xref: /dragonfly/sys/kern/kern_slaballoc.c (revision 7ec9f8e5)
1 /*
2  * (MPSAFE)
3  *
4  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
5  *
6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
7  *
8  * This code is derived from software contributed to The DragonFly Project
9  * by Matthew Dillon <dillon@backplane.com>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  * Alignment properties:
82  * - All power-of-2 sized allocations are power-of-2 aligned.
83  * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84  *   power-of-2 round up of 'size'.
85  * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86  *   above table 'Chunking' column).
87  *
88  *			API REQUIREMENTS AND SIDE EFFECTS
89  *
90  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91  *    have remained compatible with the following API requirements:
92  *
93  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
94  *    + ability to allocate arbitrarily large chunks of memory
95  */
96 
97 #include "opt_vm.h"
98 
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/kernel.h>
102 #include <sys/slaballoc.h>
103 #include <sys/mbuf.h>
104 #include <sys/vmmeter.h>
105 #include <sys/lock.h>
106 #include <sys/thread.h>
107 #include <sys/globaldata.h>
108 #include <sys/sysctl.h>
109 #include <sys/ktr.h>
110 
111 #include <vm/vm.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_extern.h>
115 #include <vm/vm_object.h>
116 #include <vm/pmap.h>
117 #include <vm/vm_map.h>
118 #include <vm/vm_page.h>
119 #include <vm/vm_pageout.h>
120 
121 #include <machine/cpu.h>
122 
123 #include <sys/thread2.h>
124 #include <vm/vm_page2.h>
125 
126 #define btokup(z)	(&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
127 
128 #define MEMORY_STRING	"ptr=%p type=%p size=%lu flags=%04x"
129 #define MEMORY_ARGS	void *ptr, void *type, unsigned long size, int flags
130 
131 #if !defined(KTR_MEMORY)
132 #define KTR_MEMORY	KTR_ALL
133 #endif
134 KTR_INFO_MASTER(memory);
135 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
136 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
137 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
138 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
139 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
140 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
141 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
142 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
143 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
144 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
145 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
146 
147 #define logmemory(name, ptr, type, size, flags)				\
148 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
149 #define logmemory_quick(name)						\
150 	KTR_LOG(memory_ ## name)
151 
152 /*
153  * Fixed globals (not per-cpu)
154  */
155 static int ZoneSize;
156 static int ZoneLimit;
157 static int ZonePageCount;
158 static uintptr_t ZoneMask;
159 static int ZoneBigAlloc;		/* in KB */
160 static int ZoneGenAlloc;		/* in KB */
161 struct malloc_type *kmemstatistics;	/* exported to vmstat */
162 static int32_t weirdary[16];
163 
164 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
165 static void kmem_slab_free(void *ptr, vm_size_t bytes);
166 
167 #if defined(INVARIANTS)
168 static void chunk_mark_allocated(SLZone *z, void *chunk);
169 static void chunk_mark_free(SLZone *z, void *chunk);
170 #else
171 #define chunk_mark_allocated(z, chunk)
172 #define chunk_mark_free(z, chunk)
173 #endif
174 
175 /*
176  * Misc constants.  Note that allocations that are exact multiples of
177  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
178  */
179 #define ZONE_RELS_THRESH	32		/* threshold number of zones */
180 
181 /*
182  * The WEIRD_ADDR is used as known text to copy into free objects to
183  * try to create deterministic failure cases if the data is accessed after
184  * free.
185  */
186 #define WEIRD_ADDR      0xdeadc0de
187 #define MAX_COPY        sizeof(weirdary)
188 #define ZERO_LENGTH_PTR	((void *)-8)
189 
190 /*
191  * Misc global malloc buckets
192  */
193 
194 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
195 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
196 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
197 MALLOC_DEFINE(M_DRM, "m_drm", "DRM memory allocations");
198 
199 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
200 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
201 
202 /*
203  * Initialize the slab memory allocator.  We have to choose a zone size based
204  * on available physical memory.  We choose a zone side which is approximately
205  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
206  * 128K.  The zone size is limited to the bounds set in slaballoc.h
207  * (typically 32K min, 128K max).
208  */
209 static void kmeminit(void *dummy);
210 
211 char *ZeroPage;
212 
213 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL);
214 
215 #ifdef INVARIANTS
216 /*
217  * If enabled any memory allocated without M_ZERO is initialized to -1.
218  */
219 static int  use_malloc_pattern;
220 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
221     &use_malloc_pattern, 0,
222     "Initialize memory to -1 if M_ZERO not specified");
223 #endif
224 
225 static int ZoneRelsThresh = ZONE_RELS_THRESH;
226 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
227 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
228 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
229 static long SlabsAllocated;
230 static long SlabsFreed;
231 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD,
232 	    &SlabsAllocated, 0, "");
233 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD,
234 	    &SlabsFreed, 0, "");
235 static int SlabFreeToTail;
236 SYSCTL_INT(_kern, OID_AUTO, slab_freetotail, CTLFLAG_RW,
237 	    &SlabFreeToTail, 0, "");
238 
239 /*
240  * Returns the kernel memory size limit for the purposes of initializing
241  * various subsystem caches.  The smaller of available memory and the KVM
242  * memory space is returned.
243  *
244  * The size in megabytes is returned.
245  */
246 size_t
247 kmem_lim_size(void)
248 {
249     size_t limsize;
250 
251     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
252     if (limsize > KvaSize)
253 	limsize = KvaSize;
254     return (limsize / (1024 * 1024));
255 }
256 
257 static void
258 kmeminit(void *dummy)
259 {
260     size_t limsize;
261     int usesize;
262     int i;
263 
264     limsize = kmem_lim_size();
265     usesize = (int)(limsize * 1024);	/* convert to KB */
266 
267     /*
268      * If the machine has a large KVM space and more than 8G of ram,
269      * double the zone release threshold to reduce SMP invalidations.
270      * If more than 16G of ram, do it again.
271      *
272      * The BIOS eats a little ram so add some slop.  We want 8G worth of
273      * memory sticks to trigger the first adjustment.
274      */
275     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
276 	    if (limsize >= 7 * 1024)
277 		    ZoneRelsThresh *= 2;
278 	    if (limsize >= 15 * 1024)
279 		    ZoneRelsThresh *= 2;
280     }
281 
282     /*
283      * Calculate the zone size.  This typically calculates to
284      * ZALLOC_MAX_ZONE_SIZE
285      */
286     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
287     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
288 	ZoneSize <<= 1;
289     ZoneLimit = ZoneSize / 4;
290     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
291 	ZoneLimit = ZALLOC_ZONE_LIMIT;
292     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
293     ZonePageCount = ZoneSize / PAGE_SIZE;
294 
295     for (i = 0; i < NELEM(weirdary); ++i)
296 	weirdary[i] = WEIRD_ADDR;
297 
298     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
299 
300     if (bootverbose)
301 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
302 }
303 
304 /*
305  * (low level) Initialize slab-related elements in the globaldata structure.
306  *
307  * Occurs after kmeminit().
308  */
309 void
310 slab_gdinit(globaldata_t gd)
311 {
312 	SLGlobalData *slgd;
313 	int i;
314 
315 	slgd = &gd->gd_slab;
316 	for (i = 0; i < NZONES; ++i)
317 		TAILQ_INIT(&slgd->ZoneAry[i]);
318 	TAILQ_INIT(&slgd->FreeZones);
319 	TAILQ_INIT(&slgd->FreeOvZones);
320 }
321 
322 /*
323  * Initialize a malloc type tracking structure.
324  */
325 void
326 malloc_init(void *data)
327 {
328     struct malloc_type *type = data;
329     size_t limsize;
330 
331     if (type->ks_magic != M_MAGIC)
332 	panic("malloc type lacks magic");
333 
334     if (type->ks_limit != 0)
335 	return;
336 
337     if (vmstats.v_page_count == 0)
338 	panic("malloc_init not allowed before vm init");
339 
340     limsize = kmem_lim_size() * (1024 * 1024);
341     type->ks_limit = limsize / 10;
342 
343     type->ks_next = kmemstatistics;
344     kmemstatistics = type;
345 }
346 
347 void
348 malloc_uninit(void *data)
349 {
350     struct malloc_type *type = data;
351     struct malloc_type *t;
352 #ifdef INVARIANTS
353     int i;
354     long ttl;
355 #endif
356 
357     if (type->ks_magic != M_MAGIC)
358 	panic("malloc type lacks magic");
359 
360     if (vmstats.v_page_count == 0)
361 	panic("malloc_uninit not allowed before vm init");
362 
363     if (type->ks_limit == 0)
364 	panic("malloc_uninit on uninitialized type");
365 
366     /* Make sure that all pending kfree()s are finished. */
367     lwkt_synchronize_ipiqs("muninit");
368 
369 #ifdef INVARIANTS
370     /*
371      * memuse is only correct in aggregation.  Due to memory being allocated
372      * on one cpu and freed on another individual array entries may be
373      * negative or positive (canceling each other out).
374      */
375     for (i = ttl = 0; i < ncpus; ++i)
376 	ttl += type->ks_memuse[i];
377     if (ttl) {
378 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
379 	    ttl, type->ks_shortdesc, i);
380     }
381 #endif
382     if (type == kmemstatistics) {
383 	kmemstatistics = type->ks_next;
384     } else {
385 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
386 	    if (t->ks_next == type) {
387 		t->ks_next = type->ks_next;
388 		break;
389 	    }
390 	}
391     }
392     type->ks_next = NULL;
393     type->ks_limit = 0;
394 }
395 
396 /*
397  * Increase the kmalloc pool limit for the specified pool.  No changes
398  * are the made if the pool would shrink.
399  */
400 void
401 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
402 {
403     if (type->ks_limit == 0)
404 	malloc_init(type);
405     if (bytes == 0)
406 	bytes = KvaSize;
407     if (type->ks_limit < bytes)
408 	type->ks_limit = bytes;
409 }
410 
411 /*
412  * Dynamically create a malloc pool.  This function is a NOP if *typep is
413  * already non-NULL.
414  */
415 void
416 kmalloc_create(struct malloc_type **typep, const char *descr)
417 {
418 	struct malloc_type *type;
419 
420 	if (*typep == NULL) {
421 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
422 		type->ks_magic = M_MAGIC;
423 		type->ks_shortdesc = descr;
424 		malloc_init(type);
425 		*typep = type;
426 	}
427 }
428 
429 /*
430  * Destroy a dynamically created malloc pool.  This function is a NOP if
431  * the pool has already been destroyed.
432  */
433 void
434 kmalloc_destroy(struct malloc_type **typep)
435 {
436 	if (*typep != NULL) {
437 		malloc_uninit(*typep);
438 		kfree(*typep, M_TEMP);
439 		*typep = NULL;
440 	}
441 }
442 
443 /*
444  * Calculate the zone index for the allocation request size and set the
445  * allocation request size to that particular zone's chunk size.
446  */
447 static __inline int
448 zoneindex(unsigned long *bytes, unsigned long *align)
449 {
450     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
451     if (n < 128) {
452 	*bytes = n = (n + 7) & ~7;
453 	*align = 8;
454 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
455     }
456     if (n < 256) {
457 	*bytes = n = (n + 15) & ~15;
458 	*align = 16;
459 	return(n / 16 + 7);
460     }
461     if (n < 8192) {
462 	if (n < 512) {
463 	    *bytes = n = (n + 31) & ~31;
464 	    *align = 32;
465 	    return(n / 32 + 15);
466 	}
467 	if (n < 1024) {
468 	    *bytes = n = (n + 63) & ~63;
469 	    *align = 64;
470 	    return(n / 64 + 23);
471 	}
472 	if (n < 2048) {
473 	    *bytes = n = (n + 127) & ~127;
474 	    *align = 128;
475 	    return(n / 128 + 31);
476 	}
477 	if (n < 4096) {
478 	    *bytes = n = (n + 255) & ~255;
479 	    *align = 256;
480 	    return(n / 256 + 39);
481 	}
482 	*bytes = n = (n + 511) & ~511;
483 	*align = 512;
484 	return(n / 512 + 47);
485     }
486 #if ZALLOC_ZONE_LIMIT > 8192
487     if (n < 16384) {
488 	*bytes = n = (n + 1023) & ~1023;
489 	*align = 1024;
490 	return(n / 1024 + 55);
491     }
492 #endif
493 #if ZALLOC_ZONE_LIMIT > 16384
494     if (n < 32768) {
495 	*bytes = n = (n + 2047) & ~2047;
496 	*align = 2048;
497 	return(n / 2048 + 63);
498     }
499 #endif
500     panic("Unexpected byte count %d", n);
501     return(0);
502 }
503 
504 static __inline
505 void
506 clean_zone_rchunks(SLZone *z)
507 {
508     SLChunk *bchunk;
509 
510     while ((bchunk = z->z_RChunks) != NULL) {
511 	cpu_ccfence();
512 	if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
513 	    *z->z_LChunksp = bchunk;
514 	    while (bchunk) {
515 		chunk_mark_free(z, bchunk);
516 		z->z_LChunksp = &bchunk->c_Next;
517 		bchunk = bchunk->c_Next;
518 		++z->z_NFree;
519 	    }
520 	    break;
521 	}
522 	/* retry */
523     }
524 }
525 
526 /*
527  * If the zone becomes totally free and is not the only zone listed for a
528  * chunk size we move it to the FreeZones list.  We always leave at least
529  * one zone per chunk size listed, even if it is freeable.
530  *
531  * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
532  * otherwise MP races can result in our free_remote code accessing a
533  * destroyed zone.  The remote end interlocks z_RCount with z_RChunks
534  * so one has to test both z_NFree and z_RCount.
535  *
536  * Since this code can be called from an IPI callback, do *NOT* try to mess
537  * with kernel_map here.  Hysteresis will be performed at kmalloc() time.
538  */
539 static __inline
540 SLZone *
541 check_zone_free(SLGlobalData *slgd, SLZone *z)
542 {
543     SLZone *znext;
544 
545     znext = TAILQ_NEXT(z, z_Entry);
546     if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
547 	(TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || znext)
548     ) {
549 	int *kup;
550 
551 	TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
552 
553 	z->z_Magic = -1;
554 	TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
555 	++slgd->NFreeZones;
556 	kup = btokup(z);
557 	*kup = 0;
558     }
559     return znext;
560 }
561 
562 #ifdef SLAB_DEBUG
563 /*
564  * Used to debug memory corruption issues.  Record up to (typically 32)
565  * allocation sources for this zone (for a particular chunk size).
566  */
567 
568 static void
569 slab_record_source(SLZone *z, const char *file, int line)
570 {
571     int i;
572     int b = line & (SLAB_DEBUG_ENTRIES - 1);
573 
574     i = b;
575     do {
576 	if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
577 		return;
578 	if (z->z_Sources[i].file == NULL)
579 		break;
580 	i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
581     } while (i != b);
582     z->z_Sources[i].file = file;
583     z->z_Sources[i].line = line;
584 }
585 
586 #endif
587 
588 static __inline unsigned long
589 powerof2_size(unsigned long size)
590 {
591 	int i;
592 
593 	if (size == 0 || powerof2(size))
594 		return size;
595 
596 	i = flsl(size);
597 	return (1UL << i);
598 }
599 
600 /*
601  * kmalloc()	(SLAB ALLOCATOR)
602  *
603  *	Allocate memory via the slab allocator.  If the request is too large,
604  *	or if it page-aligned beyond a certain size, we fall back to the
605  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
606  *	&SlabMisc if you don't care.
607  *
608  *	M_RNOWAIT	- don't block.
609  *	M_NULLOK	- return NULL instead of blocking.
610  *	M_ZERO		- zero the returned memory.
611  *	M_USE_RESERVE	- allow greater drawdown of the free list
612  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
613  *	M_POWEROF2	- roundup size to the nearest power of 2
614  *
615  * MPSAFE
616  */
617 
618 #ifdef SLAB_DEBUG
619 void *
620 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
621 	      const char *file, int line)
622 #else
623 void *
624 kmalloc(unsigned long size, struct malloc_type *type, int flags)
625 #endif
626 {
627     SLZone *z;
628     SLChunk *chunk;
629     SLGlobalData *slgd;
630     struct globaldata *gd;
631     unsigned long align;
632     int zi;
633 #ifdef INVARIANTS
634     int i;
635 #endif
636 
637     logmemory_quick(malloc_beg);
638     gd = mycpu;
639     slgd = &gd->gd_slab;
640 
641     /*
642      * XXX silly to have this in the critical path.
643      */
644     if (type->ks_limit == 0) {
645 	crit_enter();
646 	malloc_init(type);
647 	crit_exit();
648     }
649     ++type->ks_calls;
650 
651     if (flags & M_POWEROF2)
652 	size = powerof2_size(size);
653 
654     /*
655      * Handle the case where the limit is reached.  Panic if we can't return
656      * NULL.  The original malloc code looped, but this tended to
657      * simply deadlock the computer.
658      *
659      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
660      * to determine if a more complete limit check should be done.  The
661      * actual memory use is tracked via ks_memuse[cpu].
662      */
663     while (type->ks_loosememuse >= type->ks_limit) {
664 	int i;
665 	long ttl;
666 
667 	for (i = ttl = 0; i < ncpus; ++i)
668 	    ttl += type->ks_memuse[i];
669 	type->ks_loosememuse = ttl;	/* not MP synchronized */
670 	if ((ssize_t)ttl < 0)		/* deal with occassional race */
671 		ttl = 0;
672 	if (ttl >= type->ks_limit) {
673 	    if (flags & M_NULLOK) {
674 		logmemory(malloc_end, NULL, type, size, flags);
675 		return(NULL);
676 	    }
677 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
678 	}
679     }
680 
681     /*
682      * Handle the degenerate size == 0 case.  Yes, this does happen.
683      * Return a special pointer.  This is to maintain compatibility with
684      * the original malloc implementation.  Certain devices, such as the
685      * adaptec driver, not only allocate 0 bytes, they check for NULL and
686      * also realloc() later on.  Joy.
687      */
688     if (size == 0) {
689 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
690 	return(ZERO_LENGTH_PTR);
691     }
692 
693     /*
694      * Handle hysteresis from prior frees here in malloc().  We cannot
695      * safely manipulate the kernel_map in free() due to free() possibly
696      * being called via an IPI message or from sensitive interrupt code.
697      *
698      * NOTE: ku_pagecnt must be cleared before we free the slab or we
699      *	     might race another cpu allocating the kva and setting
700      *	     ku_pagecnt.
701      */
702     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
703 	crit_enter();
704 	if (slgd->NFreeZones > ZoneRelsThresh) {	/* crit sect race */
705 	    int *kup;
706 
707 	    z = TAILQ_LAST(&slgd->FreeZones, SLZoneList);
708 	    KKASSERT(z != NULL);
709 	    TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
710 	    --slgd->NFreeZones;
711 	    kup = btokup(z);
712 	    *kup = 0;
713 	    kmem_slab_free(z, ZoneSize);	/* may block */
714 	    atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024);
715 	}
716 	crit_exit();
717     }
718 
719     /*
720      * XXX handle oversized frees that were queued from kfree().
721      */
722     while (TAILQ_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) {
723 	crit_enter();
724 	if ((z = TAILQ_LAST(&slgd->FreeOvZones, SLZoneList)) != NULL) {
725 	    vm_size_t tsize;
726 
727 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
728 	    TAILQ_REMOVE(&slgd->FreeOvZones, z, z_Entry);
729 	    tsize = z->z_ChunkSize;
730 	    kmem_slab_free(z, tsize);	/* may block */
731 	    atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
732 	}
733 	crit_exit();
734     }
735 
736     /*
737      * Handle large allocations directly.  There should not be very many of
738      * these so performance is not a big issue.
739      *
740      * The backend allocator is pretty nasty on a SMP system.   Use the
741      * slab allocator for one and two page-sized chunks even though we lose
742      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
743      */
744     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
745 	int *kup;
746 
747 	size = round_page(size);
748 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
749 	if (chunk == NULL) {
750 	    logmemory(malloc_end, NULL, type, size, flags);
751 	    return(NULL);
752 	}
753 	atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
754 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
755 	flags |= M_PASSIVE_ZERO;
756 	kup = btokup(chunk);
757 	*kup = size / PAGE_SIZE;
758 	crit_enter();
759 	goto done;
760     }
761 
762     /*
763      * Attempt to allocate out of an existing zone.  First try the free list,
764      * then allocate out of unallocated space.  If we find a good zone move
765      * it to the head of the list so later allocations find it quickly
766      * (we might have thousands of zones in the list).
767      *
768      * Note: zoneindex() will panic of size is too large.
769      */
770     zi = zoneindex(&size, &align);
771     KKASSERT(zi < NZONES);
772     crit_enter();
773 
774     if ((z = TAILQ_LAST(&slgd->ZoneAry[zi], SLZoneList)) != NULL) {
775 	/*
776 	 * Locate a chunk - we have to have at least one.  If this is the
777 	 * last chunk go ahead and do the work to retrieve chunks freed
778 	 * from remote cpus, and if the zone is still empty move it off
779 	 * the ZoneAry.
780 	 */
781 	if (--z->z_NFree <= 0) {
782 	    KKASSERT(z->z_NFree == 0);
783 
784 	    /*
785 	     * WARNING! This code competes with other cpus.  It is ok
786 	     * for us to not drain RChunks here but we might as well, and
787 	     * it is ok if more accumulate after we're done.
788 	     *
789 	     * Set RSignal before pulling rchunks off, indicating that we
790 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
791 	     * read RSignal before putting rchunks on thus interlocking
792 	     * their IPI signaling.
793 	     */
794 	    if (z->z_RChunks == NULL)
795 		atomic_swap_int(&z->z_RSignal, 1);
796 
797 	    clean_zone_rchunks(z);
798 
799 	    /*
800 	     * Remove from the zone list if no free chunks remain.
801 	     * Clear RSignal
802 	     */
803 	    if (z->z_NFree == 0) {
804 		TAILQ_REMOVE(&slgd->ZoneAry[zi], z, z_Entry);
805 	    } else {
806 		z->z_RSignal = 0;
807 	    }
808 	}
809 
810 	/*
811 	 * Fast path, we have chunks available in z_LChunks.
812 	 */
813 	chunk = z->z_LChunks;
814 	if (chunk) {
815 		chunk_mark_allocated(z, chunk);
816 		z->z_LChunks = chunk->c_Next;
817 		if (z->z_LChunks == NULL)
818 			z->z_LChunksp = &z->z_LChunks;
819 #ifdef SLAB_DEBUG
820 		slab_record_source(z, file, line);
821 #endif
822 		goto done;
823 	}
824 
825 	/*
826 	 * No chunks are available in LChunks, the free chunk MUST be
827 	 * in the never-before-used memory area, controlled by UIndex.
828 	 *
829 	 * The consequences are very serious if our zone got corrupted so
830 	 * we use an explicit panic rather than a KASSERT.
831 	 */
832 	if (z->z_UIndex + 1 != z->z_NMax)
833 	    ++z->z_UIndex;
834 	else
835 	    z->z_UIndex = 0;
836 
837 	if (z->z_UIndex == z->z_UEndIndex)
838 	    panic("slaballoc: corrupted zone");
839 
840 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
841 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
842 	    flags &= ~M_ZERO;
843 	    flags |= M_PASSIVE_ZERO;
844 	}
845 	chunk_mark_allocated(z, chunk);
846 #ifdef SLAB_DEBUG
847 	slab_record_source(z, file, line);
848 #endif
849 	goto done;
850     }
851 
852     /*
853      * If all zones are exhausted we need to allocate a new zone for this
854      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
855      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
856      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
857      * we do not pre-zero it because we do not want to mess up the L1 cache.
858      *
859      * At least one subsystem, the tty code (see CROUND) expects power-of-2
860      * allocations to be power-of-2 aligned.  We maintain compatibility by
861      * adjusting the base offset below.
862      */
863     {
864 	int off;
865 	int *kup;
866 
867 	if ((z = TAILQ_FIRST(&slgd->FreeZones)) != NULL) {
868 	    TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
869 	    --slgd->NFreeZones;
870 	    bzero(z, sizeof(SLZone));
871 	    z->z_Flags |= SLZF_UNOTZEROD;
872 	} else {
873 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
874 	    if (z == NULL)
875 		goto fail;
876 	    atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024);
877 	}
878 
879 	/*
880 	 * How big is the base structure?
881 	 */
882 #if defined(INVARIANTS)
883 	/*
884 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
885 	 * complicated so don't make an exact calculation.
886 	 */
887 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
888 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
889 #else
890 	off = sizeof(SLZone);
891 #endif
892 
893 	/*
894 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
895 	 * Otherwise properly align the data according to the chunk size.
896 	 */
897 	if (powerof2(size))
898 	    align = size;
899 	off = roundup2(off, align);
900 
901 	z->z_Magic = ZALLOC_SLAB_MAGIC;
902 	z->z_ZoneIndex = zi;
903 	z->z_NMax = (ZoneSize - off) / size;
904 	z->z_NFree = z->z_NMax - 1;
905 	z->z_BasePtr = (char *)z + off;
906 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
907 	z->z_ChunkSize = size;
908 	z->z_CpuGd = gd;
909 	z->z_Cpu = gd->gd_cpuid;
910 	z->z_LChunksp = &z->z_LChunks;
911 #ifdef SLAB_DEBUG
912 	bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
913 	bzero(z->z_Sources, sizeof(z->z_Sources));
914 #endif
915 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
916 	TAILQ_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry);
917 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
918 	    flags &= ~M_ZERO;	/* already zero'd */
919 	    flags |= M_PASSIVE_ZERO;
920 	}
921 	kup = btokup(z);
922 	*kup = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
923 	chunk_mark_allocated(z, chunk);
924 #ifdef SLAB_DEBUG
925 	slab_record_source(z, file, line);
926 #endif
927 
928 	/*
929 	 * Slide the base index for initial allocations out of the next
930 	 * zone we create so we do not over-weight the lower part of the
931 	 * cpu memory caches.
932 	 */
933 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
934 				& (ZALLOC_MAX_ZONE_SIZE - 1);
935     }
936 
937 done:
938     ++type->ks_inuse[gd->gd_cpuid];
939     type->ks_memuse[gd->gd_cpuid] += size;
940     type->ks_loosememuse += size;	/* not MP synchronized */
941     crit_exit();
942 
943     if (flags & M_ZERO)
944 	bzero(chunk, size);
945 #ifdef INVARIANTS
946     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
947 	if (use_malloc_pattern) {
948 	    for (i = 0; i < size; i += sizeof(int)) {
949 		*(int *)((char *)chunk + i) = -1;
950 	    }
951 	}
952 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
953     }
954 #endif
955     logmemory(malloc_end, chunk, type, size, flags);
956     return(chunk);
957 fail:
958     crit_exit();
959     logmemory(malloc_end, NULL, type, size, flags);
960     return(NULL);
961 }
962 
963 /*
964  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
965  *
966  * Generally speaking this routine is not called very often and we do
967  * not attempt to optimize it beyond reusing the same pointer if the
968  * new size fits within the chunking of the old pointer's zone.
969  */
970 #ifdef SLAB_DEBUG
971 void *
972 krealloc_debug(void *ptr, unsigned long size,
973 	       struct malloc_type *type, int flags,
974 	       const char *file, int line)
975 #else
976 void *
977 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
978 #endif
979 {
980     unsigned long osize;
981     unsigned long align;
982     SLZone *z;
983     void *nptr;
984     int *kup;
985 
986     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
987 
988     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
989 	return(kmalloc_debug(size, type, flags, file, line));
990     if (size == 0) {
991 	kfree(ptr, type);
992 	return(NULL);
993     }
994 
995     /*
996      * Handle oversized allocations.  XXX we really should require that a
997      * size be passed to free() instead of this nonsense.
998      */
999     kup = btokup(ptr);
1000     if (*kup > 0) {
1001 	osize = *kup << PAGE_SHIFT;
1002 	if (osize == round_page(size))
1003 	    return(ptr);
1004 	if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1005 	    return(NULL);
1006 	bcopy(ptr, nptr, min(size, osize));
1007 	kfree(ptr, type);
1008 	return(nptr);
1009     }
1010 
1011     /*
1012      * Get the original allocation's zone.  If the new request winds up
1013      * using the same chunk size we do not have to do anything.
1014      */
1015     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1016     kup = btokup(z);
1017     KKASSERT(*kup < 0);
1018     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1019 
1020     /*
1021      * Allocate memory for the new request size.  Note that zoneindex has
1022      * already adjusted the request size to the appropriate chunk size, which
1023      * should optimize our bcopy().  Then copy and return the new pointer.
1024      *
1025      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
1026      * necessary align the result.
1027      *
1028      * We can only zoneindex (to align size to the chunk size) if the new
1029      * size is not too large.
1030      */
1031     if (size < ZoneLimit) {
1032 	zoneindex(&size, &align);
1033 	if (z->z_ChunkSize == size)
1034 	    return(ptr);
1035     }
1036     if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1037 	return(NULL);
1038     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
1039     kfree(ptr, type);
1040     return(nptr);
1041 }
1042 
1043 /*
1044  * Return the kmalloc limit for this type, in bytes.
1045  */
1046 long
1047 kmalloc_limit(struct malloc_type *type)
1048 {
1049     if (type->ks_limit == 0) {
1050 	crit_enter();
1051 	if (type->ks_limit == 0)
1052 	    malloc_init(type);
1053 	crit_exit();
1054     }
1055     return(type->ks_limit);
1056 }
1057 
1058 /*
1059  * Allocate a copy of the specified string.
1060  *
1061  * (MP SAFE) (MAY BLOCK)
1062  */
1063 #ifdef SLAB_DEBUG
1064 char *
1065 kstrdup_debug(const char *str, struct malloc_type *type,
1066 	      const char *file, int line)
1067 #else
1068 char *
1069 kstrdup(const char *str, struct malloc_type *type)
1070 #endif
1071 {
1072     int zlen;	/* length inclusive of terminating NUL */
1073     char *nstr;
1074 
1075     if (str == NULL)
1076 	return(NULL);
1077     zlen = strlen(str) + 1;
1078     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1079     bcopy(str, nstr, zlen);
1080     return(nstr);
1081 }
1082 
1083 /*
1084  * Notify our cpu that a remote cpu has freed some chunks in a zone that
1085  * we own.  RCount will be bumped so the memory should be good, but validate
1086  * that it really is.
1087  */
1088 static
1089 void
1090 kfree_remote(void *ptr)
1091 {
1092     SLGlobalData *slgd;
1093     SLZone *z;
1094     int nfree;
1095     int *kup;
1096 
1097     slgd = &mycpu->gd_slab;
1098     z = ptr;
1099     kup = btokup(z);
1100     KKASSERT(*kup == -((int)mycpuid + 1));
1101     KKASSERT(z->z_RCount > 0);
1102     atomic_subtract_int(&z->z_RCount, 1);
1103 
1104     logmemory(free_rem_beg, z, NULL, 0L, 0);
1105     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1106     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
1107     nfree = z->z_NFree;
1108 
1109     /*
1110      * Indicate that we will no longer be off of the ZoneAry by
1111      * clearing RSignal.
1112      */
1113     if (z->z_RChunks)
1114 	z->z_RSignal = 0;
1115 
1116     /*
1117      * Atomically extract the bchunks list and then process it back
1118      * into the lchunks list.  We want to append our bchunks to the
1119      * lchunks list and not prepend since we likely do not have
1120      * cache mastership of the related data (not that it helps since
1121      * we are using c_Next).
1122      */
1123     clean_zone_rchunks(z);
1124     if (z->z_NFree && nfree == 0) {
1125 	TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1126     }
1127 
1128     /*
1129      * If the zone becomes totally free and is not the only zone listed for a
1130      * chunk size we move it to the FreeZones list.  We always leave at least
1131      * one zone per chunk size listed, even if it is freeable.
1132      *
1133      * Since this code can be called from an IPI callback, do *NOT* try to
1134      * mess with kernel_map here.  Hysteresis will be performed at malloc()
1135      * time.
1136      *
1137      * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
1138      * otherwise MP races can result in our free_remote code accessing a
1139      * destroyed zone.  The remote end interlocks z_RCount with z_RChunks
1140      * so one has to test both z_NFree and z_RCount.
1141      */
1142     if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
1143 	(TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z ||
1144 	 TAILQ_NEXT(z, z_Entry))
1145     ) {
1146 	int *kup;
1147 
1148 	TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1149 	z->z_Magic = -1;
1150 	TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
1151 	++slgd->NFreeZones;
1152 	kup = btokup(z);
1153 	*kup = 0;
1154     }
1155     logmemory(free_rem_end, z, NULL, 0L, 0);
1156 }
1157 
1158 /*
1159  * free (SLAB ALLOCATOR)
1160  *
1161  * Free a memory block previously allocated by malloc.  Note that we do not
1162  * attempt to update ks_loosememuse as MP races could prevent us from
1163  * checking memory limits in malloc.
1164  *
1165  * MPSAFE
1166  */
1167 void
1168 kfree(void *ptr, struct malloc_type *type)
1169 {
1170     SLZone *z;
1171     SLChunk *chunk;
1172     SLGlobalData *slgd;
1173     struct globaldata *gd;
1174     int *kup;
1175     unsigned long size;
1176     SLChunk *bchunk;
1177     int rsignal;
1178 
1179     logmemory_quick(free_beg);
1180     gd = mycpu;
1181     slgd = &gd->gd_slab;
1182 
1183     if (ptr == NULL)
1184 	panic("trying to free NULL pointer");
1185 
1186     /*
1187      * Handle special 0-byte allocations
1188      */
1189     if (ptr == ZERO_LENGTH_PTR) {
1190 	logmemory(free_zero, ptr, type, -1UL, 0);
1191 	logmemory_quick(free_end);
1192 	return;
1193     }
1194 
1195     /*
1196      * Panic on bad malloc type
1197      */
1198     if (type->ks_magic != M_MAGIC)
1199 	panic("free: malloc type lacks magic");
1200 
1201     /*
1202      * Handle oversized allocations.  XXX we really should require that a
1203      * size be passed to free() instead of this nonsense.
1204      *
1205      * This code is never called via an ipi.
1206      */
1207     kup = btokup(ptr);
1208     if (*kup > 0) {
1209 	size = *kup << PAGE_SHIFT;
1210 	*kup = 0;
1211 #ifdef INVARIANTS
1212 	KKASSERT(sizeof(weirdary) <= size);
1213 	bcopy(weirdary, ptr, sizeof(weirdary));
1214 #endif
1215 	/*
1216 	 * NOTE: For oversized allocations we do not record the
1217 	 *	     originating cpu.  It gets freed on the cpu calling
1218 	 *	     kfree().  The statistics are in aggregate.
1219 	 *
1220 	 * note: XXX we have still inherited the interrupts-can't-block
1221 	 * assumption.  An interrupt thread does not bump
1222 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1223 	 * primarily until we can fix softupdate's assumptions about free().
1224 	 */
1225 	crit_enter();
1226 	--type->ks_inuse[gd->gd_cpuid];
1227 	type->ks_memuse[gd->gd_cpuid] -= size;
1228 	if (mycpu->gd_intr_nesting_level ||
1229 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1230 	{
1231 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1232 	    z = (SLZone *)ptr;
1233 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1234 	    z->z_ChunkSize = size;
1235 
1236 	    TAILQ_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry);
1237 	    crit_exit();
1238 	} else {
1239 	    crit_exit();
1240 	    logmemory(free_ovsz, ptr, type, size, 0);
1241 	    kmem_slab_free(ptr, size);	/* may block */
1242 	    atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1243 	}
1244 	logmemory_quick(free_end);
1245 	return;
1246     }
1247 
1248     /*
1249      * Zone case.  Figure out the zone based on the fact that it is
1250      * ZoneSize aligned.
1251      */
1252     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1253     kup = btokup(z);
1254     KKASSERT(*kup < 0);
1255     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1256 
1257     /*
1258      * If we do not own the zone then use atomic ops to free to the
1259      * remote cpu linked list and notify the target zone using a
1260      * passive message.
1261      *
1262      * The target zone cannot be deallocated while we own a chunk of it,
1263      * so the zone header's storage is stable until the very moment
1264      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1265      *
1266      * (no critical section needed)
1267      */
1268     if (z->z_CpuGd != gd) {
1269 	/*
1270 	 * Making these adjustments now allow us to avoid passing (type)
1271 	 * to the remote cpu.  Note that ks_inuse/ks_memuse is being
1272 	 * adjusted on OUR cpu, not the zone cpu, but it should all still
1273 	 * sum up properly and cancel out.
1274 	 */
1275 	crit_enter();
1276 	--type->ks_inuse[gd->gd_cpuid];
1277 	type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize;
1278 	crit_exit();
1279 
1280 	/*
1281 	 * WARNING! This code competes with other cpus.  Once we
1282 	 *	    successfully link the chunk to RChunks the remote
1283 	 *	    cpu can rip z's storage out from under us.
1284 	 *
1285 	 *	    Bumping RCount prevents z's storage from getting
1286 	 *	    ripped out.
1287 	 */
1288 	rsignal = z->z_RSignal;
1289 	cpu_lfence();
1290 	if (rsignal)
1291 		atomic_add_int(&z->z_RCount, 1);
1292 
1293 	chunk = ptr;
1294 	for (;;) {
1295 	    bchunk = z->z_RChunks;
1296 	    cpu_ccfence();
1297 	    chunk->c_Next = bchunk;
1298 	    cpu_sfence();
1299 
1300 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1301 		break;
1302 	}
1303 
1304 	/*
1305 	 * We have to signal the remote cpu if our actions will cause
1306 	 * the remote zone to be placed back on ZoneAry so it can
1307 	 * move the zone back on.
1308 	 *
1309 	 * We only need to deal with NULL->non-NULL RChunk transitions
1310 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1311 	 * before adding our chunk to RChunks.  This should result in
1312 	 * virtually no IPI traffic.
1313 	 *
1314 	 * We can use a passive IPI to reduce overhead even further.
1315 	 */
1316 	if (bchunk == NULL && rsignal) {
1317 		logmemory(free_request, ptr, type,
1318 			  (unsigned long)z->z_ChunkSize, 0);
1319 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1320 	    /* z can get ripped out from under us from this point on */
1321 	} else if (rsignal) {
1322 	    atomic_subtract_int(&z->z_RCount, 1);
1323 	    /* z can get ripped out from under us from this point on */
1324 	}
1325 	logmemory_quick(free_end);
1326 	return;
1327     }
1328 
1329     /*
1330      * kfree locally
1331      */
1332     logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1333 
1334     crit_enter();
1335     chunk = ptr;
1336     chunk_mark_free(z, chunk);
1337 
1338     /*
1339      * Put weird data into the memory to detect modifications after freeing,
1340      * illegal pointer use after freeing (we should fault on the odd address),
1341      * and so forth.  XXX needs more work, see the old malloc code.
1342      */
1343 #ifdef INVARIANTS
1344     if (z->z_ChunkSize < sizeof(weirdary))
1345 	bcopy(weirdary, chunk, z->z_ChunkSize);
1346     else
1347 	bcopy(weirdary, chunk, sizeof(weirdary));
1348 #endif
1349 
1350     /*
1351      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1352      * to the front of the linked list so it is more likely to be
1353      * reallocated, since it is already in our L1 cache.
1354      */
1355 #ifdef INVARIANTS
1356     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1357 	panic("BADFREE %p", chunk);
1358 #endif
1359     chunk->c_Next = z->z_LChunks;
1360     z->z_LChunks = chunk;
1361     if (chunk->c_Next == NULL)
1362 	    z->z_LChunksp = &chunk->c_Next;
1363 
1364 #ifdef INVARIANTS
1365     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1366 	panic("BADFREE2");
1367 #endif
1368 
1369     /*
1370      * Bump the number of free chunks.  If it becomes non-zero the zone
1371      * must be added back onto the appropriate list.  A fully allocated
1372      * zone that sees its first free is considered 'mature' and is placed
1373      * at the head, giving the system time to potentially free the remaining
1374      * entries even while other allocations are going on and making the zone
1375      * freeable.
1376      */
1377     if (z->z_NFree++ == 0) {
1378 	if (SlabFreeToTail)
1379 		TAILQ_INSERT_TAIL(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1380 	else
1381 		TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1382     }
1383 
1384     --type->ks_inuse[z->z_Cpu];
1385     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1386 
1387     check_zone_free(slgd, z);
1388     logmemory_quick(free_end);
1389     crit_exit();
1390 }
1391 
1392 /*
1393  * Cleanup slabs which are hanging around due to RChunks or which are wholely
1394  * free and can be moved to the free list if not moved by other means.
1395  *
1396  * Called once every 10 seconds on all cpus.
1397  */
1398 void
1399 slab_cleanup(void)
1400 {
1401     SLGlobalData *slgd = &mycpu->gd_slab;
1402     SLZone *z;
1403     int i;
1404 
1405     crit_enter();
1406     for (i = 0; i < NZONES; ++i) {
1407 	if ((z = TAILQ_FIRST(&slgd->ZoneAry[i])) == NULL)
1408 		continue;
1409 
1410 	/*
1411 	 * Scan zones.
1412 	 */
1413 	while (z) {
1414 	    /*
1415 	     * Shift all RChunks to the end of the LChunks list.  This is
1416 	     * an O(1) operation.
1417 	     *
1418 	     * Then free the zone if possible.
1419 	     */
1420 	    clean_zone_rchunks(z);
1421 	    z = check_zone_free(slgd, z);
1422 	}
1423     }
1424     crit_exit();
1425 }
1426 
1427 #if defined(INVARIANTS)
1428 
1429 /*
1430  * Helper routines for sanity checks
1431  */
1432 static
1433 void
1434 chunk_mark_allocated(SLZone *z, void *chunk)
1435 {
1436     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1437     uint32_t *bitptr;
1438 
1439     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1440     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1441 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1442     bitptr = &z->z_Bitmap[bitdex >> 5];
1443     bitdex &= 31;
1444     KASSERT((*bitptr & (1 << bitdex)) == 0,
1445 	    ("memory chunk %p is already allocated!", chunk));
1446     *bitptr |= 1 << bitdex;
1447 }
1448 
1449 static
1450 void
1451 chunk_mark_free(SLZone *z, void *chunk)
1452 {
1453     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1454     uint32_t *bitptr;
1455 
1456     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1457     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1458 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1459     bitptr = &z->z_Bitmap[bitdex >> 5];
1460     bitdex &= 31;
1461     KASSERT((*bitptr & (1 << bitdex)) != 0,
1462 	    ("memory chunk %p is already free!", chunk));
1463     *bitptr &= ~(1 << bitdex);
1464 }
1465 
1466 #endif
1467 
1468 /*
1469  * kmem_slab_alloc()
1470  *
1471  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1472  *	specified alignment.  M_* flags are expected in the flags field.
1473  *
1474  *	Alignment must be a multiple of PAGE_SIZE.
1475  *
1476  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1477  *	but when we move zalloc() over to use this function as its backend
1478  *	we will have to switch to kreserve/krelease and call reserve(0)
1479  *	after the new space is made available.
1480  *
1481  *	Interrupt code which has preempted other code is not allowed to
1482  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1483  *	non-preemptively or blocks and then runs non-preemptively, then
1484  *	it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
1485  */
1486 static void *
1487 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1488 {
1489     vm_size_t i;
1490     vm_offset_t addr;
1491     int count, vmflags, base_vmflags;
1492     vm_page_t mbase = NULL;
1493     vm_page_t m;
1494     thread_t td;
1495 
1496     size = round_page(size);
1497     addr = vm_map_min(&kernel_map);
1498 
1499     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1500     crit_enter();
1501     vm_map_lock(&kernel_map);
1502     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1503 	vm_map_unlock(&kernel_map);
1504 	if ((flags & M_NULLOK) == 0)
1505 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1506 	vm_map_entry_release(count);
1507 	crit_exit();
1508 	return(NULL);
1509     }
1510 
1511     /*
1512      * kernel_object maps 1:1 to kernel_map.
1513      */
1514     vm_object_hold(&kernel_object);
1515     vm_object_reference_locked(&kernel_object);
1516     vm_map_insert(&kernel_map, &count,
1517 		  &kernel_object, NULL,
1518 		  addr, addr, addr + size,
1519 		  VM_MAPTYPE_NORMAL,
1520 		  VM_PROT_ALL, VM_PROT_ALL,
1521 		  0);
1522     vm_object_drop(&kernel_object);
1523     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1524     vm_map_unlock(&kernel_map);
1525 
1526     td = curthread;
1527 
1528     base_vmflags = 0;
1529     if (flags & M_ZERO)
1530         base_vmflags |= VM_ALLOC_ZERO;
1531     if (flags & M_USE_RESERVE)
1532 	base_vmflags |= VM_ALLOC_SYSTEM;
1533     if (flags & M_USE_INTERRUPT_RESERVE)
1534         base_vmflags |= VM_ALLOC_INTERRUPT;
1535     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1536 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1537 	      flags, ((int **)&size)[-1]);
1538     }
1539 
1540     /*
1541      * Allocate the pages.  Do not mess with the PG_ZERO flag or map
1542      * them yet.  VM_ALLOC_NORMAL can only be set if we are not preempting.
1543      *
1544      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1545      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1546      * implied in this case), though I'm not sure if we really need to
1547      * do that.
1548      */
1549     vmflags = base_vmflags;
1550     if (flags & M_WAITOK) {
1551 	if (td->td_preempted)
1552 	    vmflags |= VM_ALLOC_SYSTEM;
1553 	else
1554 	    vmflags |= VM_ALLOC_NORMAL;
1555     }
1556 
1557     vm_object_hold(&kernel_object);
1558     for (i = 0; i < size; i += PAGE_SIZE) {
1559 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1560 	if (i == 0)
1561 		mbase = m;
1562 
1563 	/*
1564 	 * If the allocation failed we either return NULL or we retry.
1565 	 *
1566 	 * If M_WAITOK is specified we wait for more memory and retry.
1567 	 * If M_WAITOK is specified from a preemption we yield instead of
1568 	 * wait.  Livelock will not occur because the interrupt thread
1569 	 * will not be preempting anyone the second time around after the
1570 	 * yield.
1571 	 */
1572 	if (m == NULL) {
1573 	    if (flags & M_WAITOK) {
1574 		if (td->td_preempted) {
1575 		    lwkt_switch();
1576 		} else {
1577 		    vm_wait(0);
1578 		}
1579 		i -= PAGE_SIZE;	/* retry */
1580 		continue;
1581 	    }
1582 	    break;
1583 	}
1584     }
1585 
1586     /*
1587      * Check and deal with an allocation failure
1588      */
1589     if (i != size) {
1590 	while (i != 0) {
1591 	    i -= PAGE_SIZE;
1592 	    m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1593 	    /* page should already be busy */
1594 	    vm_page_free(m);
1595 	}
1596 	vm_map_lock(&kernel_map);
1597 	vm_map_delete(&kernel_map, addr, addr + size, &count);
1598 	vm_map_unlock(&kernel_map);
1599 	vm_object_drop(&kernel_object);
1600 
1601 	vm_map_entry_release(count);
1602 	crit_exit();
1603 	return(NULL);
1604     }
1605 
1606     /*
1607      * Success!
1608      *
1609      * NOTE: The VM pages are still busied.  mbase points to the first one
1610      *	     but we have to iterate via vm_page_next()
1611      */
1612     vm_object_drop(&kernel_object);
1613     crit_exit();
1614 
1615     /*
1616      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1617      */
1618     m = mbase;
1619     i = 0;
1620 
1621     while (i < size) {
1622 	/*
1623 	 * page should already be busy
1624 	 */
1625 	m->valid = VM_PAGE_BITS_ALL;
1626 	vm_page_wire(m);
1627 	pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL | VM_PROT_NOSYNC,
1628 		   1, NULL);
1629 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1630 	    bzero((char *)addr + i, PAGE_SIZE);
1631 	vm_page_flag_clear(m, PG_ZERO);
1632 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1633 	vm_page_flag_set(m, PG_REFERENCED);
1634 	vm_page_wakeup(m);
1635 
1636 	i += PAGE_SIZE;
1637 	vm_object_hold(&kernel_object);
1638 	m = vm_page_next(m);
1639 	vm_object_drop(&kernel_object);
1640     }
1641     smp_invltlb();
1642     vm_map_entry_release(count);
1643     atomic_add_long(&SlabsAllocated, 1);
1644     return((void *)addr);
1645 }
1646 
1647 /*
1648  * kmem_slab_free()
1649  */
1650 static void
1651 kmem_slab_free(void *ptr, vm_size_t size)
1652 {
1653     crit_enter();
1654     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1655     atomic_add_long(&SlabsFreed, 1);
1656     crit_exit();
1657 }
1658 
1659 void *
1660 kmalloc_cachealign(unsigned long size_alloc, struct malloc_type *type,
1661     int flags)
1662 {
1663 #if (__VM_CACHELINE_SIZE == 32)
1664 #define CAN_CACHEALIGN(sz)	((sz) >= 256)
1665 #elif (__VM_CACHELINE_SIZE == 64)
1666 #define CAN_CACHEALIGN(sz)	((sz) >= 512)
1667 #elif (__VM_CACHELINE_SIZE == 128)
1668 #define CAN_CACHEALIGN(sz)	((sz) >= 1024)
1669 #else
1670 #error "unsupported cacheline size"
1671 #endif
1672 
1673 	void *ret;
1674 
1675 	if (size_alloc < __VM_CACHELINE_SIZE)
1676 		size_alloc = __VM_CACHELINE_SIZE;
1677 	else if (!CAN_CACHEALIGN(size_alloc))
1678 		flags |= M_POWEROF2;
1679 
1680 	ret = kmalloc(size_alloc, type, flags);
1681 	KASSERT(((uintptr_t)ret & (__VM_CACHELINE_SIZE - 1)) == 0,
1682 	    ("%p(%lu) not cacheline %d aligned",
1683 	     ret, size_alloc, __VM_CACHELINE_SIZE));
1684 	return ret;
1685 
1686 #undef CAN_CACHEALIGN
1687 }
1688