xref: /dragonfly/sys/kern/kern_slaballoc.c (revision 9b5ae8ee)
1 /*
2  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
3  *
4  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.51 2007/11/18 09:53:19 sephe Exp $
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  *			API REQUIREMENTS AND SIDE EFFECTS
82  *
83  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
84  *    have remained compatible with the following API requirements:
85  *
86  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
87  *    + all power-of-2 sized allocations are power-of-2 aligned (twe)
88  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
89  *    + ability to allocate arbitrarily large chunks of memory
90  */
91 
92 #include "opt_vm.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/slaballoc.h>
98 #include <sys/mbuf.h>
99 #include <sys/vmmeter.h>
100 #include <sys/lock.h>
101 #include <sys/thread.h>
102 #include <sys/globaldata.h>
103 #include <sys/sysctl.h>
104 #include <sys/ktr.h>
105 
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_object.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_page.h>
114 #include <vm/vm_pageout.h>
115 
116 #include <machine/cpu.h>
117 
118 #include <sys/thread2.h>
119 
120 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
121 
122 #define MEMORY_STRING	"ptr=%p type=%p size=%d flags=%04x"
123 #define MEMORY_ARG_SIZE	(sizeof(void *) * 2 + sizeof(unsigned long) + 	\
124 			sizeof(int))
125 
126 #if !defined(KTR_MEMORY)
127 #define KTR_MEMORY	KTR_ALL
128 #endif
129 KTR_INFO_MASTER(memory);
130 KTR_INFO(KTR_MEMORY, memory, malloc, 0, MEMORY_STRING, MEMORY_ARG_SIZE);
131 KTR_INFO(KTR_MEMORY, memory, free_zero, 1, MEMORY_STRING, MEMORY_ARG_SIZE);
132 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 2, MEMORY_STRING, MEMORY_ARG_SIZE);
133 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 3, MEMORY_STRING, MEMORY_ARG_SIZE);
134 KTR_INFO(KTR_MEMORY, memory, free_chunk, 4, MEMORY_STRING, MEMORY_ARG_SIZE);
135 #ifdef SMP
136 KTR_INFO(KTR_MEMORY, memory, free_request, 5, MEMORY_STRING, MEMORY_ARG_SIZE);
137 KTR_INFO(KTR_MEMORY, memory, free_remote, 6, MEMORY_STRING, MEMORY_ARG_SIZE);
138 #endif
139 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0);
140 KTR_INFO(KTR_MEMORY, memory, free_beg, 0, "free begin", 0);
141 KTR_INFO(KTR_MEMORY, memory, free_end, 0, "free end", 0);
142 
143 #define logmemory(name, ptr, type, size, flags)				\
144 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
145 #define logmemory_quick(name)						\
146 	KTR_LOG(memory_ ## name)
147 
148 /*
149  * Fixed globals (not per-cpu)
150  */
151 static int ZoneSize;
152 static int ZoneLimit;
153 static int ZonePageCount;
154 static int ZoneMask;
155 struct malloc_type *kmemstatistics;	/* exported to vmstat */
156 static struct kmemusage *kmemusage;
157 static int32_t weirdary[16];
158 
159 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
160 static void kmem_slab_free(void *ptr, vm_size_t bytes);
161 #if defined(INVARIANTS)
162 static void chunk_mark_allocated(SLZone *z, void *chunk);
163 static void chunk_mark_free(SLZone *z, void *chunk);
164 #endif
165 
166 /*
167  * Misc constants.  Note that allocations that are exact multiples of
168  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
169  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
170  */
171 #define MIN_CHUNK_SIZE		8		/* in bytes */
172 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
173 #define ZONE_RELS_THRESH	2		/* threshold number of zones */
174 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
175 
176 /*
177  * The WEIRD_ADDR is used as known text to copy into free objects to
178  * try to create deterministic failure cases if the data is accessed after
179  * free.
180  */
181 #define WEIRD_ADDR      0xdeadc0de
182 #define MAX_COPY        sizeof(weirdary)
183 #define ZERO_LENGTH_PTR	((void *)-8)
184 
185 /*
186  * Misc global malloc buckets
187  */
188 
189 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
190 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
191 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
192 
193 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
194 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
195 
196 /*
197  * Initialize the slab memory allocator.  We have to choose a zone size based
198  * on available physical memory.  We choose a zone side which is approximately
199  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
200  * 128K.  The zone size is limited to the bounds set in slaballoc.h
201  * (typically 32K min, 128K max).
202  */
203 static void kmeminit(void *dummy);
204 
205 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
206 
207 #ifdef INVARIANTS
208 /*
209  * If enabled any memory allocated without M_ZERO is initialized to -1.
210  */
211 static int  use_malloc_pattern;
212 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
213 		&use_malloc_pattern, 0, "");
214 #endif
215 
216 static void
217 kmeminit(void *dummy)
218 {
219     vm_poff_t limsize;
220     int usesize;
221     int i;
222     vm_pindex_t npg;
223 
224     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
225     if (limsize > KvaSize)
226 	limsize = KvaSize;
227 
228     usesize = (int)(limsize / 1024);	/* convert to KB */
229 
230     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
231     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
232 	ZoneSize <<= 1;
233     ZoneLimit = ZoneSize / 4;
234     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
235 	ZoneLimit = ZALLOC_ZONE_LIMIT;
236     ZoneMask = ZoneSize - 1;
237     ZonePageCount = ZoneSize / PAGE_SIZE;
238 
239     npg = KvaSize / PAGE_SIZE;
240     kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage),
241 				PAGE_SIZE, M_WAITOK|M_ZERO);
242 
243     for (i = 0; i < arysize(weirdary); ++i)
244 	weirdary[i] = WEIRD_ADDR;
245 
246     if (bootverbose)
247 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
248 }
249 
250 /*
251  * Initialize a malloc type tracking structure.
252  */
253 void
254 malloc_init(void *data)
255 {
256     struct malloc_type *type = data;
257     vm_poff_t limsize;
258 
259     if (type->ks_magic != M_MAGIC)
260 	panic("malloc type lacks magic");
261 
262     if (type->ks_limit != 0)
263 	return;
264 
265     if (vmstats.v_page_count == 0)
266 	panic("malloc_init not allowed before vm init");
267 
268     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
269     if (limsize > KvaSize)
270 	limsize = KvaSize;
271     type->ks_limit = limsize / 10;
272 
273     type->ks_next = kmemstatistics;
274     kmemstatistics = type;
275 }
276 
277 void
278 malloc_uninit(void *data)
279 {
280     struct malloc_type *type = data;
281     struct malloc_type *t;
282 #ifdef INVARIANTS
283     int i;
284     long ttl;
285 #endif
286 
287     if (type->ks_magic != M_MAGIC)
288 	panic("malloc type lacks magic");
289 
290     if (vmstats.v_page_count == 0)
291 	panic("malloc_uninit not allowed before vm init");
292 
293     if (type->ks_limit == 0)
294 	panic("malloc_uninit on uninitialized type");
295 
296 #ifdef SMP
297     /* Make sure that all pending kfree()s are finished. */
298     lwkt_synchronize_ipiqs("muninit");
299 #endif
300 
301 #ifdef INVARIANTS
302     /*
303      * memuse is only correct in aggregation.  Due to memory being allocated
304      * on one cpu and freed on another individual array entries may be
305      * negative or positive (canceling each other out).
306      */
307     for (i = ttl = 0; i < ncpus; ++i)
308 	ttl += type->ks_memuse[i];
309     if (ttl) {
310 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
311 	    ttl, type->ks_shortdesc, i);
312     }
313 #endif
314     if (type == kmemstatistics) {
315 	kmemstatistics = type->ks_next;
316     } else {
317 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
318 	    if (t->ks_next == type) {
319 		t->ks_next = type->ks_next;
320 		break;
321 	    }
322 	}
323     }
324     type->ks_next = NULL;
325     type->ks_limit = 0;
326 }
327 
328 /*
329  * Calculate the zone index for the allocation request size and set the
330  * allocation request size to that particular zone's chunk size.
331  */
332 static __inline int
333 zoneindex(unsigned long *bytes)
334 {
335     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
336     if (n < 128) {
337 	*bytes = n = (n + 7) & ~7;
338 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
339     }
340     if (n < 256) {
341 	*bytes = n = (n + 15) & ~15;
342 	return(n / 16 + 7);
343     }
344     if (n < 8192) {
345 	if (n < 512) {
346 	    *bytes = n = (n + 31) & ~31;
347 	    return(n / 32 + 15);
348 	}
349 	if (n < 1024) {
350 	    *bytes = n = (n + 63) & ~63;
351 	    return(n / 64 + 23);
352 	}
353 	if (n < 2048) {
354 	    *bytes = n = (n + 127) & ~127;
355 	    return(n / 128 + 31);
356 	}
357 	if (n < 4096) {
358 	    *bytes = n = (n + 255) & ~255;
359 	    return(n / 256 + 39);
360 	}
361 	*bytes = n = (n + 511) & ~511;
362 	return(n / 512 + 47);
363     }
364 #if ZALLOC_ZONE_LIMIT > 8192
365     if (n < 16384) {
366 	*bytes = n = (n + 1023) & ~1023;
367 	return(n / 1024 + 55);
368     }
369 #endif
370 #if ZALLOC_ZONE_LIMIT > 16384
371     if (n < 32768) {
372 	*bytes = n = (n + 2047) & ~2047;
373 	return(n / 2048 + 63);
374     }
375 #endif
376     panic("Unexpected byte count %d", n);
377     return(0);
378 }
379 
380 /*
381  * malloc()	(SLAB ALLOCATOR)
382  *
383  *	Allocate memory via the slab allocator.  If the request is too large,
384  *	or if it page-aligned beyond a certain size, we fall back to the
385  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
386  *	&SlabMisc if you don't care.
387  *
388  *	M_RNOWAIT	- don't block.
389  *	M_NULLOK	- return NULL instead of blocking.
390  *	M_ZERO		- zero the returned memory.
391  *	M_USE_RESERVE	- allow greater drawdown of the free list
392  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
393  *
394  * MPSAFE
395  */
396 
397 void *
398 kmalloc(unsigned long size, struct malloc_type *type, int flags)
399 {
400     SLZone *z;
401     SLChunk *chunk;
402     SLGlobalData *slgd;
403     struct globaldata *gd;
404     int zi;
405 #ifdef INVARIANTS
406     int i;
407 #endif
408 
409     logmemory_quick(malloc_beg);
410     gd = mycpu;
411     slgd = &gd->gd_slab;
412 
413     /*
414      * XXX silly to have this in the critical path.
415      */
416     if (type->ks_limit == 0) {
417 	crit_enter();
418 	if (type->ks_limit == 0)
419 	    malloc_init(type);
420 	crit_exit();
421     }
422     ++type->ks_calls;
423 
424     /*
425      * Handle the case where the limit is reached.  Panic if we can't return
426      * NULL.  The original malloc code looped, but this tended to
427      * simply deadlock the computer.
428      *
429      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
430      * to determine if a more complete limit check should be done.  The
431      * actual memory use is tracked via ks_memuse[cpu].
432      */
433     while (type->ks_loosememuse >= type->ks_limit) {
434 	int i;
435 	long ttl;
436 
437 	for (i = ttl = 0; i < ncpus; ++i)
438 	    ttl += type->ks_memuse[i];
439 	type->ks_loosememuse = ttl;	/* not MP synchronized */
440 	if (ttl >= type->ks_limit) {
441 	    if (flags & M_NULLOK) {
442 		logmemory(malloc, NULL, type, size, flags);
443 		return(NULL);
444 	    }
445 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
446 	}
447     }
448 
449     /*
450      * Handle the degenerate size == 0 case.  Yes, this does happen.
451      * Return a special pointer.  This is to maintain compatibility with
452      * the original malloc implementation.  Certain devices, such as the
453      * adaptec driver, not only allocate 0 bytes, they check for NULL and
454      * also realloc() later on.  Joy.
455      */
456     if (size == 0) {
457 	logmemory(malloc, ZERO_LENGTH_PTR, type, size, flags);
458 	return(ZERO_LENGTH_PTR);
459     }
460 
461     /*
462      * Handle hysteresis from prior frees here in malloc().  We cannot
463      * safely manipulate the kernel_map in free() due to free() possibly
464      * being called via an IPI message or from sensitive interrupt code.
465      */
466     while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) {
467 	crit_enter();
468 	if (slgd->NFreeZones > ZONE_RELS_THRESH) {	/* crit sect race */
469 	    z = slgd->FreeZones;
470 	    slgd->FreeZones = z->z_Next;
471 	    --slgd->NFreeZones;
472 	    kmem_slab_free(z, ZoneSize);	/* may block */
473 	}
474 	crit_exit();
475     }
476     /*
477      * XXX handle oversized frees that were queued from free().
478      */
479     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
480 	crit_enter();
481 	if ((z = slgd->FreeOvZones) != NULL) {
482 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
483 	    slgd->FreeOvZones = z->z_Next;
484 	    kmem_slab_free(z, z->z_ChunkSize);	/* may block */
485 	}
486 	crit_exit();
487     }
488 
489     /*
490      * Handle large allocations directly.  There should not be very many of
491      * these so performance is not a big issue.
492      *
493      * The backend allocator is pretty nasty on a SMP system.   Use the
494      * slab allocator for one and two page-sized chunks even though we lose
495      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
496      */
497     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
498 	struct kmemusage *kup;
499 
500 	size = round_page(size);
501 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
502 	if (chunk == NULL) {
503 	    logmemory(malloc, NULL, type, size, flags);
504 	    return(NULL);
505 	}
506 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
507 	flags |= M_PASSIVE_ZERO;
508 	kup = btokup(chunk);
509 	kup->ku_pagecnt = size / PAGE_SIZE;
510 	kup->ku_cpu = gd->gd_cpuid;
511 	crit_enter();
512 	goto done;
513     }
514 
515     /*
516      * Attempt to allocate out of an existing zone.  First try the free list,
517      * then allocate out of unallocated space.  If we find a good zone move
518      * it to the head of the list so later allocations find it quickly
519      * (we might have thousands of zones in the list).
520      *
521      * Note: zoneindex() will panic of size is too large.
522      */
523     zi = zoneindex(&size);
524     KKASSERT(zi < NZONES);
525     crit_enter();
526     if ((z = slgd->ZoneAry[zi]) != NULL) {
527 	KKASSERT(z->z_NFree > 0);
528 
529 	/*
530 	 * Remove us from the ZoneAry[] when we become empty
531 	 */
532 	if (--z->z_NFree == 0) {
533 	    slgd->ZoneAry[zi] = z->z_Next;
534 	    z->z_Next = NULL;
535 	}
536 
537 	/*
538 	 * Locate a chunk in a free page.  This attempts to localize
539 	 * reallocations into earlier pages without us having to sort
540 	 * the chunk list.  A chunk may still overlap a page boundary.
541 	 */
542 	while (z->z_FirstFreePg < ZonePageCount) {
543 	    if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
544 #ifdef DIAGNOSTIC
545 		/*
546 		 * Diagnostic: c_Next is not total garbage.
547 		 */
548 		KKASSERT(chunk->c_Next == NULL ||
549 			((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
550 			((intptr_t)chunk & IN_SAME_PAGE_MASK));
551 #endif
552 #ifdef INVARIANTS
553 		if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
554 			panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount);
555 		if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
556 			panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount);
557 		chunk_mark_allocated(z, chunk);
558 #endif
559 		z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
560 		goto done;
561 	    }
562 	    ++z->z_FirstFreePg;
563 	}
564 
565 	/*
566 	 * No chunks are available but NFree said we had some memory, so
567 	 * it must be available in the never-before-used-memory area
568 	 * governed by UIndex.  The consequences are very serious if our zone
569 	 * got corrupted so we use an explicit panic rather then a KASSERT.
570 	 */
571 	if (z->z_UIndex + 1 != z->z_NMax)
572 	    z->z_UIndex = z->z_UIndex + 1;
573 	else
574 	    z->z_UIndex = 0;
575 	if (z->z_UIndex == z->z_UEndIndex)
576 	    panic("slaballoc: corrupted zone");
577 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
578 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
579 	    flags &= ~M_ZERO;
580 	    flags |= M_PASSIVE_ZERO;
581 	}
582 #if defined(INVARIANTS)
583 	chunk_mark_allocated(z, chunk);
584 #endif
585 	goto done;
586     }
587 
588     /*
589      * If all zones are exhausted we need to allocate a new zone for this
590      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
591      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
592      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
593      * we do not pre-zero it because we do not want to mess up the L1 cache.
594      *
595      * At least one subsystem, the tty code (see CROUND) expects power-of-2
596      * allocations to be power-of-2 aligned.  We maintain compatibility by
597      * adjusting the base offset below.
598      */
599     {
600 	int off;
601 
602 	if ((z = slgd->FreeZones) != NULL) {
603 	    slgd->FreeZones = z->z_Next;
604 	    --slgd->NFreeZones;
605 	    bzero(z, sizeof(SLZone));
606 	    z->z_Flags |= SLZF_UNOTZEROD;
607 	} else {
608 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
609 	    if (z == NULL)
610 		goto fail;
611 	}
612 
613 	/*
614 	 * How big is the base structure?
615 	 */
616 #if defined(INVARIANTS)
617 	/*
618 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
619 	 * complicated so don't make an exact calculation.
620 	 */
621 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
622 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
623 #else
624 	off = sizeof(SLZone);
625 #endif
626 
627 	/*
628 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
629 	 * Otherwise just 8-byte align the data.
630 	 */
631 	if ((size | (size - 1)) + 1 == (size << 1))
632 	    off = (off + size - 1) & ~(size - 1);
633 	else
634 	    off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
635 	z->z_Magic = ZALLOC_SLAB_MAGIC;
636 	z->z_ZoneIndex = zi;
637 	z->z_NMax = (ZoneSize - off) / size;
638 	z->z_NFree = z->z_NMax - 1;
639 	z->z_BasePtr = (char *)z + off;
640 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
641 	z->z_ChunkSize = size;
642 	z->z_FirstFreePg = ZonePageCount;
643 	z->z_CpuGd = gd;
644 	z->z_Cpu = gd->gd_cpuid;
645 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
646 	z->z_Next = slgd->ZoneAry[zi];
647 	slgd->ZoneAry[zi] = z;
648 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
649 	    flags &= ~M_ZERO;	/* already zero'd */
650 	    flags |= M_PASSIVE_ZERO;
651 	}
652 #if defined(INVARIANTS)
653 	chunk_mark_allocated(z, chunk);
654 #endif
655 
656 	/*
657 	 * Slide the base index for initial allocations out of the next
658 	 * zone we create so we do not over-weight the lower part of the
659 	 * cpu memory caches.
660 	 */
661 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
662 				& (ZALLOC_MAX_ZONE_SIZE - 1);
663     }
664 done:
665     ++type->ks_inuse[gd->gd_cpuid];
666     type->ks_memuse[gd->gd_cpuid] += size;
667     type->ks_loosememuse += size;	/* not MP synchronized */
668     crit_exit();
669     if (flags & M_ZERO)
670 	bzero(chunk, size);
671 #ifdef INVARIANTS
672     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
673 	if (use_malloc_pattern) {
674 	    for (i = 0; i < size; i += sizeof(int)) {
675 		*(int *)((char *)chunk + i) = -1;
676 	    }
677 	}
678 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
679     }
680 #endif
681     logmemory(malloc, chunk, type, size, flags);
682     return(chunk);
683 fail:
684     crit_exit();
685     logmemory(malloc, NULL, type, size, flags);
686     return(NULL);
687 }
688 
689 /*
690  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
691  *
692  * Generally speaking this routine is not called very often and we do
693  * not attempt to optimize it beyond reusing the same pointer if the
694  * new size fits within the chunking of the old pointer's zone.
695  */
696 void *
697 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
698 {
699     SLZone *z;
700     void *nptr;
701     unsigned long osize;
702 
703     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
704 
705     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
706 	return(kmalloc(size, type, flags));
707     if (size == 0) {
708 	kfree(ptr, type);
709 	return(NULL);
710     }
711 
712     /*
713      * Handle oversized allocations.  XXX we really should require that a
714      * size be passed to free() instead of this nonsense.
715      */
716     {
717 	struct kmemusage *kup;
718 
719 	kup = btokup(ptr);
720 	if (kup->ku_pagecnt) {
721 	    osize = kup->ku_pagecnt << PAGE_SHIFT;
722 	    if (osize == round_page(size))
723 		return(ptr);
724 	    if ((nptr = kmalloc(size, type, flags)) == NULL)
725 		return(NULL);
726 	    bcopy(ptr, nptr, min(size, osize));
727 	    kfree(ptr, type);
728 	    return(nptr);
729 	}
730     }
731 
732     /*
733      * Get the original allocation's zone.  If the new request winds up
734      * using the same chunk size we do not have to do anything.
735      */
736     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
737     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
738 
739     zoneindex(&size);
740     if (z->z_ChunkSize == size)
741 	return(ptr);
742 
743     /*
744      * Allocate memory for the new request size.  Note that zoneindex has
745      * already adjusted the request size to the appropriate chunk size, which
746      * should optimize our bcopy().  Then copy and return the new pointer.
747      */
748     if ((nptr = kmalloc(size, type, flags)) == NULL)
749 	return(NULL);
750     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
751     kfree(ptr, type);
752     return(nptr);
753 }
754 
755 /*
756  * Allocate a copy of the specified string.
757  *
758  * (MP SAFE) (MAY BLOCK)
759  */
760 char *
761 kstrdup(const char *str, struct malloc_type *type)
762 {
763     int zlen;	/* length inclusive of terminating NUL */
764     char *nstr;
765 
766     if (str == NULL)
767 	return(NULL);
768     zlen = strlen(str) + 1;
769     nstr = kmalloc(zlen, type, M_WAITOK);
770     bcopy(str, nstr, zlen);
771     return(nstr);
772 }
773 
774 #ifdef SMP
775 /*
776  * free()	(SLAB ALLOCATOR)
777  *
778  *	Free the specified chunk of memory.
779  */
780 static
781 void
782 free_remote(void *ptr)
783 {
784     logmemory(free_remote, ptr, *(struct malloc_type **)ptr, -1, 0);
785     kfree(ptr, *(struct malloc_type **)ptr);
786 }
787 
788 #endif
789 
790 /*
791  * free (SLAB ALLOCATOR)
792  *
793  * Free a memory block previously allocated by malloc.  Note that we do not
794  * attempt to uplodate ks_loosememuse as MP races could prevent us from
795  * checking memory limits in malloc.
796  *
797  * MPSAFE
798  */
799 void
800 kfree(void *ptr, struct malloc_type *type)
801 {
802     SLZone *z;
803     SLChunk *chunk;
804     SLGlobalData *slgd;
805     struct globaldata *gd;
806     int pgno;
807 
808     logmemory_quick(free_beg);
809     gd = mycpu;
810     slgd = &gd->gd_slab;
811 
812     if (ptr == NULL)
813 	panic("trying to free NULL pointer");
814 
815     /*
816      * Handle special 0-byte allocations
817      */
818     if (ptr == ZERO_LENGTH_PTR) {
819 	logmemory(free_zero, ptr, type, -1, 0);
820 	logmemory_quick(free_end);
821 	return;
822     }
823 
824     /*
825      * Handle oversized allocations.  XXX we really should require that a
826      * size be passed to free() instead of this nonsense.
827      *
828      * This code is never called via an ipi.
829      */
830     {
831 	struct kmemusage *kup;
832 	unsigned long size;
833 
834 	kup = btokup(ptr);
835 	if (kup->ku_pagecnt) {
836 	    size = kup->ku_pagecnt << PAGE_SHIFT;
837 	    kup->ku_pagecnt = 0;
838 #ifdef INVARIANTS
839 	    KKASSERT(sizeof(weirdary) <= size);
840 	    bcopy(weirdary, ptr, sizeof(weirdary));
841 #endif
842 	    /*
843 	     * note: we always adjust our cpu's slot, not the originating
844 	     * cpu (kup->ku_cpuid).  The statistics are in aggregate.
845 	     *
846 	     * note: XXX we have still inherited the interrupts-can't-block
847 	     * assumption.  An interrupt thread does not bump
848 	     * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
849 	     * primarily until we can fix softupdate's assumptions about free().
850 	     */
851 	    crit_enter();
852 	    --type->ks_inuse[gd->gd_cpuid];
853 	    type->ks_memuse[gd->gd_cpuid] -= size;
854 	    if (mycpu->gd_intr_nesting_level || (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
855 		logmemory(free_ovsz_delayed, ptr, type, size, 0);
856 		z = (SLZone *)ptr;
857 		z->z_Magic = ZALLOC_OVSZ_MAGIC;
858 		z->z_Next = slgd->FreeOvZones;
859 		z->z_ChunkSize = size;
860 		slgd->FreeOvZones = z;
861 		crit_exit();
862 	    } else {
863 		crit_exit();
864 		logmemory(free_ovsz, ptr, type, size, 0);
865 		kmem_slab_free(ptr, size);	/* may block */
866 	    }
867 	    logmemory_quick(free_end);
868 	    return;
869 	}
870     }
871 
872     /*
873      * Zone case.  Figure out the zone based on the fact that it is
874      * ZoneSize aligned.
875      */
876     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
877     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
878 
879     /*
880      * If we do not own the zone then forward the request to the
881      * cpu that does.  Since the timing is non-critical, a passive
882      * message is sent.
883      */
884     if (z->z_CpuGd != gd) {
885 	*(struct malloc_type **)ptr = type;
886 #ifdef SMP
887 	logmemory(free_request, ptr, type, z->z_ChunkSize, 0);
888 	lwkt_send_ipiq_passive(z->z_CpuGd, free_remote, ptr);
889 #else
890 	panic("Corrupt SLZone");
891 #endif
892 	logmemory_quick(free_end);
893 	return;
894     }
895 
896     logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0);
897 
898     if (type->ks_magic != M_MAGIC)
899 	panic("free: malloc type lacks magic");
900 
901     crit_enter();
902     pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
903     chunk = ptr;
904 
905 #ifdef INVARIANTS
906     /*
907      * Attempt to detect a double-free.  To reduce overhead we only check
908      * if there appears to be link pointer at the base of the data.
909      */
910     if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
911 	SLChunk *scan;
912 	for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
913 	    if (scan == chunk)
914 		panic("Double free at %p", chunk);
915 	}
916     }
917     chunk_mark_free(z, chunk);
918 #endif
919 
920     /*
921      * Put weird data into the memory to detect modifications after freeing,
922      * illegal pointer use after freeing (we should fault on the odd address),
923      * and so forth.  XXX needs more work, see the old malloc code.
924      */
925 #ifdef INVARIANTS
926     if (z->z_ChunkSize < sizeof(weirdary))
927 	bcopy(weirdary, chunk, z->z_ChunkSize);
928     else
929 	bcopy(weirdary, chunk, sizeof(weirdary));
930 #endif
931 
932     /*
933      * Add this free non-zero'd chunk to a linked list for reuse, adjust
934      * z_FirstFreePg.
935      */
936 #ifdef INVARIANTS
937     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
938 	panic("BADFREE %p", chunk);
939 #endif
940     chunk->c_Next = z->z_PageAry[pgno];
941     z->z_PageAry[pgno] = chunk;
942 #ifdef INVARIANTS
943     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
944 	panic("BADFREE2");
945 #endif
946     if (z->z_FirstFreePg > pgno)
947 	z->z_FirstFreePg = pgno;
948 
949     /*
950      * Bump the number of free chunks.  If it becomes non-zero the zone
951      * must be added back onto the appropriate list.
952      */
953     if (z->z_NFree++ == 0) {
954 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
955 	slgd->ZoneAry[z->z_ZoneIndex] = z;
956     }
957 
958     --type->ks_inuse[z->z_Cpu];
959     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
960 
961     /*
962      * If the zone becomes totally free, and there are other zones we
963      * can allocate from, move this zone to the FreeZones list.  Since
964      * this code can be called from an IPI callback, do *NOT* try to mess
965      * with kernel_map here.  Hysteresis will be performed at malloc() time.
966      */
967     if (z->z_NFree == z->z_NMax &&
968 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
969     ) {
970 	SLZone **pz;
971 
972 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
973 	    ;
974 	*pz = z->z_Next;
975 	z->z_Magic = -1;
976 	z->z_Next = slgd->FreeZones;
977 	slgd->FreeZones = z;
978 	++slgd->NFreeZones;
979     }
980     logmemory_quick(free_end);
981     crit_exit();
982 }
983 
984 #if defined(INVARIANTS)
985 /*
986  * Helper routines for sanity checks
987  */
988 static
989 void
990 chunk_mark_allocated(SLZone *z, void *chunk)
991 {
992     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
993     __uint32_t *bitptr;
994 
995     KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal", chunk, bitdex));
996     bitptr = &z->z_Bitmap[bitdex >> 5];
997     bitdex &= 31;
998     KASSERT((*bitptr & (1 << bitdex)) == 0, ("memory chunk %p is already allocated!", chunk));
999     *bitptr |= 1 << bitdex;
1000 }
1001 
1002 static
1003 void
1004 chunk_mark_free(SLZone *z, void *chunk)
1005 {
1006     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1007     __uint32_t *bitptr;
1008 
1009     KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1010     bitptr = &z->z_Bitmap[bitdex >> 5];
1011     bitdex &= 31;
1012     KASSERT((*bitptr & (1 << bitdex)) != 0, ("memory chunk %p is already free!", chunk));
1013     *bitptr &= ~(1 << bitdex);
1014 }
1015 
1016 #endif
1017 
1018 /*
1019  * kmem_slab_alloc()
1020  *
1021  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1022  *	specified alignment.  M_* flags are expected in the flags field.
1023  *
1024  *	Alignment must be a multiple of PAGE_SIZE.
1025  *
1026  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1027  *	but when we move zalloc() over to use this function as its backend
1028  *	we will have to switch to kreserve/krelease and call reserve(0)
1029  *	after the new space is made available.
1030  *
1031  *	Interrupt code which has preempted other code is not allowed to
1032  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1033  *	non-preemptively or blocks and then runs non-preemptively, then
1034  *	it is free to use PQ_CACHE pages.
1035  *
1036  *	This routine will currently obtain the BGL.
1037  *
1038  * MPALMOSTSAFE - acquires mplock
1039  */
1040 static void *
1041 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1042 {
1043     vm_size_t i;
1044     vm_offset_t addr;
1045     int count, vmflags, base_vmflags;
1046     thread_t td;
1047 
1048     size = round_page(size);
1049     addr = vm_map_min(&kernel_map);
1050 
1051     /*
1052      * Reserve properly aligned space from kernel_map.  RNOWAIT allocations
1053      * cannot block.
1054      */
1055     if (flags & M_RNOWAIT) {
1056 	if (try_mplock() == 0)
1057 	    return(NULL);
1058     } else {
1059 	get_mplock();
1060     }
1061     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1062     crit_enter();
1063     vm_map_lock(&kernel_map);
1064     if (vm_map_findspace(&kernel_map, addr, size, align, &addr)) {
1065 	vm_map_unlock(&kernel_map);
1066 	if ((flags & M_NULLOK) == 0)
1067 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1068 	crit_exit();
1069 	vm_map_entry_release(count);
1070 	rel_mplock();
1071 	return(NULL);
1072     }
1073 
1074     /*
1075      * kernel_object maps 1:1 to kernel_map.
1076      */
1077     vm_object_reference(&kernel_object);
1078     vm_map_insert(&kernel_map, &count,
1079 		    &kernel_object, addr, addr, addr + size,
1080 		    VM_MAPTYPE_NORMAL,
1081 		    VM_PROT_ALL, VM_PROT_ALL,
1082 		    0);
1083 
1084     td = curthread;
1085 
1086     base_vmflags = 0;
1087     if (flags & M_ZERO)
1088         base_vmflags |= VM_ALLOC_ZERO;
1089     if (flags & M_USE_RESERVE)
1090 	base_vmflags |= VM_ALLOC_SYSTEM;
1091     if (flags & M_USE_INTERRUPT_RESERVE)
1092         base_vmflags |= VM_ALLOC_INTERRUPT;
1093     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0)
1094     	panic("kmem_slab_alloc: bad flags %08x (%p)", flags, ((int **)&size)[-1]);
1095 
1096 
1097     /*
1098      * Allocate the pages.  Do not mess with the PG_ZERO flag yet.
1099      */
1100     for (i = 0; i < size; i += PAGE_SIZE) {
1101 	vm_page_t m;
1102 
1103 	/*
1104 	 * VM_ALLOC_NORMAL can only be set if we are not preempting.
1105 	 *
1106 	 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1107 	 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1108 	 * implied in this case), though I'm sure if we really need to do
1109 	 * that.
1110 	 */
1111 	vmflags = base_vmflags;
1112 	if (flags & M_WAITOK) {
1113 	    if (td->td_preempted)
1114 		vmflags |= VM_ALLOC_SYSTEM;
1115 	    else
1116 		vmflags |= VM_ALLOC_NORMAL;
1117 	}
1118 
1119 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1120 
1121 	/*
1122 	 * If the allocation failed we either return NULL or we retry.
1123 	 *
1124 	 * If M_WAITOK is specified we wait for more memory and retry.
1125 	 * If M_WAITOK is specified from a preemption we yield instead of
1126 	 * wait.  Livelock will not occur because the interrupt thread
1127 	 * will not be preempting anyone the second time around after the
1128 	 * yield.
1129 	 */
1130 	if (m == NULL) {
1131 	    if (flags & M_WAITOK) {
1132 		if (td->td_preempted) {
1133 		    vm_map_unlock(&kernel_map);
1134 		    lwkt_yield();
1135 		    vm_map_lock(&kernel_map);
1136 		} else {
1137 		    vm_map_unlock(&kernel_map);
1138 		    vm_wait();
1139 		    vm_map_lock(&kernel_map);
1140 		}
1141 		i -= PAGE_SIZE;	/* retry */
1142 		continue;
1143 	    }
1144 
1145 	    /*
1146 	     * We were unable to recover, cleanup and return NULL
1147 	     */
1148 	    while (i != 0) {
1149 		i -= PAGE_SIZE;
1150 		m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1151 		vm_page_free(m);
1152 	    }
1153 	    vm_map_delete(&kernel_map, addr, addr + size, &count);
1154 	    vm_map_unlock(&kernel_map);
1155 	    crit_exit();
1156 	    vm_map_entry_release(count);
1157 	    rel_mplock();
1158 	    return(NULL);
1159 	}
1160     }
1161 
1162     /*
1163      * Success!
1164      *
1165      * Mark the map entry as non-pageable using a routine that allows us to
1166      * populate the underlying pages.
1167      */
1168     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1169     crit_exit();
1170 
1171     /*
1172      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1173      */
1174     for (i = 0; i < size; i += PAGE_SIZE) {
1175 	vm_page_t m;
1176 
1177 	m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1178 	m->valid = VM_PAGE_BITS_ALL;
1179 	vm_page_wire(m);
1180 	vm_page_wakeup(m);
1181 	pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
1182 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1183 	    bzero((char *)addr + i, PAGE_SIZE);
1184 	vm_page_flag_clear(m, PG_ZERO);
1185 	vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
1186     }
1187     vm_map_unlock(&kernel_map);
1188     vm_map_entry_release(count);
1189     rel_mplock();
1190     return((void *)addr);
1191 }
1192 
1193 /*
1194  * kmem_slab_free()
1195  *
1196  * MPALMOSTSAFE - acquires mplock
1197  */
1198 static void
1199 kmem_slab_free(void *ptr, vm_size_t size)
1200 {
1201     get_mplock();
1202     crit_enter();
1203     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1204     crit_exit();
1205     rel_mplock();
1206 }
1207 
1208