xref: /dragonfly/sys/kern/kern_slaballoc.c (revision 59b0b316)
1 /*
2  * (MPSAFE)
3  *
4  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
5  *
6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
7  *
8  * This code is derived from software contributed to The DragonFly Project
9  * by Matthew Dillon <dillon@backplane.com>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  * Alignment properties:
82  * - All power-of-2 sized allocations are power-of-2 aligned.
83  * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84  *   power-of-2 round up of 'size'.
85  * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86  *   above table 'Chunking' column).
87  *
88  *			API REQUIREMENTS AND SIDE EFFECTS
89  *
90  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91  *    have remained compatible with the following API requirements:
92  *
93  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
94  *    + ability to allocate arbitrarily large chunks of memory
95  */
96 
97 #include "opt_vm.h"
98 
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/kernel.h>
102 #include <sys/slaballoc.h>
103 #include <sys/mbuf.h>
104 #include <sys/vmmeter.h>
105 #include <sys/lock.h>
106 #include <sys/thread.h>
107 #include <sys/globaldata.h>
108 #include <sys/sysctl.h>
109 #include <sys/ktr.h>
110 
111 #include <vm/vm.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_extern.h>
115 #include <vm/vm_object.h>
116 #include <vm/pmap.h>
117 #include <vm/vm_map.h>
118 #include <vm/vm_page.h>
119 #include <vm/vm_pageout.h>
120 
121 #include <machine/cpu.h>
122 
123 #include <sys/thread2.h>
124 #include <vm/vm_page2.h>
125 
126 #define btokup(z)	(&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
127 
128 #define MEMORY_STRING	"ptr=%p type=%p size=%lu flags=%04x"
129 #define MEMORY_ARGS	void *ptr, void *type, unsigned long size, int flags
130 
131 #if !defined(KTR_MEMORY)
132 #define KTR_MEMORY	KTR_ALL
133 #endif
134 KTR_INFO_MASTER(memory);
135 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
136 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
137 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
138 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
139 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
140 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
141 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
142 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
143 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
144 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
145 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
146 
147 #define logmemory(name, ptr, type, size, flags)				\
148 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
149 #define logmemory_quick(name)						\
150 	KTR_LOG(memory_ ## name)
151 
152 /*
153  * Fixed globals (not per-cpu)
154  */
155 static int ZoneSize;
156 static int ZoneLimit;
157 static int ZonePageCount;
158 static uintptr_t ZoneMask;
159 static int ZoneBigAlloc;		/* in KB */
160 static int ZoneGenAlloc;		/* in KB */
161 struct malloc_type *kmemstatistics;	/* exported to vmstat */
162 #ifdef INVARIANTS
163 static int32_t weirdary[16];
164 #endif
165 
166 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
167 static void kmem_slab_free(void *ptr, vm_size_t bytes);
168 
169 #if defined(INVARIANTS)
170 static void chunk_mark_allocated(SLZone *z, void *chunk);
171 static void chunk_mark_free(SLZone *z, void *chunk);
172 #else
173 #define chunk_mark_allocated(z, chunk)
174 #define chunk_mark_free(z, chunk)
175 #endif
176 
177 /*
178  * Misc constants.  Note that allocations that are exact multiples of
179  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
180  */
181 #define ZONE_RELS_THRESH	32		/* threshold number of zones */
182 
183 #ifdef INVARIANTS
184 /*
185  * The WEIRD_ADDR is used as known text to copy into free objects to
186  * try to create deterministic failure cases if the data is accessed after
187  * free.
188  */
189 #define WEIRD_ADDR      0xdeadc0de
190 #endif
191 #define ZERO_LENGTH_PTR	((void *)-8)
192 
193 /*
194  * Misc global malloc buckets
195  */
196 
197 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
198 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
199 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
200 MALLOC_DEFINE(M_DRM, "m_drm", "DRM memory allocations");
201 
202 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
203 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
204 
205 /*
206  * Initialize the slab memory allocator.  We have to choose a zone size based
207  * on available physical memory.  We choose a zone side which is approximately
208  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
209  * 128K.  The zone size is limited to the bounds set in slaballoc.h
210  * (typically 32K min, 128K max).
211  */
212 static void kmeminit(void *dummy);
213 
214 char *ZeroPage;
215 
216 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL);
217 
218 #ifdef INVARIANTS
219 /*
220  * If enabled any memory allocated without M_ZERO is initialized to -1.
221  */
222 static int  use_malloc_pattern;
223 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
224     &use_malloc_pattern, 0,
225     "Initialize memory to -1 if M_ZERO not specified");
226 #endif
227 
228 static int ZoneRelsThresh = ZONE_RELS_THRESH;
229 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
230 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
231 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
232 static long SlabsAllocated;
233 static long SlabsFreed;
234 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD,
235 	    &SlabsAllocated, 0, "");
236 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD,
237 	    &SlabsFreed, 0, "");
238 static int SlabFreeToTail;
239 SYSCTL_INT(_kern, OID_AUTO, slab_freetotail, CTLFLAG_RW,
240 	    &SlabFreeToTail, 0, "");
241 
242 static struct spinlock kmemstat_spin =
243 			SPINLOCK_INITIALIZER(&kmemstat_spin, "malinit");
244 
245 /*
246  * Returns the kernel memory size limit for the purposes of initializing
247  * various subsystem caches.  The smaller of available memory and the KVM
248  * memory space is returned.
249  *
250  * The size in megabytes is returned.
251  */
252 size_t
253 kmem_lim_size(void)
254 {
255     size_t limsize;
256 
257     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
258     if (limsize > KvaSize)
259 	limsize = KvaSize;
260     return (limsize / (1024 * 1024));
261 }
262 
263 static void
264 kmeminit(void *dummy)
265 {
266     size_t limsize;
267     int usesize;
268 #ifdef INVARIANTS
269     int i;
270 #endif
271 
272     limsize = kmem_lim_size();
273     usesize = (int)(limsize * 1024);	/* convert to KB */
274 
275     /*
276      * If the machine has a large KVM space and more than 8G of ram,
277      * double the zone release threshold to reduce SMP invalidations.
278      * If more than 16G of ram, do it again.
279      *
280      * The BIOS eats a little ram so add some slop.  We want 8G worth of
281      * memory sticks to trigger the first adjustment.
282      */
283     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
284 	    if (limsize >= 7 * 1024)
285 		    ZoneRelsThresh *= 2;
286 	    if (limsize >= 15 * 1024)
287 		    ZoneRelsThresh *= 2;
288     }
289 
290     /*
291      * Calculate the zone size.  This typically calculates to
292      * ZALLOC_MAX_ZONE_SIZE
293      */
294     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
295     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
296 	ZoneSize <<= 1;
297     ZoneLimit = ZoneSize / 4;
298     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
299 	ZoneLimit = ZALLOC_ZONE_LIMIT;
300     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
301     ZonePageCount = ZoneSize / PAGE_SIZE;
302 
303 #ifdef INVARIANTS
304     for (i = 0; i < NELEM(weirdary); ++i)
305 	weirdary[i] = WEIRD_ADDR;
306 #endif
307 
308     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
309 
310     if (bootverbose)
311 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
312 }
313 
314 /*
315  * (low level) Initialize slab-related elements in the globaldata structure.
316  *
317  * Occurs after kmeminit().
318  */
319 void
320 slab_gdinit(globaldata_t gd)
321 {
322 	SLGlobalData *slgd;
323 	int i;
324 
325 	slgd = &gd->gd_slab;
326 	for (i = 0; i < NZONES; ++i)
327 		TAILQ_INIT(&slgd->ZoneAry[i]);
328 	TAILQ_INIT(&slgd->FreeZones);
329 	TAILQ_INIT(&slgd->FreeOvZones);
330 }
331 
332 /*
333  * Initialize a malloc type tracking structure.
334  */
335 void
336 malloc_init(void *data)
337 {
338     struct malloc_type *type = data;
339     size_t limsize;
340 
341     if (type->ks_magic != M_MAGIC)
342 	panic("malloc type lacks magic");
343 
344     if (type->ks_limit != 0)
345 	return;
346 
347     if (vmstats.v_page_count == 0)
348 	panic("malloc_init not allowed before vm init");
349 
350     limsize = kmem_lim_size() * (1024 * 1024);
351     type->ks_limit = limsize / 10;
352 
353     spin_lock(&kmemstat_spin);
354     type->ks_next = kmemstatistics;
355     kmemstatistics = type;
356     spin_unlock(&kmemstat_spin);
357 }
358 
359 void
360 malloc_uninit(void *data)
361 {
362     struct malloc_type *type = data;
363     struct malloc_type *t;
364 #ifdef INVARIANTS
365     int i;
366     long ttl;
367 #endif
368 
369     if (type->ks_magic != M_MAGIC)
370 	panic("malloc type lacks magic");
371 
372     if (vmstats.v_page_count == 0)
373 	panic("malloc_uninit not allowed before vm init");
374 
375     if (type->ks_limit == 0)
376 	panic("malloc_uninit on uninitialized type");
377 
378     /* Make sure that all pending kfree()s are finished. */
379     lwkt_synchronize_ipiqs("muninit");
380 
381 #ifdef INVARIANTS
382     /*
383      * memuse is only correct in aggregation.  Due to memory being allocated
384      * on one cpu and freed on another individual array entries may be
385      * negative or positive (canceling each other out).
386      */
387     for (i = ttl = 0; i < ncpus; ++i)
388 	ttl += type->ks_use[i].memuse;
389     if (ttl) {
390 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
391 	    ttl, type->ks_shortdesc, i);
392     }
393 #endif
394     spin_lock(&kmemstat_spin);
395     if (type == kmemstatistics) {
396 	kmemstatistics = type->ks_next;
397     } else {
398 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
399 	    if (t->ks_next == type) {
400 		t->ks_next = type->ks_next;
401 		break;
402 	    }
403 	}
404     }
405     type->ks_next = NULL;
406     type->ks_limit = 0;
407     spin_unlock(&kmemstat_spin);
408 }
409 
410 /*
411  * Increase the kmalloc pool limit for the specified pool.  No changes
412  * are the made if the pool would shrink.
413  */
414 void
415 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
416 {
417     if (type->ks_limit == 0)
418 	malloc_init(type);
419     if (bytes == 0)
420 	bytes = KvaSize;
421     if (type->ks_limit < bytes)
422 	type->ks_limit = bytes;
423 }
424 
425 void
426 kmalloc_set_unlimited(struct malloc_type *type)
427 {
428     type->ks_limit = kmem_lim_size() * (1024 * 1024);
429 }
430 
431 /*
432  * Dynamically create a malloc pool.  This function is a NOP if *typep is
433  * already non-NULL.
434  */
435 void
436 kmalloc_create(struct malloc_type **typep, const char *descr)
437 {
438 	struct malloc_type *type;
439 
440 	if (*typep == NULL) {
441 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
442 		type->ks_magic = M_MAGIC;
443 		type->ks_shortdesc = descr;
444 		malloc_init(type);
445 		*typep = type;
446 	}
447 }
448 
449 /*
450  * Destroy a dynamically created malloc pool.  This function is a NOP if
451  * the pool has already been destroyed.
452  */
453 void
454 kmalloc_destroy(struct malloc_type **typep)
455 {
456 	if (*typep != NULL) {
457 		malloc_uninit(*typep);
458 		kfree(*typep, M_TEMP);
459 		*typep = NULL;
460 	}
461 }
462 
463 /*
464  * Calculate the zone index for the allocation request size and set the
465  * allocation request size to that particular zone's chunk size.
466  */
467 static __inline int
468 zoneindex(unsigned long *bytes, unsigned long *align)
469 {
470     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
471     if (n < 128) {
472 	*bytes = n = (n + 7) & ~7;
473 	*align = 8;
474 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
475     }
476     if (n < 256) {
477 	*bytes = n = (n + 15) & ~15;
478 	*align = 16;
479 	return(n / 16 + 7);
480     }
481     if (n < 8192) {
482 	if (n < 512) {
483 	    *bytes = n = (n + 31) & ~31;
484 	    *align = 32;
485 	    return(n / 32 + 15);
486 	}
487 	if (n < 1024) {
488 	    *bytes = n = (n + 63) & ~63;
489 	    *align = 64;
490 	    return(n / 64 + 23);
491 	}
492 	if (n < 2048) {
493 	    *bytes = n = (n + 127) & ~127;
494 	    *align = 128;
495 	    return(n / 128 + 31);
496 	}
497 	if (n < 4096) {
498 	    *bytes = n = (n + 255) & ~255;
499 	    *align = 256;
500 	    return(n / 256 + 39);
501 	}
502 	*bytes = n = (n + 511) & ~511;
503 	*align = 512;
504 	return(n / 512 + 47);
505     }
506 #if ZALLOC_ZONE_LIMIT > 8192
507     if (n < 16384) {
508 	*bytes = n = (n + 1023) & ~1023;
509 	*align = 1024;
510 	return(n / 1024 + 55);
511     }
512 #endif
513 #if ZALLOC_ZONE_LIMIT > 16384
514     if (n < 32768) {
515 	*bytes = n = (n + 2047) & ~2047;
516 	*align = 2048;
517 	return(n / 2048 + 63);
518     }
519 #endif
520     panic("Unexpected byte count %d", n);
521     return(0);
522 }
523 
524 static __inline
525 void
526 clean_zone_rchunks(SLZone *z)
527 {
528     SLChunk *bchunk;
529 
530     while ((bchunk = z->z_RChunks) != NULL) {
531 	cpu_ccfence();
532 	if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
533 	    *z->z_LChunksp = bchunk;
534 	    while (bchunk) {
535 		chunk_mark_free(z, bchunk);
536 		z->z_LChunksp = &bchunk->c_Next;
537 		bchunk = bchunk->c_Next;
538 		++z->z_NFree;
539 	    }
540 	    break;
541 	}
542 	/* retry */
543     }
544 }
545 
546 /*
547  * If the zone becomes totally free and is not the only zone listed for a
548  * chunk size we move it to the FreeZones list.  We always leave at least
549  * one zone per chunk size listed, even if it is freeable.
550  *
551  * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
552  * otherwise MP races can result in our free_remote code accessing a
553  * destroyed zone.  The remote end interlocks z_RCount with z_RChunks
554  * so one has to test both z_NFree and z_RCount.
555  *
556  * Since this code can be called from an IPI callback, do *NOT* try to mess
557  * with kernel_map here.  Hysteresis will be performed at kmalloc() time.
558  */
559 static __inline
560 SLZone *
561 check_zone_free(SLGlobalData *slgd, SLZone *z)
562 {
563     SLZone *znext;
564 
565     znext = TAILQ_NEXT(z, z_Entry);
566     if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
567 	(TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || znext)
568     ) {
569 	int *kup;
570 
571 	TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
572 
573 	z->z_Magic = -1;
574 	TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
575 	++slgd->NFreeZones;
576 	kup = btokup(z);
577 	*kup = 0;
578     }
579     return znext;
580 }
581 
582 #ifdef SLAB_DEBUG
583 /*
584  * Used to debug memory corruption issues.  Record up to (typically 32)
585  * allocation sources for this zone (for a particular chunk size).
586  */
587 
588 static void
589 slab_record_source(SLZone *z, const char *file, int line)
590 {
591     int i;
592     int b = line & (SLAB_DEBUG_ENTRIES - 1);
593 
594     i = b;
595     do {
596 	if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
597 		return;
598 	if (z->z_Sources[i].file == NULL)
599 		break;
600 	i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
601     } while (i != b);
602     z->z_Sources[i].file = file;
603     z->z_Sources[i].line = line;
604 }
605 
606 #endif
607 
608 static __inline unsigned long
609 powerof2_size(unsigned long size)
610 {
611 	int i;
612 
613 	if (size == 0 || powerof2(size))
614 		return size;
615 
616 	i = flsl(size);
617 	return (1UL << i);
618 }
619 
620 /*
621  * kmalloc()	(SLAB ALLOCATOR)
622  *
623  *	Allocate memory via the slab allocator.  If the request is too large,
624  *	or if it page-aligned beyond a certain size, we fall back to the
625  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
626  *	&SlabMisc if you don't care.
627  *
628  *	M_RNOWAIT	- don't block.
629  *	M_NULLOK	- return NULL instead of blocking.
630  *	M_ZERO		- zero the returned memory.
631  *	M_USE_RESERVE	- allow greater drawdown of the free list
632  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
633  *	M_POWEROF2	- roundup size to the nearest power of 2
634  *
635  * MPSAFE
636  */
637 
638 #ifdef SLAB_DEBUG
639 void *
640 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
641 	      const char *file, int line)
642 #else
643 void *
644 kmalloc(unsigned long size, struct malloc_type *type, int flags)
645 #endif
646 {
647     SLZone *z;
648     SLChunk *chunk;
649     SLGlobalData *slgd;
650     struct globaldata *gd;
651     unsigned long align;
652     int zi;
653 #ifdef INVARIANTS
654     int i;
655 #endif
656 
657     logmemory_quick(malloc_beg);
658     gd = mycpu;
659     slgd = &gd->gd_slab;
660 
661     /*
662      * XXX silly to have this in the critical path.
663      */
664     if (type->ks_limit == 0) {
665 	crit_enter();
666 	malloc_init(type);
667 	crit_exit();
668     }
669     ++type->ks_calls;
670 
671     if (flags & M_POWEROF2)
672 	size = powerof2_size(size);
673 
674     /*
675      * Handle the case where the limit is reached.  Panic if we can't return
676      * NULL.  The original malloc code looped, but this tended to
677      * simply deadlock the computer.
678      *
679      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
680      * to determine if a more complete limit check should be done.  The
681      * actual memory use is tracked via ks_use[cpu].memuse.
682      */
683     while (type->ks_loosememuse >= type->ks_limit) {
684 	int i;
685 	long ttl;
686 
687 	for (i = ttl = 0; i < ncpus; ++i)
688 	    ttl += type->ks_use[i].memuse;
689 	type->ks_loosememuse = ttl;	/* not MP synchronized */
690 	if ((ssize_t)ttl < 0)		/* deal with occassional race */
691 		ttl = 0;
692 	if (ttl >= type->ks_limit) {
693 	    if (flags & M_NULLOK) {
694 		logmemory(malloc_end, NULL, type, size, flags);
695 		return(NULL);
696 	    }
697 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
698 	}
699     }
700 
701     /*
702      * Handle the degenerate size == 0 case.  Yes, this does happen.
703      * Return a special pointer.  This is to maintain compatibility with
704      * the original malloc implementation.  Certain devices, such as the
705      * adaptec driver, not only allocate 0 bytes, they check for NULL and
706      * also realloc() later on.  Joy.
707      */
708     if (size == 0) {
709 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
710 	return(ZERO_LENGTH_PTR);
711     }
712 
713     /*
714      * Handle hysteresis from prior frees here in malloc().  We cannot
715      * safely manipulate the kernel_map in free() due to free() possibly
716      * being called via an IPI message or from sensitive interrupt code.
717      *
718      * NOTE: ku_pagecnt must be cleared before we free the slab or we
719      *	     might race another cpu allocating the kva and setting
720      *	     ku_pagecnt.
721      */
722     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
723 	crit_enter();
724 	if (slgd->NFreeZones > ZoneRelsThresh) {	/* crit sect race */
725 	    int *kup;
726 
727 	    z = TAILQ_LAST(&slgd->FreeZones, SLZoneList);
728 	    KKASSERT(z != NULL);
729 	    TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
730 	    --slgd->NFreeZones;
731 	    kup = btokup(z);
732 	    *kup = 0;
733 	    kmem_slab_free(z, ZoneSize);	/* may block */
734 	    atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024);
735 	}
736 	crit_exit();
737     }
738 
739     /*
740      * XXX handle oversized frees that were queued from kfree().
741      */
742     while (TAILQ_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) {
743 	crit_enter();
744 	if ((z = TAILQ_LAST(&slgd->FreeOvZones, SLZoneList)) != NULL) {
745 	    vm_size_t tsize;
746 
747 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
748 	    TAILQ_REMOVE(&slgd->FreeOvZones, z, z_Entry);
749 	    tsize = z->z_ChunkSize;
750 	    kmem_slab_free(z, tsize);	/* may block */
751 	    atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
752 	}
753 	crit_exit();
754     }
755 
756     /*
757      * Handle large allocations directly.  There should not be very many of
758      * these so performance is not a big issue.
759      *
760      * The backend allocator is pretty nasty on a SMP system.   Use the
761      * slab allocator for one and two page-sized chunks even though we lose
762      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
763      */
764     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
765 	int *kup;
766 
767 	size = round_page(size);
768 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
769 	if (chunk == NULL) {
770 	    logmemory(malloc_end, NULL, type, size, flags);
771 	    return(NULL);
772 	}
773 	atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
774 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
775 	flags |= M_PASSIVE_ZERO;
776 	kup = btokup(chunk);
777 	*kup = size / PAGE_SIZE;
778 	crit_enter();
779 	goto done;
780     }
781 
782     /*
783      * Attempt to allocate out of an existing zone.  First try the free list,
784      * then allocate out of unallocated space.  If we find a good zone move
785      * it to the head of the list so later allocations find it quickly
786      * (we might have thousands of zones in the list).
787      *
788      * Note: zoneindex() will panic of size is too large.
789      */
790     zi = zoneindex(&size, &align);
791     KKASSERT(zi < NZONES);
792     crit_enter();
793 
794     if ((z = TAILQ_LAST(&slgd->ZoneAry[zi], SLZoneList)) != NULL) {
795 	/*
796 	 * Locate a chunk - we have to have at least one.  If this is the
797 	 * last chunk go ahead and do the work to retrieve chunks freed
798 	 * from remote cpus, and if the zone is still empty move it off
799 	 * the ZoneAry.
800 	 */
801 	if (--z->z_NFree <= 0) {
802 	    KKASSERT(z->z_NFree == 0);
803 
804 	    /*
805 	     * WARNING! This code competes with other cpus.  It is ok
806 	     * for us to not drain RChunks here but we might as well, and
807 	     * it is ok if more accumulate after we're done.
808 	     *
809 	     * Set RSignal before pulling rchunks off, indicating that we
810 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
811 	     * read RSignal before putting rchunks on thus interlocking
812 	     * their IPI signaling.
813 	     */
814 	    if (z->z_RChunks == NULL)
815 		atomic_swap_int(&z->z_RSignal, 1);
816 
817 	    clean_zone_rchunks(z);
818 
819 	    /*
820 	     * Remove from the zone list if no free chunks remain.
821 	     * Clear RSignal
822 	     */
823 	    if (z->z_NFree == 0) {
824 		TAILQ_REMOVE(&slgd->ZoneAry[zi], z, z_Entry);
825 	    } else {
826 		z->z_RSignal = 0;
827 	    }
828 	}
829 
830 	/*
831 	 * Fast path, we have chunks available in z_LChunks.
832 	 */
833 	chunk = z->z_LChunks;
834 	if (chunk) {
835 		chunk_mark_allocated(z, chunk);
836 		z->z_LChunks = chunk->c_Next;
837 		if (z->z_LChunks == NULL)
838 			z->z_LChunksp = &z->z_LChunks;
839 #ifdef SLAB_DEBUG
840 		slab_record_source(z, file, line);
841 #endif
842 		goto done;
843 	}
844 
845 	/*
846 	 * No chunks are available in LChunks, the free chunk MUST be
847 	 * in the never-before-used memory area, controlled by UIndex.
848 	 *
849 	 * The consequences are very serious if our zone got corrupted so
850 	 * we use an explicit panic rather than a KASSERT.
851 	 */
852 	if (z->z_UIndex + 1 != z->z_NMax)
853 	    ++z->z_UIndex;
854 	else
855 	    z->z_UIndex = 0;
856 
857 	if (z->z_UIndex == z->z_UEndIndex)
858 	    panic("slaballoc: corrupted zone");
859 
860 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
861 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
862 	    flags &= ~M_ZERO;
863 	    flags |= M_PASSIVE_ZERO;
864 	}
865 	chunk_mark_allocated(z, chunk);
866 #ifdef SLAB_DEBUG
867 	slab_record_source(z, file, line);
868 #endif
869 	goto done;
870     }
871 
872     /*
873      * If all zones are exhausted we need to allocate a new zone for this
874      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
875      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
876      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
877      * we do not pre-zero it because we do not want to mess up the L1 cache.
878      *
879      * At least one subsystem, the tty code (see CROUND) expects power-of-2
880      * allocations to be power-of-2 aligned.  We maintain compatibility by
881      * adjusting the base offset below.
882      */
883     {
884 	int off;
885 	int *kup;
886 
887 	if ((z = TAILQ_FIRST(&slgd->FreeZones)) != NULL) {
888 	    TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
889 	    --slgd->NFreeZones;
890 	    bzero(z, sizeof(SLZone));
891 	    z->z_Flags |= SLZF_UNOTZEROD;
892 	} else {
893 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
894 	    if (z == NULL)
895 		goto fail;
896 	    atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024);
897 	}
898 
899 	/*
900 	 * How big is the base structure?
901 	 */
902 #if defined(INVARIANTS)
903 	/*
904 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
905 	 * complicated so don't make an exact calculation.
906 	 */
907 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
908 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
909 #else
910 	off = sizeof(SLZone);
911 #endif
912 
913 	/*
914 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
915 	 * Otherwise properly align the data according to the chunk size.
916 	 */
917 	if (powerof2(size))
918 	    align = size;
919 	off = roundup2(off, align);
920 
921 	z->z_Magic = ZALLOC_SLAB_MAGIC;
922 	z->z_ZoneIndex = zi;
923 	z->z_NMax = (ZoneSize - off) / size;
924 	z->z_NFree = z->z_NMax - 1;
925 	z->z_BasePtr = (char *)z + off;
926 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
927 	z->z_ChunkSize = size;
928 	z->z_CpuGd = gd;
929 	z->z_Cpu = gd->gd_cpuid;
930 	z->z_LChunksp = &z->z_LChunks;
931 #ifdef SLAB_DEBUG
932 	bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
933 	bzero(z->z_Sources, sizeof(z->z_Sources));
934 #endif
935 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
936 	TAILQ_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry);
937 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
938 	    flags &= ~M_ZERO;	/* already zero'd */
939 	    flags |= M_PASSIVE_ZERO;
940 	}
941 	kup = btokup(z);
942 	*kup = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
943 	chunk_mark_allocated(z, chunk);
944 #ifdef SLAB_DEBUG
945 	slab_record_source(z, file, line);
946 #endif
947 
948 	/*
949 	 * Slide the base index for initial allocations out of the next
950 	 * zone we create so we do not over-weight the lower part of the
951 	 * cpu memory caches.
952 	 */
953 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
954 				& (ZALLOC_MAX_ZONE_SIZE - 1);
955     }
956 
957 done:
958     ++type->ks_use[gd->gd_cpuid].inuse;
959     type->ks_use[gd->gd_cpuid].memuse += size;
960     type->ks_loosememuse += size;	/* not MP synchronized */
961     crit_exit();
962 
963     if (flags & M_ZERO)
964 	bzero(chunk, size);
965 #ifdef INVARIANTS
966     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
967 	if (use_malloc_pattern) {
968 	    for (i = 0; i < size; i += sizeof(int)) {
969 		*(int *)((char *)chunk + i) = -1;
970 	    }
971 	}
972 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
973     }
974 #endif
975     logmemory(malloc_end, chunk, type, size, flags);
976     return(chunk);
977 fail:
978     crit_exit();
979     logmemory(malloc_end, NULL, type, size, flags);
980     return(NULL);
981 }
982 
983 /*
984  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
985  *
986  * Generally speaking this routine is not called very often and we do
987  * not attempt to optimize it beyond reusing the same pointer if the
988  * new size fits within the chunking of the old pointer's zone.
989  */
990 #ifdef SLAB_DEBUG
991 void *
992 krealloc_debug(void *ptr, unsigned long size,
993 	       struct malloc_type *type, int flags,
994 	       const char *file, int line)
995 #else
996 void *
997 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
998 #endif
999 {
1000     unsigned long osize;
1001     unsigned long align;
1002     SLZone *z;
1003     void *nptr;
1004     int *kup;
1005 
1006     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
1007 
1008     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
1009 	return(kmalloc_debug(size, type, flags, file, line));
1010     if (size == 0) {
1011 	kfree(ptr, type);
1012 	return(NULL);
1013     }
1014 
1015     /*
1016      * Handle oversized allocations.  XXX we really should require that a
1017      * size be passed to free() instead of this nonsense.
1018      */
1019     kup = btokup(ptr);
1020     if (*kup > 0) {
1021 	osize = *kup << PAGE_SHIFT;
1022 	if (osize == round_page(size))
1023 	    return(ptr);
1024 	if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1025 	    return(NULL);
1026 	bcopy(ptr, nptr, min(size, osize));
1027 	kfree(ptr, type);
1028 	return(nptr);
1029     }
1030 
1031     /*
1032      * Get the original allocation's zone.  If the new request winds up
1033      * using the same chunk size we do not have to do anything.
1034      */
1035     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1036     kup = btokup(z);
1037     KKASSERT(*kup < 0);
1038     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1039 
1040     /*
1041      * Allocate memory for the new request size.  Note that zoneindex has
1042      * already adjusted the request size to the appropriate chunk size, which
1043      * should optimize our bcopy().  Then copy and return the new pointer.
1044      *
1045      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
1046      * necessary align the result.
1047      *
1048      * We can only zoneindex (to align size to the chunk size) if the new
1049      * size is not too large.
1050      */
1051     if (size < ZoneLimit) {
1052 	zoneindex(&size, &align);
1053 	if (z->z_ChunkSize == size)
1054 	    return(ptr);
1055     }
1056     if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1057 	return(NULL);
1058     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
1059     kfree(ptr, type);
1060     return(nptr);
1061 }
1062 
1063 /*
1064  * Return the kmalloc limit for this type, in bytes.
1065  */
1066 long
1067 kmalloc_limit(struct malloc_type *type)
1068 {
1069     if (type->ks_limit == 0) {
1070 	crit_enter();
1071 	if (type->ks_limit == 0)
1072 	    malloc_init(type);
1073 	crit_exit();
1074     }
1075     return(type->ks_limit);
1076 }
1077 
1078 /*
1079  * Allocate a copy of the specified string.
1080  *
1081  * (MP SAFE) (MAY BLOCK)
1082  */
1083 #ifdef SLAB_DEBUG
1084 char *
1085 kstrdup_debug(const char *str, struct malloc_type *type,
1086 	      const char *file, int line)
1087 #else
1088 char *
1089 kstrdup(const char *str, struct malloc_type *type)
1090 #endif
1091 {
1092     int zlen;	/* length inclusive of terminating NUL */
1093     char *nstr;
1094 
1095     if (str == NULL)
1096 	return(NULL);
1097     zlen = strlen(str) + 1;
1098     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1099     bcopy(str, nstr, zlen);
1100     return(nstr);
1101 }
1102 
1103 #ifdef SLAB_DEBUG
1104 char *
1105 kstrndup_debug(const char *str, size_t maxlen, struct malloc_type *type,
1106 	      const char *file, int line)
1107 #else
1108 char *
1109 kstrndup(const char *str, size_t maxlen, struct malloc_type *type)
1110 #endif
1111 {
1112     int zlen;	/* length inclusive of terminating NUL */
1113     char *nstr;
1114 
1115     if (str == NULL)
1116 	return(NULL);
1117     zlen = strnlen(str, maxlen) + 1;
1118     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1119     bcopy(str, nstr, zlen);
1120     nstr[zlen - 1] = '\0';
1121     return(nstr);
1122 }
1123 
1124 /*
1125  * Notify our cpu that a remote cpu has freed some chunks in a zone that
1126  * we own.  RCount will be bumped so the memory should be good, but validate
1127  * that it really is.
1128  */
1129 static
1130 void
1131 kfree_remote(void *ptr)
1132 {
1133     SLGlobalData *slgd;
1134     SLZone *z;
1135     int nfree;
1136     int *kup;
1137 
1138     slgd = &mycpu->gd_slab;
1139     z = ptr;
1140     kup = btokup(z);
1141     KKASSERT(*kup == -((int)mycpuid + 1));
1142     KKASSERT(z->z_RCount > 0);
1143     atomic_subtract_int(&z->z_RCount, 1);
1144 
1145     logmemory(free_rem_beg, z, NULL, 0L, 0);
1146     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1147     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
1148     nfree = z->z_NFree;
1149 
1150     /*
1151      * Indicate that we will no longer be off of the ZoneAry by
1152      * clearing RSignal.
1153      */
1154     if (z->z_RChunks)
1155 	z->z_RSignal = 0;
1156 
1157     /*
1158      * Atomically extract the bchunks list and then process it back
1159      * into the lchunks list.  We want to append our bchunks to the
1160      * lchunks list and not prepend since we likely do not have
1161      * cache mastership of the related data (not that it helps since
1162      * we are using c_Next).
1163      */
1164     clean_zone_rchunks(z);
1165     if (z->z_NFree && nfree == 0) {
1166 	TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1167     }
1168 
1169     /*
1170      * If the zone becomes totally free and is not the only zone listed for a
1171      * chunk size we move it to the FreeZones list.  We always leave at least
1172      * one zone per chunk size listed, even if it is freeable.
1173      *
1174      * Since this code can be called from an IPI callback, do *NOT* try to
1175      * mess with kernel_map here.  Hysteresis will be performed at malloc()
1176      * time.
1177      *
1178      * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
1179      * otherwise MP races can result in our free_remote code accessing a
1180      * destroyed zone.  The remote end interlocks z_RCount with z_RChunks
1181      * so one has to test both z_NFree and z_RCount.
1182      */
1183     if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
1184 	(TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z ||
1185 	 TAILQ_NEXT(z, z_Entry))
1186     ) {
1187 	int *kup;
1188 
1189 	TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1190 	z->z_Magic = -1;
1191 	TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
1192 	++slgd->NFreeZones;
1193 	kup = btokup(z);
1194 	*kup = 0;
1195     }
1196     logmemory(free_rem_end, z, NULL, 0L, 0);
1197 }
1198 
1199 /*
1200  * free (SLAB ALLOCATOR)
1201  *
1202  * Free a memory block previously allocated by malloc.  Note that we do not
1203  * attempt to update ks_loosememuse as MP races could prevent us from
1204  * checking memory limits in malloc.
1205  *
1206  * MPSAFE
1207  */
1208 void
1209 kfree(void *ptr, struct malloc_type *type)
1210 {
1211     SLZone *z;
1212     SLChunk *chunk;
1213     SLGlobalData *slgd;
1214     struct globaldata *gd;
1215     int *kup;
1216     unsigned long size;
1217     SLChunk *bchunk;
1218     int rsignal;
1219 
1220     logmemory_quick(free_beg);
1221     gd = mycpu;
1222     slgd = &gd->gd_slab;
1223 
1224     if (ptr == NULL)
1225 	panic("trying to free NULL pointer");
1226 
1227     /*
1228      * Handle special 0-byte allocations
1229      */
1230     if (ptr == ZERO_LENGTH_PTR) {
1231 	logmemory(free_zero, ptr, type, -1UL, 0);
1232 	logmemory_quick(free_end);
1233 	return;
1234     }
1235 
1236     /*
1237      * Panic on bad malloc type
1238      */
1239     if (type->ks_magic != M_MAGIC)
1240 	panic("free: malloc type lacks magic");
1241 
1242     /*
1243      * Handle oversized allocations.  XXX we really should require that a
1244      * size be passed to free() instead of this nonsense.
1245      *
1246      * This code is never called via an ipi.
1247      */
1248     kup = btokup(ptr);
1249     if (*kup > 0) {
1250 	size = *kup << PAGE_SHIFT;
1251 	*kup = 0;
1252 #ifdef INVARIANTS
1253 	KKASSERT(sizeof(weirdary) <= size);
1254 	bcopy(weirdary, ptr, sizeof(weirdary));
1255 #endif
1256 	/*
1257 	 * NOTE: For oversized allocations we do not record the
1258 	 *	     originating cpu.  It gets freed on the cpu calling
1259 	 *	     kfree().  The statistics are in aggregate.
1260 	 *
1261 	 * note: XXX we have still inherited the interrupts-can't-block
1262 	 * assumption.  An interrupt thread does not bump
1263 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1264 	 * primarily until we can fix softupdate's assumptions about free().
1265 	 */
1266 	crit_enter();
1267 	--type->ks_use[gd->gd_cpuid].inuse;
1268 	type->ks_use[gd->gd_cpuid].memuse -= size;
1269 	if (mycpu->gd_intr_nesting_level ||
1270 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1271 	{
1272 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1273 	    z = (SLZone *)ptr;
1274 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1275 	    z->z_ChunkSize = size;
1276 
1277 	    TAILQ_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry);
1278 	    crit_exit();
1279 	} else {
1280 	    crit_exit();
1281 	    logmemory(free_ovsz, ptr, type, size, 0);
1282 	    kmem_slab_free(ptr, size);	/* may block */
1283 	    atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1284 	}
1285 	logmemory_quick(free_end);
1286 	return;
1287     }
1288 
1289     /*
1290      * Zone case.  Figure out the zone based on the fact that it is
1291      * ZoneSize aligned.
1292      */
1293     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1294     kup = btokup(z);
1295     KKASSERT(*kup < 0);
1296     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1297 
1298     /*
1299      * If we do not own the zone then use atomic ops to free to the
1300      * remote cpu linked list and notify the target zone using a
1301      * passive message.
1302      *
1303      * The target zone cannot be deallocated while we own a chunk of it,
1304      * so the zone header's storage is stable until the very moment
1305      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1306      *
1307      * (no critical section needed)
1308      */
1309     if (z->z_CpuGd != gd) {
1310 	/*
1311 	 * Making these adjustments now allow us to avoid passing (type)
1312 	 * to the remote cpu.  Note that inuse/memuse is being
1313 	 * adjusted on OUR cpu, not the zone cpu, but it should all still
1314 	 * sum up properly and cancel out.
1315 	 */
1316 	crit_enter();
1317 	--type->ks_use[gd->gd_cpuid].inuse;
1318 	type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1319 	crit_exit();
1320 
1321 	/*
1322 	 * WARNING! This code competes with other cpus.  Once we
1323 	 *	    successfully link the chunk to RChunks the remote
1324 	 *	    cpu can rip z's storage out from under us.
1325 	 *
1326 	 *	    Bumping RCount prevents z's storage from getting
1327 	 *	    ripped out.
1328 	 */
1329 	rsignal = z->z_RSignal;
1330 	cpu_lfence();
1331 	if (rsignal)
1332 		atomic_add_int(&z->z_RCount, 1);
1333 
1334 	chunk = ptr;
1335 	for (;;) {
1336 	    bchunk = z->z_RChunks;
1337 	    cpu_ccfence();
1338 	    chunk->c_Next = bchunk;
1339 	    cpu_sfence();
1340 
1341 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1342 		break;
1343 	}
1344 
1345 	/*
1346 	 * We have to signal the remote cpu if our actions will cause
1347 	 * the remote zone to be placed back on ZoneAry so it can
1348 	 * move the zone back on.
1349 	 *
1350 	 * We only need to deal with NULL->non-NULL RChunk transitions
1351 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1352 	 * before adding our chunk to RChunks.  This should result in
1353 	 * virtually no IPI traffic.
1354 	 *
1355 	 * We can use a passive IPI to reduce overhead even further.
1356 	 */
1357 	if (bchunk == NULL && rsignal) {
1358 		logmemory(free_request, ptr, type,
1359 			  (unsigned long)z->z_ChunkSize, 0);
1360 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1361 	    /* z can get ripped out from under us from this point on */
1362 	} else if (rsignal) {
1363 	    atomic_subtract_int(&z->z_RCount, 1);
1364 	    /* z can get ripped out from under us from this point on */
1365 	}
1366 	logmemory_quick(free_end);
1367 	return;
1368     }
1369 
1370     /*
1371      * kfree locally
1372      */
1373     logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1374 
1375     crit_enter();
1376     chunk = ptr;
1377     chunk_mark_free(z, chunk);
1378 
1379     /*
1380      * Put weird data into the memory to detect modifications after freeing,
1381      * illegal pointer use after freeing (we should fault on the odd address),
1382      * and so forth.  XXX needs more work, see the old malloc code.
1383      */
1384 #ifdef INVARIANTS
1385     if (z->z_ChunkSize < sizeof(weirdary))
1386 	bcopy(weirdary, chunk, z->z_ChunkSize);
1387     else
1388 	bcopy(weirdary, chunk, sizeof(weirdary));
1389 #endif
1390 
1391     /*
1392      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1393      * to the front of the linked list so it is more likely to be
1394      * reallocated, since it is already in our L1 cache.
1395      */
1396 #ifdef INVARIANTS
1397     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1398 	panic("BADFREE %p", chunk);
1399 #endif
1400     chunk->c_Next = z->z_LChunks;
1401     z->z_LChunks = chunk;
1402     if (chunk->c_Next == NULL)
1403 	    z->z_LChunksp = &chunk->c_Next;
1404 
1405 #ifdef INVARIANTS
1406     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1407 	panic("BADFREE2");
1408 #endif
1409 
1410     /*
1411      * Bump the number of free chunks.  If it becomes non-zero the zone
1412      * must be added back onto the appropriate list.  A fully allocated
1413      * zone that sees its first free is considered 'mature' and is placed
1414      * at the head, giving the system time to potentially free the remaining
1415      * entries even while other allocations are going on and making the zone
1416      * freeable.
1417      */
1418     if (z->z_NFree++ == 0) {
1419 	if (SlabFreeToTail)
1420 		TAILQ_INSERT_TAIL(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1421 	else
1422 		TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1423     }
1424 
1425     --type->ks_use[z->z_Cpu].inuse;
1426     type->ks_use[z->z_Cpu].memuse -= z->z_ChunkSize;
1427 
1428     check_zone_free(slgd, z);
1429     logmemory_quick(free_end);
1430     crit_exit();
1431 }
1432 
1433 /*
1434  * Cleanup slabs which are hanging around due to RChunks or which are wholely
1435  * free and can be moved to the free list if not moved by other means.
1436  *
1437  * Called once every 10 seconds on all cpus.
1438  */
1439 void
1440 slab_cleanup(void)
1441 {
1442     SLGlobalData *slgd = &mycpu->gd_slab;
1443     SLZone *z;
1444     int i;
1445 
1446     crit_enter();
1447     for (i = 0; i < NZONES; ++i) {
1448 	if ((z = TAILQ_FIRST(&slgd->ZoneAry[i])) == NULL)
1449 		continue;
1450 
1451 	/*
1452 	 * Scan zones.
1453 	 */
1454 	while (z) {
1455 	    /*
1456 	     * Shift all RChunks to the end of the LChunks list.  This is
1457 	     * an O(1) operation.
1458 	     *
1459 	     * Then free the zone if possible.
1460 	     */
1461 	    clean_zone_rchunks(z);
1462 	    z = check_zone_free(slgd, z);
1463 	}
1464     }
1465     crit_exit();
1466 }
1467 
1468 #if defined(INVARIANTS)
1469 
1470 /*
1471  * Helper routines for sanity checks
1472  */
1473 static
1474 void
1475 chunk_mark_allocated(SLZone *z, void *chunk)
1476 {
1477     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1478     uint32_t *bitptr;
1479 
1480     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1481     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1482 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1483     bitptr = &z->z_Bitmap[bitdex >> 5];
1484     bitdex &= 31;
1485     KASSERT((*bitptr & (1 << bitdex)) == 0,
1486 	    ("memory chunk %p is already allocated!", chunk));
1487     *bitptr |= 1 << bitdex;
1488 }
1489 
1490 static
1491 void
1492 chunk_mark_free(SLZone *z, void *chunk)
1493 {
1494     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1495     uint32_t *bitptr;
1496 
1497     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1498     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1499 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1500     bitptr = &z->z_Bitmap[bitdex >> 5];
1501     bitdex &= 31;
1502     KASSERT((*bitptr & (1 << bitdex)) != 0,
1503 	    ("memory chunk %p is already free!", chunk));
1504     *bitptr &= ~(1 << bitdex);
1505 }
1506 
1507 #endif
1508 
1509 /*
1510  * kmem_slab_alloc()
1511  *
1512  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1513  *	specified alignment.  M_* flags are expected in the flags field.
1514  *
1515  *	Alignment must be a multiple of PAGE_SIZE.
1516  *
1517  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1518  *	but when we move zalloc() over to use this function as its backend
1519  *	we will have to switch to kreserve/krelease and call reserve(0)
1520  *	after the new space is made available.
1521  *
1522  *	Interrupt code which has preempted other code is not allowed to
1523  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1524  *	non-preemptively or blocks and then runs non-preemptively, then
1525  *	it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
1526  */
1527 static void *
1528 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1529 {
1530     vm_size_t i;
1531     vm_offset_t addr;
1532     int count, vmflags, base_vmflags;
1533     vm_page_t mbase = NULL;
1534     vm_page_t m;
1535     thread_t td;
1536 
1537     size = round_page(size);
1538     addr = vm_map_min(&kernel_map);
1539 
1540     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1541     crit_enter();
1542     vm_map_lock(&kernel_map);
1543     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1544 	vm_map_unlock(&kernel_map);
1545 	if ((flags & M_NULLOK) == 0)
1546 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1547 	vm_map_entry_release(count);
1548 	crit_exit();
1549 	return(NULL);
1550     }
1551 
1552     /*
1553      * kernel_object maps 1:1 to kernel_map.
1554      */
1555     vm_object_hold(&kernel_object);
1556     vm_object_reference_locked(&kernel_object);
1557     vm_map_insert(&kernel_map, &count,
1558 		  &kernel_object, NULL,
1559 		  addr, addr, addr + size,
1560 		  VM_MAPTYPE_NORMAL,
1561 		  VM_SUBSYS_KMALLOC,
1562 		  VM_PROT_ALL, VM_PROT_ALL, 0);
1563     vm_object_drop(&kernel_object);
1564     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1565     vm_map_unlock(&kernel_map);
1566 
1567     td = curthread;
1568 
1569     base_vmflags = 0;
1570     if (flags & M_ZERO)
1571         base_vmflags |= VM_ALLOC_ZERO;
1572     if (flags & M_USE_RESERVE)
1573 	base_vmflags |= VM_ALLOC_SYSTEM;
1574     if (flags & M_USE_INTERRUPT_RESERVE)
1575         base_vmflags |= VM_ALLOC_INTERRUPT;
1576     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1577 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1578 	      flags, ((int **)&size)[-1]);
1579     }
1580 
1581     /*
1582      * Allocate the pages.  Do not map them yet.  VM_ALLOC_NORMAL can only
1583      * be set if we are not preempting.
1584      *
1585      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1586      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1587      * implied in this case), though I'm not sure if we really need to
1588      * do that.
1589      */
1590     vmflags = base_vmflags;
1591     if (flags & M_WAITOK) {
1592 	if (td->td_preempted)
1593 	    vmflags |= VM_ALLOC_SYSTEM;
1594 	else
1595 	    vmflags |= VM_ALLOC_NORMAL;
1596     }
1597 
1598     vm_object_hold(&kernel_object);
1599     for (i = 0; i < size; i += PAGE_SIZE) {
1600 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1601 	if (i == 0)
1602 		mbase = m;
1603 
1604 	/*
1605 	 * If the allocation failed we either return NULL or we retry.
1606 	 *
1607 	 * If M_WAITOK is specified we wait for more memory and retry.
1608 	 * If M_WAITOK is specified from a preemption we yield instead of
1609 	 * wait.  Livelock will not occur because the interrupt thread
1610 	 * will not be preempting anyone the second time around after the
1611 	 * yield.
1612 	 */
1613 	if (m == NULL) {
1614 	    if (flags & M_WAITOK) {
1615 		if (td->td_preempted) {
1616 		    lwkt_switch();
1617 		} else {
1618 		    vm_wait(0);
1619 		}
1620 		i -= PAGE_SIZE;	/* retry */
1621 		continue;
1622 	    }
1623 	    break;
1624 	}
1625     }
1626 
1627     /*
1628      * Check and deal with an allocation failure
1629      */
1630     if (i != size) {
1631 	while (i != 0) {
1632 	    i -= PAGE_SIZE;
1633 	    m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1634 	    /* page should already be busy */
1635 	    vm_page_free(m);
1636 	}
1637 	vm_map_lock(&kernel_map);
1638 	vm_map_delete(&kernel_map, addr, addr + size, &count);
1639 	vm_map_unlock(&kernel_map);
1640 	vm_object_drop(&kernel_object);
1641 
1642 	vm_map_entry_release(count);
1643 	crit_exit();
1644 	return(NULL);
1645     }
1646 
1647     /*
1648      * Success!
1649      *
1650      * NOTE: The VM pages are still busied.  mbase points to the first one
1651      *	     but we have to iterate via vm_page_next()
1652      */
1653     vm_object_drop(&kernel_object);
1654     crit_exit();
1655 
1656     /*
1657      * Enter the pages into the pmap and deal with M_ZERO.
1658      */
1659     m = mbase;
1660     i = 0;
1661 
1662     while (i < size) {
1663 	/*
1664 	 * page should already be busy
1665 	 */
1666 	m->valid = VM_PAGE_BITS_ALL;
1667 	vm_page_wire(m);
1668 	pmap_enter(&kernel_pmap, addr + i, m,
1669 		   VM_PROT_ALL | VM_PROT_NOSYNC, 1, NULL);
1670 	if (flags & M_ZERO)
1671 		pagezero((char *)addr + i);
1672 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1673 	vm_page_flag_set(m, PG_REFERENCED);
1674 	vm_page_wakeup(m);
1675 
1676 	i += PAGE_SIZE;
1677 	vm_object_hold(&kernel_object);
1678 	m = vm_page_next(m);
1679 	vm_object_drop(&kernel_object);
1680     }
1681     smp_invltlb();
1682     vm_map_entry_release(count);
1683     atomic_add_long(&SlabsAllocated, 1);
1684     return((void *)addr);
1685 }
1686 
1687 /*
1688  * kmem_slab_free()
1689  */
1690 static void
1691 kmem_slab_free(void *ptr, vm_size_t size)
1692 {
1693     crit_enter();
1694     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1695     atomic_add_long(&SlabsFreed, 1);
1696     crit_exit();
1697 }
1698 
1699 void *
1700 kmalloc_cachealign(unsigned long size_alloc, struct malloc_type *type,
1701     int flags)
1702 {
1703 #if (__VM_CACHELINE_SIZE == 32)
1704 #define CAN_CACHEALIGN(sz)	((sz) >= 256)
1705 #elif (__VM_CACHELINE_SIZE == 64)
1706 #define CAN_CACHEALIGN(sz)	((sz) >= 512)
1707 #elif (__VM_CACHELINE_SIZE == 128)
1708 #define CAN_CACHEALIGN(sz)	((sz) >= 1024)
1709 #else
1710 #error "unsupported cacheline size"
1711 #endif
1712 
1713 	void *ret;
1714 
1715 	if (size_alloc < __VM_CACHELINE_SIZE)
1716 		size_alloc = __VM_CACHELINE_SIZE;
1717 	else if (!CAN_CACHEALIGN(size_alloc))
1718 		flags |= M_POWEROF2;
1719 
1720 	ret = kmalloc(size_alloc, type, flags);
1721 	KASSERT(((uintptr_t)ret & (__VM_CACHELINE_SIZE - 1)) == 0,
1722 	    ("%p(%lu) not cacheline %d aligned",
1723 	     ret, size_alloc, __VM_CACHELINE_SIZE));
1724 	return ret;
1725 
1726 #undef CAN_CACHEALIGN
1727 }
1728