xref: /dragonfly/sys/kern/kern_slaballoc.c (revision 606a6e92)
1 /*
2  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
3  *
4  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.25 2004/11/17 23:36:17 dillon Exp $
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  *			API REQUIREMENTS AND SIDE EFFECTS
82  *
83  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
84  *    have remained compatible with the following API requirements:
85  *
86  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
87  *    + all power-of-2 sized allocations are power-of-2 aligned (twe)
88  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
89  *    + ability to allocate arbitrarily large chunks of memory
90  */
91 
92 #include "opt_vm.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/slaballoc.h>
98 #include <sys/mbuf.h>
99 #include <sys/vmmeter.h>
100 #include <sys/lock.h>
101 #include <sys/thread.h>
102 #include <sys/globaldata.h>
103 
104 #include <vm/vm.h>
105 #include <vm/vm_param.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_object.h>
109 #include <vm/pmap.h>
110 #include <vm/vm_map.h>
111 #include <vm/vm_page.h>
112 #include <vm/vm_pageout.h>
113 
114 #include <machine/cpu.h>
115 
116 #include <sys/thread2.h>
117 
118 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
119 
120 /*
121  * Fixed globals (not per-cpu)
122  */
123 static int ZoneSize;
124 static int ZoneLimit;
125 static int ZonePageCount;
126 static int ZoneMask;
127 static struct malloc_type *kmemstatistics;
128 static struct kmemusage *kmemusage;
129 static int32_t weirdary[16];
130 
131 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
132 static void kmem_slab_free(void *ptr, vm_size_t bytes);
133 
134 /*
135  * Misc constants.  Note that allocations that are exact multiples of
136  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
137  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
138  */
139 #define MIN_CHUNK_SIZE		8		/* in bytes */
140 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
141 #define ZONE_RELS_THRESH	2		/* threshold number of zones */
142 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
143 
144 /*
145  * The WEIRD_ADDR is used as known text to copy into free objects to
146  * try to create deterministic failure cases if the data is accessed after
147  * free.
148  */
149 #define WEIRD_ADDR      0xdeadc0de
150 #define MAX_COPY        sizeof(weirdary)
151 #define ZERO_LENGTH_PTR	((void *)-8)
152 
153 /*
154  * Misc global malloc buckets
155  */
156 
157 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
158 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
159 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
160 
161 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
162 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
163 
164 /*
165  * Initialize the slab memory allocator.  We have to choose a zone size based
166  * on available physical memory.  We choose a zone side which is approximately
167  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
168  * 128K.  The zone size is limited to the bounds set in slaballoc.h
169  * (typically 32K min, 128K max).
170  */
171 static void kmeminit(void *dummy);
172 
173 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
174 
175 static void
176 kmeminit(void *dummy)
177 {
178     vm_poff_t limsize;
179     int usesize;
180     int i;
181     vm_pindex_t npg;
182 
183     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
184     if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)
185 	limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
186 
187     usesize = (int)(limsize / 1024);	/* convert to KB */
188 
189     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
190     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
191 	ZoneSize <<= 1;
192     ZoneLimit = ZoneSize / 4;
193     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
194 	ZoneLimit = ZALLOC_ZONE_LIMIT;
195     ZoneMask = ZoneSize - 1;
196     ZonePageCount = ZoneSize / PAGE_SIZE;
197 
198     npg = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE;
199     kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage), PAGE_SIZE, M_WAITOK|M_ZERO);
200 
201     for (i = 0; i < arysize(weirdary); ++i)
202 	weirdary[i] = WEIRD_ADDR;
203 
204     if (bootverbose)
205 	printf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
206 }
207 
208 /*
209  * Initialize a malloc type tracking structure.
210  */
211 void
212 malloc_init(void *data)
213 {
214     struct malloc_type *type = data;
215     vm_poff_t limsize;
216 
217     if (type->ks_magic != M_MAGIC)
218 	panic("malloc type lacks magic");
219 
220     if (type->ks_limit != 0)
221 	return;
222 
223     if (vmstats.v_page_count == 0)
224 	panic("malloc_init not allowed before vm init");
225 
226     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
227     if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)
228 	limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
229     type->ks_limit = limsize / 10;
230 
231     type->ks_next = kmemstatistics;
232     kmemstatistics = type;
233 }
234 
235 void
236 malloc_uninit(void *data)
237 {
238     struct malloc_type *type = data;
239     struct malloc_type *t;
240 #ifdef INVARIANTS
241     int i;
242     long ttl;
243 #endif
244 
245     if (type->ks_magic != M_MAGIC)
246 	panic("malloc type lacks magic");
247 
248     if (vmstats.v_page_count == 0)
249 	panic("malloc_uninit not allowed before vm init");
250 
251     if (type->ks_limit == 0)
252 	panic("malloc_uninit on uninitialized type");
253 
254 #ifdef INVARIANTS
255     /*
256      * memuse is only correct in aggregation.  Due to memory being allocated
257      * on one cpu and freed on another individual array entries may be
258      * negative or positive (canceling each other out).
259      */
260     for (i = ttl = 0; i < ncpus; ++i)
261 	ttl += type->ks_memuse[i];
262     if (ttl) {
263 	printf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
264 	    ttl, type->ks_shortdesc, i);
265     }
266 #endif
267     if (type == kmemstatistics) {
268 	kmemstatistics = type->ks_next;
269     } else {
270 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
271 	    if (t->ks_next == type) {
272 		t->ks_next = type->ks_next;
273 		break;
274 	    }
275 	}
276     }
277     type->ks_next = NULL;
278     type->ks_limit = 0;
279 }
280 
281 /*
282  * Calculate the zone index for the allocation request size and set the
283  * allocation request size to that particular zone's chunk size.
284  */
285 static __inline int
286 zoneindex(unsigned long *bytes)
287 {
288     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
289     if (n < 128) {
290 	*bytes = n = (n + 7) & ~7;
291 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
292     }
293     if (n < 256) {
294 	*bytes = n = (n + 15) & ~15;
295 	return(n / 16 + 7);
296     }
297     if (n < 8192) {
298 	if (n < 512) {
299 	    *bytes = n = (n + 31) & ~31;
300 	    return(n / 32 + 15);
301 	}
302 	if (n < 1024) {
303 	    *bytes = n = (n + 63) & ~63;
304 	    return(n / 64 + 23);
305 	}
306 	if (n < 2048) {
307 	    *bytes = n = (n + 127) & ~127;
308 	    return(n / 128 + 31);
309 	}
310 	if (n < 4096) {
311 	    *bytes = n = (n + 255) & ~255;
312 	    return(n / 256 + 39);
313 	}
314 	*bytes = n = (n + 511) & ~511;
315 	return(n / 512 + 47);
316     }
317 #if ZALLOC_ZONE_LIMIT > 8192
318     if (n < 16384) {
319 	*bytes = n = (n + 1023) & ~1023;
320 	return(n / 1024 + 55);
321     }
322 #endif
323 #if ZALLOC_ZONE_LIMIT > 16384
324     if (n < 32768) {
325 	*bytes = n = (n + 2047) & ~2047;
326 	return(n / 2048 + 63);
327     }
328 #endif
329     panic("Unexpected byte count %d", n);
330     return(0);
331 }
332 
333 /*
334  * malloc()	(SLAB ALLOCATOR)
335  *
336  *	Allocate memory via the slab allocator.  If the request is too large,
337  *	or if it page-aligned beyond a certain size, we fall back to the
338  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
339  *	&SlabMisc if you don't care.
340  *
341  *	M_RNOWAIT	- return NULL instead of blocking.
342  *	M_ZERO		- zero the returned memory.
343  *	M_USE_RESERVE	- allow greater drawdown of the free list
344  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
345  */
346 void *
347 malloc(unsigned long size, struct malloc_type *type, int flags)
348 {
349     SLZone *z;
350     SLChunk *chunk;
351     SLGlobalData *slgd;
352     struct globaldata *gd;
353     int zi;
354 
355     gd = mycpu;
356     slgd = &gd->gd_slab;
357 
358     /*
359      * XXX silly to have this in the critical path.
360      */
361     if (type->ks_limit == 0) {
362 	crit_enter();
363 	if (type->ks_limit == 0)
364 	    malloc_init(type);
365 	crit_exit();
366     }
367     ++type->ks_calls;
368 
369     /*
370      * Handle the case where the limit is reached.  Panic if can't return
371      * NULL.  XXX the original malloc code looped, but this tended to
372      * simply deadlock the computer.
373      */
374     while (type->ks_loosememuse >= type->ks_limit) {
375 	int i;
376 	long ttl;
377 
378 	for (i = ttl = 0; i < ncpus; ++i)
379 	    ttl += type->ks_memuse[i];
380 	type->ks_loosememuse = ttl;
381 	if (ttl >= type->ks_limit) {
382 	    if (flags & (M_RNOWAIT|M_NULLOK))
383 		return(NULL);
384 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
385 	}
386     }
387 
388     /*
389      * Handle the degenerate size == 0 case.  Yes, this does happen.
390      * Return a special pointer.  This is to maintain compatibility with
391      * the original malloc implementation.  Certain devices, such as the
392      * adaptec driver, not only allocate 0 bytes, they check for NULL and
393      * also realloc() later on.  Joy.
394      */
395     if (size == 0)
396 	return(ZERO_LENGTH_PTR);
397 
398     /*
399      * Handle hysteresis from prior frees here in malloc().  We cannot
400      * safely manipulate the kernel_map in free() due to free() possibly
401      * being called via an IPI message or from sensitive interrupt code.
402      */
403     while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) {
404 	crit_enter();
405 	if (slgd->NFreeZones > ZONE_RELS_THRESH) {	/* crit sect race */
406 	    z = slgd->FreeZones;
407 	    slgd->FreeZones = z->z_Next;
408 	    --slgd->NFreeZones;
409 	    kmem_slab_free(z, ZoneSize);	/* may block */
410 	}
411 	crit_exit();
412     }
413     /*
414      * XXX handle oversized frees that were queued from free().
415      */
416     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
417 	crit_enter();
418 	if ((z = slgd->FreeOvZones) != NULL) {
419 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
420 	    slgd->FreeOvZones = z->z_Next;
421 	    kmem_slab_free(z, z->z_ChunkSize);	/* may block */
422 	}
423 	crit_exit();
424     }
425 
426     /*
427      * Handle large allocations directly.  There should not be very many of
428      * these so performance is not a big issue.
429      *
430      * Guarentee page alignment for allocations in multiples of PAGE_SIZE
431      */
432     if (size >= ZoneLimit || (size & PAGE_MASK) == 0) {
433 	struct kmemusage *kup;
434 
435 	size = round_page(size);
436 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
437 	if (chunk == NULL)
438 	    return(NULL);
439 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
440 	flags |= M_PASSIVE_ZERO;
441 	kup = btokup(chunk);
442 	kup->ku_pagecnt = size / PAGE_SIZE;
443 	kup->ku_cpu = gd->gd_cpuid;
444 	crit_enter();
445 	goto done;
446     }
447 
448     /*
449      * Attempt to allocate out of an existing zone.  First try the free list,
450      * then allocate out of unallocated space.  If we find a good zone move
451      * it to the head of the list so later allocations find it quickly
452      * (we might have thousands of zones in the list).
453      *
454      * Note: zoneindex() will panic of size is too large.
455      */
456     zi = zoneindex(&size);
457     KKASSERT(zi < NZONES);
458     crit_enter();
459     if ((z = slgd->ZoneAry[zi]) != NULL) {
460 	KKASSERT(z->z_NFree > 0);
461 
462 	/*
463 	 * Remove us from the ZoneAry[] when we become empty
464 	 */
465 	if (--z->z_NFree == 0) {
466 	    slgd->ZoneAry[zi] = z->z_Next;
467 	    z->z_Next = NULL;
468 	}
469 
470 	/*
471 	 * Locate a chunk in a free page.  This attempts to localize
472 	 * reallocations into earlier pages without us having to sort
473 	 * the chunk list.  A chunk may still overlap a page boundary.
474 	 */
475 	while (z->z_FirstFreePg < ZonePageCount) {
476 	    if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
477 #ifdef DIAGNOSTIC
478 		/*
479 		 * Diagnostic: c_Next is not total garbage.
480 		 */
481 		KKASSERT(chunk->c_Next == NULL ||
482 			((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
483 			((intptr_t)chunk & IN_SAME_PAGE_MASK));
484 #endif
485 #ifdef INVARIANTS
486 		if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS)
487 			panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount);
488 		if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS)
489 			panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount);
490 #endif
491 		z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
492 		goto done;
493 	    }
494 	    ++z->z_FirstFreePg;
495 	}
496 
497 	/*
498 	 * No chunks are available but NFree said we had some memory, so
499 	 * it must be available in the never-before-used-memory area
500 	 * governed by UIndex.  The consequences are very serious if our zone
501 	 * got corrupted so we use an explicit panic rather then a KASSERT.
502 	 */
503 	if (z->z_UIndex + 1 != z->z_NMax)
504 	    z->z_UIndex = z->z_UIndex + 1;
505 	else
506 	    z->z_UIndex = 0;
507 	if (z->z_UIndex == z->z_UEndIndex)
508 	    panic("slaballoc: corrupted zone");
509 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
510 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
511 	    flags &= ~M_ZERO;
512 	    flags |= M_PASSIVE_ZERO;
513 	}
514 	goto done;
515     }
516 
517     /*
518      * If all zones are exhausted we need to allocate a new zone for this
519      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
520      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
521      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
522      * we do not pre-zero it because we do not want to mess up the L1 cache.
523      *
524      * At least one subsystem, the tty code (see CROUND) expects power-of-2
525      * allocations to be power-of-2 aligned.  We maintain compatibility by
526      * adjusting the base offset below.
527      */
528     {
529 	int off;
530 
531 	if ((z = slgd->FreeZones) != NULL) {
532 	    slgd->FreeZones = z->z_Next;
533 	    --slgd->NFreeZones;
534 	    bzero(z, sizeof(SLZone));
535 	    z->z_Flags |= SLZF_UNOTZEROD;
536 	} else {
537 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
538 	    if (z == NULL)
539 		goto fail;
540 	}
541 
542 	/*
543 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
544 	 * Otherwise just 8-byte align the data.
545 	 */
546 	if ((size | (size - 1)) + 1 == (size << 1))
547 	    off = (sizeof(SLZone) + size - 1) & ~(size - 1);
548 	else
549 	    off = (sizeof(SLZone) + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
550 	z->z_Magic = ZALLOC_SLAB_MAGIC;
551 	z->z_ZoneIndex = zi;
552 	z->z_NMax = (ZoneSize - off) / size;
553 	z->z_NFree = z->z_NMax - 1;
554 	z->z_BasePtr = (char *)z + off;
555 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
556 	z->z_ChunkSize = size;
557 	z->z_FirstFreePg = ZonePageCount;
558 	z->z_CpuGd = gd;
559 	z->z_Cpu = gd->gd_cpuid;
560 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
561 	z->z_Next = slgd->ZoneAry[zi];
562 	slgd->ZoneAry[zi] = z;
563 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
564 	    flags &= ~M_ZERO;	/* already zero'd */
565 	    flags |= M_PASSIVE_ZERO;
566 	}
567 
568 	/*
569 	 * Slide the base index for initial allocations out of the next
570 	 * zone we create so we do not over-weight the lower part of the
571 	 * cpu memory caches.
572 	 */
573 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
574 				& (ZALLOC_MAX_ZONE_SIZE - 1);
575     }
576 done:
577     ++type->ks_inuse[gd->gd_cpuid];
578     type->ks_memuse[gd->gd_cpuid] += size;
579     type->ks_loosememuse += size;
580     crit_exit();
581     if (flags & M_ZERO)
582 	bzero(chunk, size);
583 #ifdef INVARIANTS
584     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0)
585 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
586 #endif
587     return(chunk);
588 fail:
589     crit_exit();
590     return(NULL);
591 }
592 
593 void *
594 realloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
595 {
596     SLZone *z;
597     void *nptr;
598     unsigned long osize;
599 
600     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
601 
602     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
603 	return(malloc(size, type, flags));
604     if (size == 0) {
605 	free(ptr, type);
606 	return(NULL);
607     }
608 
609     /*
610      * Handle oversized allocations.  XXX we really should require that a
611      * size be passed to free() instead of this nonsense.
612      */
613     {
614 	struct kmemusage *kup;
615 
616 	kup = btokup(ptr);
617 	if (kup->ku_pagecnt) {
618 	    osize = kup->ku_pagecnt << PAGE_SHIFT;
619 	    if (osize == round_page(size))
620 		return(ptr);
621 	    if ((nptr = malloc(size, type, flags)) == NULL)
622 		return(NULL);
623 	    bcopy(ptr, nptr, min(size, osize));
624 	    free(ptr, type);
625 	    return(nptr);
626 	}
627     }
628 
629     /*
630      * Get the original allocation's zone.  If the new request winds up
631      * using the same chunk size we do not have to do anything.
632      */
633     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
634     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
635 
636     zoneindex(&size);
637     if (z->z_ChunkSize == size)
638 	return(ptr);
639 
640     /*
641      * Allocate memory for the new request size.  Note that zoneindex has
642      * already adjusted the request size to the appropriate chunk size, which
643      * should optimize our bcopy().  Then copy and return the new pointer.
644      */
645     if ((nptr = malloc(size, type, flags)) == NULL)
646 	return(NULL);
647     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
648     free(ptr, type);
649     return(nptr);
650 }
651 
652 char *
653 strdup(const char *str, struct malloc_type *type)
654 {
655     int zlen;	/* length inclusive of terminating NUL */
656     char *nstr;
657 
658     if (str == NULL)
659 	return(NULL);
660     zlen = strlen(str) + 1;
661     nstr = malloc(zlen, type, M_WAITOK);
662     bcopy(str, nstr, zlen);
663     return(nstr);
664 }
665 
666 #ifdef SMP
667 /*
668  * free()	(SLAB ALLOCATOR)
669  *
670  *	Free the specified chunk of memory.
671  */
672 static
673 void
674 free_remote(void *ptr)
675 {
676     free(ptr, *(struct malloc_type **)ptr);
677 }
678 
679 #endif
680 
681 void
682 free(void *ptr, struct malloc_type *type)
683 {
684     SLZone *z;
685     SLChunk *chunk;
686     SLGlobalData *slgd;
687     struct globaldata *gd;
688     int pgno;
689 
690     gd = mycpu;
691     slgd = &gd->gd_slab;
692 
693     if (ptr == NULL)
694 	panic("trying to free NULL pointer");
695 
696     /*
697      * Handle special 0-byte allocations
698      */
699     if (ptr == ZERO_LENGTH_PTR)
700 	return;
701 
702     /*
703      * Handle oversized allocations.  XXX we really should require that a
704      * size be passed to free() instead of this nonsense.
705      *
706      * This code is never called via an ipi.
707      */
708     {
709 	struct kmemusage *kup;
710 	unsigned long size;
711 
712 	kup = btokup(ptr);
713 	if (kup->ku_pagecnt) {
714 	    size = kup->ku_pagecnt << PAGE_SHIFT;
715 	    kup->ku_pagecnt = 0;
716 #ifdef INVARIANTS
717 	    KKASSERT(sizeof(weirdary) <= size);
718 	    bcopy(weirdary, ptr, sizeof(weirdary));
719 #endif
720 	    /*
721 	     * note: we always adjust our cpu's slot, not the originating
722 	     * cpu (kup->ku_cpuid).  The statistics are in aggregate.
723 	     *
724 	     * note: XXX we have still inherited the interrupts-can't-block
725 	     * assumption.  An interrupt thread does not bump
726 	     * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
727 	     * primarily until we can fix softupdate's assumptions about free().
728 	     */
729 	    crit_enter();
730 	    --type->ks_inuse[gd->gd_cpuid];
731 	    type->ks_memuse[gd->gd_cpuid] -= size;
732 	    if (mycpu->gd_intr_nesting_level || (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
733 		z = (SLZone *)ptr;
734 		z->z_Magic = ZALLOC_OVSZ_MAGIC;
735 		z->z_Next = slgd->FreeOvZones;
736 		z->z_ChunkSize = size;
737 		slgd->FreeOvZones = z;
738 		crit_exit();
739 	    } else {
740 		crit_exit();
741 		kmem_slab_free(ptr, size);	/* may block */
742 	    }
743 	    return;
744 	}
745     }
746 
747     /*
748      * Zone case.  Figure out the zone based on the fact that it is
749      * ZoneSize aligned.
750      */
751     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
752     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
753 
754     /*
755      * If we do not own the zone then forward the request to the
756      * cpu that does.
757      */
758     if (z->z_CpuGd != gd) {
759 	*(struct malloc_type **)ptr = type;
760 #ifdef SMP
761 	lwkt_send_ipiq(z->z_CpuGd, free_remote, ptr);
762 #else
763 	panic("Corrupt SLZone");
764 #endif
765 	return;
766     }
767 
768     if (type->ks_magic != M_MAGIC)
769 	panic("free: malloc type lacks magic");
770 
771     crit_enter();
772     pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
773     chunk = ptr;
774 
775 #ifdef INVARIANTS
776     /*
777      * Attempt to detect a double-free.  To reduce overhead we only check
778      * if there appears to be link pointer at the base of the data.
779      */
780     if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
781 	SLChunk *scan;
782 	for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
783 	    if (scan == chunk)
784 		panic("Double free at %p", chunk);
785 	}
786     }
787 #endif
788 
789     /*
790      * Put weird data into the memory to detect modifications after freeing,
791      * illegal pointer use after freeing (we should fault on the odd address),
792      * and so forth.  XXX needs more work, see the old malloc code.
793      */
794 #ifdef INVARIANTS
795     if (z->z_ChunkSize < sizeof(weirdary))
796 	bcopy(weirdary, chunk, z->z_ChunkSize);
797     else
798 	bcopy(weirdary, chunk, sizeof(weirdary));
799 #endif
800 
801     /*
802      * Add this free non-zero'd chunk to a linked list for reuse, adjust
803      * z_FirstFreePg.
804      */
805 #ifdef INVARIANTS
806     if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS)
807 	panic("BADFREE %p", chunk);
808 #endif
809     chunk->c_Next = z->z_PageAry[pgno];
810     z->z_PageAry[pgno] = chunk;
811 #ifdef INVARIANTS
812     if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS)
813 	panic("BADFREE2");
814 #endif
815     if (z->z_FirstFreePg > pgno)
816 	z->z_FirstFreePg = pgno;
817 
818     /*
819      * Bump the number of free chunks.  If it becomes non-zero the zone
820      * must be added back onto the appropriate list.
821      */
822     if (z->z_NFree++ == 0) {
823 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
824 	slgd->ZoneAry[z->z_ZoneIndex] = z;
825     }
826 
827     --type->ks_inuse[z->z_Cpu];
828     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
829 
830     /*
831      * If the zone becomes totally free, and there are other zones we
832      * can allocate from, move this zone to the FreeZones list.  Since
833      * this code can be called from an IPI callback, do *NOT* try to mess
834      * with kernel_map here.  Hysteresis will be performed at malloc() time.
835      */
836     if (z->z_NFree == z->z_NMax &&
837 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
838     ) {
839 	SLZone **pz;
840 
841 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
842 	    ;
843 	*pz = z->z_Next;
844 	z->z_Magic = -1;
845 	z->z_Next = slgd->FreeZones;
846 	slgd->FreeZones = z;
847 	++slgd->NFreeZones;
848     }
849     crit_exit();
850 }
851 
852 /*
853  * kmem_slab_alloc()
854  *
855  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
856  *	specified alignment.  M_* flags are expected in the flags field.
857  *
858  *	Alignment must be a multiple of PAGE_SIZE.
859  *
860  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
861  *	but when we move zalloc() over to use this function as its backend
862  *	we will have to switch to kreserve/krelease and call reserve(0)
863  *	after the new space is made available.
864  *
865  *	Interrupt code which has preempted other code is not allowed to
866  *	use PQ_CACHE pages.  However, if an interrupt thread is run
867  *	non-preemptively or blocks and then runs non-preemptively, then
868  *	it is free to use PQ_CACHE pages.
869  */
870 static void *
871 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
872 {
873     vm_size_t i;
874     vm_offset_t addr;
875     vm_offset_t offset;
876     int count;
877     thread_t td;
878     vm_map_t map = kernel_map;
879 
880     size = round_page(size);
881     addr = vm_map_min(map);
882 
883     /*
884      * Reserve properly aligned space from kernel_map
885      */
886     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
887     crit_enter();
888     vm_map_lock(map);
889     if (vm_map_findspace(map, vm_map_min(map), size, align, &addr)) {
890 	vm_map_unlock(map);
891 	if ((flags & (M_RNOWAIT|M_NULLOK)) == 0)
892 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
893 	crit_exit();
894 	vm_map_entry_release(count);
895 	if ((flags & M_NULLOK) == 0)
896 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
897 	return(NULL);
898     }
899     offset = addr - VM_MIN_KERNEL_ADDRESS;
900     vm_object_reference(kernel_object);
901     vm_map_insert(map, &count,
902 		    kernel_object, offset, addr, addr + size,
903 		    VM_PROT_ALL, VM_PROT_ALL, 0);
904 
905     td = curthread;
906 
907     /*
908      * Allocate the pages.  Do not mess with the PG_ZERO flag yet.
909      */
910     for (i = 0; i < size; i += PAGE_SIZE) {
911 	vm_page_t m;
912 	vm_pindex_t idx = OFF_TO_IDX(offset + i);
913 	int vmflags = 0;
914 
915 	if (flags & M_ZERO)
916 	    vmflags |= VM_ALLOC_ZERO;
917 	if (flags & M_USE_RESERVE)
918 	    vmflags |= VM_ALLOC_SYSTEM;
919 	if (flags & M_USE_INTERRUPT_RESERVE)
920 	    vmflags |= VM_ALLOC_INTERRUPT;
921 	if ((flags & (M_RNOWAIT|M_WAITOK)) == 0)
922 		panic("kmem_slab_alloc: bad flags %08x (%p)", flags, ((int **)&size)[-1]);
923 
924 	/*
925 	 * VM_ALLOC_NORMAL can only be set if we are not preempting.
926 	 *
927 	 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
928 	 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
929 	 * implied in this case), though I'm sure if we really need to do
930 	 * that.
931 	 */
932 	if (flags & M_WAITOK) {
933 	    if (td->td_preempted) {
934 		vmflags |= VM_ALLOC_SYSTEM;
935 	    } else {
936 		vmflags |= VM_ALLOC_NORMAL;
937 	    }
938 	}
939 
940 	m = vm_page_alloc(kernel_object, idx, vmflags);
941 
942 	/*
943 	 * If the allocation failed we either return NULL or we retry.
944 	 *
945 	 * If M_WAITOK is specified we wait for more memory and retry.
946 	 * If M_WAITOK is specified from a preemption we yield instead of
947 	 * wait.  Livelock will not occur because the interrupt thread
948 	 * will not be preempting anyone the second time around after the
949 	 * yield.
950 	 */
951 	if (m == NULL) {
952 	    if (flags & M_WAITOK) {
953 		if (td->td_preempted) {
954 		    vm_map_unlock(map);
955 		    lwkt_yield();
956 		    vm_map_lock(map);
957 		} else {
958 		    vm_map_unlock(map);
959 		    vm_wait();
960 		    vm_map_lock(map);
961 		}
962 		i -= PAGE_SIZE;	/* retry */
963 		continue;
964 	    }
965 
966 	    /*
967 	     * We were unable to recover, cleanup and return NULL
968 	     */
969 	    while (i != 0) {
970 		i -= PAGE_SIZE;
971 		m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i));
972 		vm_page_free(m);
973 	    }
974 	    vm_map_delete(map, addr, addr + size, &count);
975 	    vm_map_unlock(map);
976 	    crit_exit();
977 	    vm_map_entry_release(count);
978 	    return(NULL);
979 	}
980     }
981 
982     /*
983      * Success!
984      *
985      * Mark the map entry as non-pageable using a routine that allows us to
986      * populate the underlying pages.
987      */
988     vm_map_set_wired_quick(map, addr, size, &count);
989     crit_exit();
990 
991     /*
992      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
993      */
994     for (i = 0; i < size; i += PAGE_SIZE) {
995 	vm_page_t m;
996 
997 	m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i));
998 	m->valid = VM_PAGE_BITS_ALL;
999 	vm_page_wire(m);
1000 	vm_page_wakeup(m);
1001 	pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
1002 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1003 	    bzero((char *)addr + i, PAGE_SIZE);
1004 	vm_page_flag_clear(m, PG_ZERO);
1005 	vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
1006     }
1007     vm_map_unlock(map);
1008     vm_map_entry_release(count);
1009     return((void *)addr);
1010 }
1011 
1012 static void
1013 kmem_slab_free(void *ptr, vm_size_t size)
1014 {
1015     crit_enter();
1016     vm_map_remove(kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1017     crit_exit();
1018 }
1019 
1020