunk == NULL && rsignal) {
1261 		logmemory(free_request, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1262 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1263 	    /* z can get ripped out from under us from this point on */
1264 	} else if (rsignal) {
1265 	    atomic_subtract_int(&z->z_RCount, 1);
1266 	    /* z can get ripped out from under us from this point on */
1267 	}
1268 	logmemory_quick(free_end);
1269 	return;
1270     }
1271 
1272     /*
1273      * kfree locally
1274      */
1275     logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1276 
1277     crit_enter();
1278     chunk = ptr;
1279     chunk_mark_free(z, chunk);
1280 
1281     /*
1282      * Put weird data into the memory to detect modifications after freeing,
1283      * illegal pointer use after freeing (we should fault on the odd address),
1284      * and so forth.  XXX needs more work, see the old malloc code.
1285      */
1286 #ifdef INVARIANTS
1287     if (z->z_ChunkSize < sizeof(weirdary))
1288 	bcopy(weirdary, chunk, z->z_ChunkSize);
1289     else
1290 	bcopy(weirdary, chunk, sizeof(weirdary));
1291 #endif
1292 
1293     /*
1294      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1295      * to the front of the linked list so it is more likely to be
1296      * reallocated, since it is already in our L1 cache.
1297      */
1298 #ifdef INVARIANTS
1299     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1300 	panic("BADFREE %p", chunk);
1301 #endif
1302     chunk->c_Next = z->z_LChunks;
1303     z->z_LChunks = chunk;
1304     if (chunk->c_Next == NULL)
1305 	    z->z_LChunksp = &chunk->c_Next;
1306 
1307 #ifdef INVARIANTS
1308     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1309 	panic("BADFREE2");
1310 #endif
1311 
1312     /*
1313      * Bump the number of free chunks.  If it becomes non-zero the zone
1314      * must be added back onto the appropriate list.
1315      */
1316     if (z->z_NFree++ == 0) {
1317 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1318 	slgd->ZoneAry[z->z_ZoneIndex] = z;
1319     }
1320 
1321     --type->ks_inuse[z->z_Cpu];
1322     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1323 
1324     /*
1325      * If the zone becomes totally free, and there are other zones we
1326      * can allocate from, move this zone to the FreeZones list.  Since
1327      * this code can be called from an IPI callback, do *NOT* try to mess
1328      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1329      */
1330     if (z->z_NFree == z->z_NMax &&
1331 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1332 	z->z_RCount == 0
1333     ) {
1334 	SLZone **pz;
1335 	int *kup;
1336 
1337 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
1338 	    ;
1339 	*pz = z->z_Next;
1340 	z->z_Magic = -1;
1341 	z->z_Next = slgd->FreeZones;
1342 	slgd->FreeZones = z;
1343 	++slgd->NFreeZones;
1344 	kup = btokup(z);
1345 	*kup = 0;
1346     }
1347     logmemory_quick(free_end);
1348     crit_exit();
1349 }
1350 
1351 #if defined(INVARIANTS)
1352 
1353 /*
1354  * Helper routines for sanity checks
1355  */
1356 static
1357 void
1358 chunk_mark_allocated(SLZone *z, void *chunk)
1359 {
1360     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1361     __uint32_t *bitptr;
1362 
1363     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1364     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1365 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1366     bitptr = &z->z_Bitmap[bitdex >> 5];
1367     bitdex &= 31;
1368     KASSERT((*bitptr & (1 << bitdex)) == 0,
1369 	    ("memory chunk %p is already allocated!", chunk));
1370     *bitptr |= 1 << bitdex;
1371 }
1372 
1373 static
1374 void
1375 chunk_mark_free(SLZone *z, void *chunk)
1376 {
1377     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1378     __uint32_t *bitptr;
1379 
1380     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1381     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1382 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1383     bitptr = &z->z_Bitmap[bitdex >> 5];
1384     bitdex &= 31;
1385     KASSERT((*bitptr & (1 << bitdex)) != 0,
1386 	    ("memory chunk %p is already free!", chunk));
1387     *bitptr &= ~(1 << bitdex);
1388 }
1389 
1390 #endif
1391 
1392 /*
1393  * kmem_slab_alloc()
1394  *
1395  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1396  *	specified alignment.  M_* flags are expected in the flags field.
1397  *
1398  *	Alignment must be a multiple of PAGE_SIZE.
1399  *
1400  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1401  *	but when we move zalloc() over to use this function as its backend
1402  *	we will have to switch to kreserve/krelease and call reserve(0)
1403  *	after the new space is made available.
1404  *
1405  *	Interrupt code which has preempted other code is not allowed to
1406  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1407  *	non-preemptively or blocks and then runs non-preemptively, then
1408  *	it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
1409  */
1410 static void *
1411 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1412 {
1413     vm_size_t i;
1414     vm_offset_t addr;
1415     int count, vmflags, base_vmflags;
1416     vm_page_t mbase = NULL;
1417     vm_page_t m;
1418     thread_t td;
1419 
1420     size = round_page(size);
1421     addr = vm_map_min(&kernel_map);
1422 
1423     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1424     crit_enter();
1425     vm_map_lock(&kernel_map);
1426     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1427 	vm_map_unlock(&kernel_map);
1428 	if ((flags & M_NULLOK) == 0)
1429 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1430 	vm_map_entry_release(count);
1431 	crit_exit();
1432 	return(NULL);
1433     }
1434 
1435     /*
1436      * kernel_object maps 1:1 to kernel_map.
1437      */
1438     vm_object_hold(&kernel_object);
1439     vm_object_reference_locked(&kernel_object);
1440     vm_map_insert(&kernel_map, &count,
1441 		    &kernel_object, addr, addr, addr + size,
1442 		    VM_MAPTYPE_NORMAL,
1443 		    VM_PROT_ALL, VM_PROT_ALL,
1444 		    0);
1445     vm_object_drop(&kernel_object);
1446     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1447     vm_map_unlock(&kernel_map);
1448 
1449     td = curthread;
1450 
1451     base_vmflags = 0;
1452     if (flags & M_ZERO)
1453         base_vmflags |= VM_ALLOC_ZERO;
1454     if (flags & M_USE_RESERVE)
1455 	base_vmflags |= VM_ALLOC_SYSTEM;
1456     if (flags & M_USE_INTERRUPT_RESERVE)
1457         base_vmflags |= VM_ALLOC_INTERRUPT;
1458     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1459 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1460 	      flags, ((int **)&size)[-1]);
1461     }
1462 
1463     /*
1464      * Allocate the pages.  Do not mess with the PG_ZERO flag or map
1465      * them yet.  VM_ALLOC_NORMAL can only be set if we are not preempting.
1466      *
1467      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1468      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1469      * implied in this case), though I'm not sure if we really need to
1470      * do that.
1471      */
1472     vmflags = base_vmflags;
1473     if (flags & M_WAITOK) {
1474 	if (td->td_preempted)
1475 	    vmflags |= VM_ALLOC_SYSTEM;
1476 	else
1477 	    vmflags |= VM_ALLOC_NORMAL;
1478     }
1479 
1480     vm_object_hold(&kernel_object);
1481     for (i = 0; i < size; i += PAGE_SIZE) {
1482 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1483 	if (i == 0)
1484 		mbase = m;
1485 
1486 	/*
1487 	 * If the allocation failed we either return NULL or we retry.
1488 	 *
1489 	 * If M_WAITOK is specified we wait for more memory and retry.
1490 	 * If M_WAITOK is specified from a preemption we yield instead of
1491 	 * wait.  Livelock will not occur because the interrupt thread
1492 	 * will not be preempting anyone the second time around after the
1493 	 * yield.
1494 	 */
1495 	if (m == NULL) {
1496 	    if (flags & M_WAITOK) {
1497 		if (td->td_preempted) {
1498 		    lwkt_switch();
1499 		} else {
1500 		    vm_wait(0);
1501 		}
1502 		i -= PAGE_SIZE;	/* retry */
1503 		continue;
1504 	    }
1505 	    break;
1506 	}
1507     }
1508 
1509     /*
1510      * Check and deal with an allocation failure
1511      */
1512     if (i != size) {
1513 	while (i != 0) {
1514 	    i -= PAGE_SIZE;
1515 	    m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1516 	    /* page should already be busy */
1517 	    vm_page_free(m);
1518 	}
1519 	vm_map_lock(&kernel_map);
1520 	vm_map_delete(&kernel_map, addr, addr + size, &count);
1521 	vm_map_unlock(&kernel_map);
1522 	vm_object_drop(&kernel_object);
1523 
1524 	vm_map_entry_release(count);
1525 	crit_exit();
1526 	return(NULL);
1527     }
1528 
1529     /*
1530      * Success!
1531      *
1532      * NOTE: The VM pages are still busied.  mbase points to the first one
1533      *	     but we have to iterate via vm_page_next()
1534      */
1535     vm_object_drop(&kernel_object);
1536     crit_exit();
1537 
1538     /*
1539      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1540      */
1541     m = mbase;
1542     i = 0;
1543 
1544     while (i < size) {
1545 	/*
1546 	 * page should already be busy
1547 	 */
1548 	m->valid = VM_PAGE_BITS_ALL;
1549 	vm_page_wire(m);
1550 	pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL | VM_PROT_NOSYNC,
1551 		   1, NULL);
1552 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1553 	    bzero((char *)addr + i, PAGE_SIZE);
1554 	vm_page_flag_clear(m, PG_ZERO);
1555 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1556 	vm_page_flag_set(m, PG_REFERENCED);
1557 	vm_page_wakeup(m);
1558 
1559 	i += PAGE_SIZE;
1560 	vm_object_hold(&kernel_object);
1561 	m = vm_page_next(m);
1562 	vm_object_drop(&kernel_object);
1563     }
1564     smp_invltlb();
1565     vm_map_entry_release(count);
1566     return((void *)addr);
1567 }
1568 
1569 /*
1570  * kmem_slab_free()
1571  */
1572 static void
1573 kmem_slab_free(void *ptr, vm_size_t size)
1574 {
1575     crit_enter();
1576     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1577     crit_exit();
1578 }
1579 
1580 void *
1581 kmalloc_cachealign(unsigned long size_alloc, struct malloc_type *type,
1582     int flags)
1583 {
1584 #if (__VM_CACHELINE_SIZE == 32)
1585 #define CAN_CACHEALIGN(sz)	((sz) >= 256)
1586 #elif (__VM_CACHELINE_SIZE == 64)
1587 #define CAN_CACHEALIGN(sz)	((sz) >= 512)
1588 #elif (__VM_CACHELINE_SIZE == 128)
1589 #define CAN_CACHEALIGN(sz)	((sz) >= 1024)
1590 #else
1591 #error "unsupported cacheline size"
1592 #endif
1593 
1594 	void *ret;
1595 
1596 	if (size_alloc < __VM_CACHELINE_SIZE)
1597 		size_alloc = __VM_CACHELINE_SIZE;
1598 	else if (!CAN_CACHEALIGN(size_alloc))
1599 		flags |= M_POWEROF2;
1600 
1601 	ret = kmalloc(size_alloc, type, flags);
1602 	KASSERT(((uintptr_t)ret & (__VM_CACHELINE_SIZE - 1)) == 0,
1603 	    ("%p(%lu) not cacheline %d aligned",
1604 	     ret, size_alloc, __VM_CACHELINE_SIZE));
1605 	return ret;
1606 
1607 #undef CAN_CACHEALIGN
1608 }
1609