xref: /dragonfly/sys/kern/kern_slaballoc.c (revision 9b6c3ce0)
1 /*
2  * (MPSAFE)
3  *
4  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
5  *
6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
7  *
8  * This code is derived from software contributed to The DragonFly Project
9  * by Matthew Dillon <dillon@backplane.com>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  *			API REQUIREMENTS AND SIDE EFFECTS
82  *
83  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
84  *    have remained compatible with the following API requirements:
85  *
86  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
87  *    + all power-of-2 sized allocations are power-of-2 aligned (twe)
88  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
89  *    + ability to allocate arbitrarily large chunks of memory
90  */
91 
92 #include "opt_vm.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/slaballoc.h>
98 #include <sys/mbuf.h>
99 #include <sys/vmmeter.h>
100 #include <sys/lock.h>
101 #include <sys/thread.h>
102 #include <sys/globaldata.h>
103 #include <sys/sysctl.h>
104 #include <sys/ktr.h>
105 
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_object.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_page.h>
114 #include <vm/vm_pageout.h>
115 
116 #include <machine/cpu.h>
117 
118 #include <sys/thread2.h>
119 
120 #define btokup(z)	(&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
121 
122 #define MEMORY_STRING	"ptr=%p type=%p size=%d flags=%04x"
123 #define MEMORY_ARG_SIZE	(sizeof(void *) * 2 + sizeof(unsigned long) + 	\
124 			sizeof(int))
125 
126 #if !defined(KTR_MEMORY)
127 #define KTR_MEMORY	KTR_ALL
128 #endif
129 KTR_INFO_MASTER(memory);
130 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0);
131 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARG_SIZE);
132 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARG_SIZE);
133 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARG_SIZE);
134 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARG_SIZE);
135 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARG_SIZE);
136 #ifdef SMP
137 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARG_SIZE);
138 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARG_SIZE);
139 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARG_SIZE);
140 #endif
141 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin", 0);
142 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end", 0);
143 
144 #define logmemory(name, ptr, type, size, flags)				\
145 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
146 #define logmemory_quick(name)						\
147 	KTR_LOG(memory_ ## name)
148 
149 /*
150  * Fixed globals (not per-cpu)
151  */
152 static int ZoneSize;
153 static int ZoneLimit;
154 static int ZonePageCount;
155 static uintptr_t ZoneMask;
156 static int ZoneBigAlloc;		/* in KB */
157 static int ZoneGenAlloc;		/* in KB */
158 struct malloc_type *kmemstatistics;	/* exported to vmstat */
159 static int32_t weirdary[16];
160 
161 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
162 static void kmem_slab_free(void *ptr, vm_size_t bytes);
163 
164 #if defined(INVARIANTS)
165 static void chunk_mark_allocated(SLZone *z, void *chunk);
166 static void chunk_mark_free(SLZone *z, void *chunk);
167 #else
168 #define chunk_mark_allocated(z, chunk)
169 #define chunk_mark_free(z, chunk)
170 #endif
171 
172 /*
173  * Misc constants.  Note that allocations that are exact multiples of
174  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
175  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
176  */
177 #define MIN_CHUNK_SIZE		8		/* in bytes */
178 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
179 #define ZONE_RELS_THRESH	32		/* threshold number of zones */
180 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
181 
182 /*
183  * The WEIRD_ADDR is used as known text to copy into free objects to
184  * try to create deterministic failure cases if the data is accessed after
185  * free.
186  */
187 #define WEIRD_ADDR      0xdeadc0de
188 #define MAX_COPY        sizeof(weirdary)
189 #define ZERO_LENGTH_PTR	((void *)-8)
190 
191 /*
192  * Misc global malloc buckets
193  */
194 
195 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
196 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
197 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
198 
199 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
200 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
201 
202 /*
203  * Initialize the slab memory allocator.  We have to choose a zone size based
204  * on available physical memory.  We choose a zone side which is approximately
205  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
206  * 128K.  The zone size is limited to the bounds set in slaballoc.h
207  * (typically 32K min, 128K max).
208  */
209 static void kmeminit(void *dummy);
210 
211 char *ZeroPage;
212 
213 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
214 
215 #ifdef INVARIANTS
216 /*
217  * If enabled any memory allocated without M_ZERO is initialized to -1.
218  */
219 static int  use_malloc_pattern;
220 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
221     &use_malloc_pattern, 0,
222     "Initialize memory to -1 if M_ZERO not specified");
223 #endif
224 
225 static int ZoneRelsThresh = ZONE_RELS_THRESH;
226 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
227 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
228 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
229 
230 static void
231 kmeminit(void *dummy)
232 {
233     size_t limsize;
234     int usesize;
235     int i;
236 
237     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
238     if (limsize > KvaSize)
239 	limsize = KvaSize;
240 
241     usesize = (int)(limsize / 1024);	/* convert to KB */
242 
243     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
244     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
245 	ZoneSize <<= 1;
246     ZoneLimit = ZoneSize / 4;
247     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
248 	ZoneLimit = ZALLOC_ZONE_LIMIT;
249     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
250     ZonePageCount = ZoneSize / PAGE_SIZE;
251 
252     for (i = 0; i < NELEM(weirdary); ++i)
253 	weirdary[i] = WEIRD_ADDR;
254 
255     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
256 
257     if (bootverbose)
258 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
259 }
260 
261 /*
262  * Initialize a malloc type tracking structure.
263  */
264 void
265 malloc_init(void *data)
266 {
267     struct malloc_type *type = data;
268     size_t limsize;
269 
270     if (type->ks_magic != M_MAGIC)
271 	panic("malloc type lacks magic");
272 
273     if (type->ks_limit != 0)
274 	return;
275 
276     if (vmstats.v_page_count == 0)
277 	panic("malloc_init not allowed before vm init");
278 
279     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
280     if (limsize > KvaSize)
281 	limsize = KvaSize;
282     type->ks_limit = limsize / 10;
283 
284     type->ks_next = kmemstatistics;
285     kmemstatistics = type;
286 }
287 
288 void
289 malloc_uninit(void *data)
290 {
291     struct malloc_type *type = data;
292     struct malloc_type *t;
293 #ifdef INVARIANTS
294     int i;
295     long ttl;
296 #endif
297 
298     if (type->ks_magic != M_MAGIC)
299 	panic("malloc type lacks magic");
300 
301     if (vmstats.v_page_count == 0)
302 	panic("malloc_uninit not allowed before vm init");
303 
304     if (type->ks_limit == 0)
305 	panic("malloc_uninit on uninitialized type");
306 
307 #ifdef SMP
308     /* Make sure that all pending kfree()s are finished. */
309     lwkt_synchronize_ipiqs("muninit");
310 #endif
311 
312 #ifdef INVARIANTS
313     /*
314      * memuse is only correct in aggregation.  Due to memory being allocated
315      * on one cpu and freed on another individual array entries may be
316      * negative or positive (canceling each other out).
317      */
318     for (i = ttl = 0; i < ncpus; ++i)
319 	ttl += type->ks_memuse[i];
320     if (ttl) {
321 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
322 	    ttl, type->ks_shortdesc, i);
323     }
324 #endif
325     if (type == kmemstatistics) {
326 	kmemstatistics = type->ks_next;
327     } else {
328 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
329 	    if (t->ks_next == type) {
330 		t->ks_next = type->ks_next;
331 		break;
332 	    }
333 	}
334     }
335     type->ks_next = NULL;
336     type->ks_limit = 0;
337 }
338 
339 /*
340  * Increase the kmalloc pool limit for the specified pool.  No changes
341  * are the made if the pool would shrink.
342  */
343 void
344 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
345 {
346     if (type->ks_limit == 0)
347 	malloc_init(type);
348     if (bytes == 0)
349 	bytes = KvaSize;
350     if (type->ks_limit < bytes)
351 	type->ks_limit = bytes;
352 }
353 
354 /*
355  * Dynamically create a malloc pool.  This function is a NOP if *typep is
356  * already non-NULL.
357  */
358 void
359 kmalloc_create(struct malloc_type **typep, const char *descr)
360 {
361 	struct malloc_type *type;
362 
363 	if (*typep == NULL) {
364 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
365 		type->ks_magic = M_MAGIC;
366 		type->ks_shortdesc = descr;
367 		malloc_init(type);
368 		*typep = type;
369 	}
370 }
371 
372 /*
373  * Destroy a dynamically created malloc pool.  This function is a NOP if
374  * the pool has already been destroyed.
375  */
376 void
377 kmalloc_destroy(struct malloc_type **typep)
378 {
379 	if (*typep != NULL) {
380 		malloc_uninit(*typep);
381 		kfree(*typep, M_TEMP);
382 		*typep = NULL;
383 	}
384 }
385 
386 /*
387  * Calculate the zone index for the allocation request size and set the
388  * allocation request size to that particular zone's chunk size.
389  */
390 static __inline int
391 zoneindex(unsigned long *bytes)
392 {
393     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
394     if (n < 128) {
395 	*bytes = n = (n + 7) & ~7;
396 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
397     }
398     if (n < 256) {
399 	*bytes = n = (n + 15) & ~15;
400 	return(n / 16 + 7);
401     }
402     if (n < 8192) {
403 	if (n < 512) {
404 	    *bytes = n = (n + 31) & ~31;
405 	    return(n / 32 + 15);
406 	}
407 	if (n < 1024) {
408 	    *bytes = n = (n + 63) & ~63;
409 	    return(n / 64 + 23);
410 	}
411 	if (n < 2048) {
412 	    *bytes = n = (n + 127) & ~127;
413 	    return(n / 128 + 31);
414 	}
415 	if (n < 4096) {
416 	    *bytes = n = (n + 255) & ~255;
417 	    return(n / 256 + 39);
418 	}
419 	*bytes = n = (n + 511) & ~511;
420 	return(n / 512 + 47);
421     }
422 #if ZALLOC_ZONE_LIMIT > 8192
423     if (n < 16384) {
424 	*bytes = n = (n + 1023) & ~1023;
425 	return(n / 1024 + 55);
426     }
427 #endif
428 #if ZALLOC_ZONE_LIMIT > 16384
429     if (n < 32768) {
430 	*bytes = n = (n + 2047) & ~2047;
431 	return(n / 2048 + 63);
432     }
433 #endif
434     panic("Unexpected byte count %d", n);
435     return(0);
436 }
437 
438 #ifdef SLAB_DEBUG
439 /*
440  * Used to debug memory corruption issues.  Record up to (typically 32)
441  * allocation sources for this zone (for a particular chunk size).
442  */
443 
444 static void
445 slab_record_source(SLZone *z, const char *file, int line)
446 {
447     int i;
448     int b = line & (SLAB_DEBUG_ENTRIES - 1);
449 
450     i = b;
451     do {
452 	if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
453 		return;
454 	if (z->z_Sources[i].file == NULL)
455 		break;
456 	i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
457     } while (i != b);
458     z->z_Sources[i].file = file;
459     z->z_Sources[i].line = line;
460 }
461 
462 #endif
463 
464 /*
465  * kmalloc()	(SLAB ALLOCATOR)
466  *
467  *	Allocate memory via the slab allocator.  If the request is too large,
468  *	or if it page-aligned beyond a certain size, we fall back to the
469  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
470  *	&SlabMisc if you don't care.
471  *
472  *	M_RNOWAIT	- don't block.
473  *	M_NULLOK	- return NULL instead of blocking.
474  *	M_ZERO		- zero the returned memory.
475  *	M_USE_RESERVE	- allow greater drawdown of the free list
476  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
477  *
478  * MPSAFE
479  */
480 
481 #ifdef SLAB_DEBUG
482 void *
483 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
484 	      const char *file, int line)
485 #else
486 void *
487 kmalloc(unsigned long size, struct malloc_type *type, int flags)
488 #endif
489 {
490     SLZone *z;
491     SLChunk *chunk;
492 #ifdef SMP
493     SLChunk *bchunk;
494 #endif
495     SLGlobalData *slgd;
496     struct globaldata *gd;
497     int zi;
498 #ifdef INVARIANTS
499     int i;
500 #endif
501 
502     logmemory_quick(malloc_beg);
503     gd = mycpu;
504     slgd = &gd->gd_slab;
505 
506     /*
507      * XXX silly to have this in the critical path.
508      */
509     if (type->ks_limit == 0) {
510 	crit_enter();
511 	if (type->ks_limit == 0)
512 	    malloc_init(type);
513 	crit_exit();
514     }
515     ++type->ks_calls;
516 
517     /*
518      * Handle the case where the limit is reached.  Panic if we can't return
519      * NULL.  The original malloc code looped, but this tended to
520      * simply deadlock the computer.
521      *
522      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
523      * to determine if a more complete limit check should be done.  The
524      * actual memory use is tracked via ks_memuse[cpu].
525      */
526     while (type->ks_loosememuse >= type->ks_limit) {
527 	int i;
528 	long ttl;
529 
530 	for (i = ttl = 0; i < ncpus; ++i)
531 	    ttl += type->ks_memuse[i];
532 	type->ks_loosememuse = ttl;	/* not MP synchronized */
533 	if ((ssize_t)ttl < 0)		/* deal with occassional race */
534 		ttl = 0;
535 	if (ttl >= type->ks_limit) {
536 	    if (flags & M_NULLOK) {
537 		logmemory(malloc_end, NULL, type, size, flags);
538 		return(NULL);
539 	    }
540 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
541 	}
542     }
543 
544     /*
545      * Handle the degenerate size == 0 case.  Yes, this does happen.
546      * Return a special pointer.  This is to maintain compatibility with
547      * the original malloc implementation.  Certain devices, such as the
548      * adaptec driver, not only allocate 0 bytes, they check for NULL and
549      * also realloc() later on.  Joy.
550      */
551     if (size == 0) {
552 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
553 	return(ZERO_LENGTH_PTR);
554     }
555 
556     /*
557      * Handle hysteresis from prior frees here in malloc().  We cannot
558      * safely manipulate the kernel_map in free() due to free() possibly
559      * being called via an IPI message or from sensitive interrupt code.
560      *
561      * NOTE: ku_pagecnt must be cleared before we free the slab or we
562      *	     might race another cpu allocating the kva and setting
563      *	     ku_pagecnt.
564      */
565     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
566 	crit_enter();
567 	if (slgd->NFreeZones > ZoneRelsThresh) {	/* crit sect race */
568 	    int *kup;
569 
570 	    z = slgd->FreeZones;
571 	    slgd->FreeZones = z->z_Next;
572 	    --slgd->NFreeZones;
573 	    kup = btokup(z);
574 	    *kup = 0;
575 	    kmem_slab_free(z, ZoneSize);	/* may block */
576 	    atomic_add_int(&ZoneGenAlloc, -(int)ZoneSize / 1024);
577 	}
578 	crit_exit();
579     }
580 
581     /*
582      * XXX handle oversized frees that were queued from kfree().
583      */
584     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
585 	crit_enter();
586 	if ((z = slgd->FreeOvZones) != NULL) {
587 	    vm_size_t tsize;
588 
589 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
590 	    slgd->FreeOvZones = z->z_Next;
591 	    tsize = z->z_ChunkSize;
592 	    kmem_slab_free(z, tsize);	/* may block */
593 	    atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
594 	}
595 	crit_exit();
596     }
597 
598     /*
599      * Handle large allocations directly.  There should not be very many of
600      * these so performance is not a big issue.
601      *
602      * The backend allocator is pretty nasty on a SMP system.   Use the
603      * slab allocator for one and two page-sized chunks even though we lose
604      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
605      */
606     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
607 	int *kup;
608 
609 	size = round_page(size);
610 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
611 	if (chunk == NULL) {
612 	    logmemory(malloc_end, NULL, type, size, flags);
613 	    return(NULL);
614 	}
615 	atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
616 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
617 	flags |= M_PASSIVE_ZERO;
618 	kup = btokup(chunk);
619 	*kup = size / PAGE_SIZE;
620 	crit_enter();
621 	goto done;
622     }
623 
624     /*
625      * Attempt to allocate out of an existing zone.  First try the free list,
626      * then allocate out of unallocated space.  If we find a good zone move
627      * it to the head of the list so later allocations find it quickly
628      * (we might have thousands of zones in the list).
629      *
630      * Note: zoneindex() will panic of size is too large.
631      */
632     zi = zoneindex(&size);
633     KKASSERT(zi < NZONES);
634     crit_enter();
635 
636     if ((z = slgd->ZoneAry[zi]) != NULL) {
637 	/*
638 	 * Locate a chunk - we have to have at least one.  If this is the
639 	 * last chunk go ahead and do the work to retrieve chunks freed
640 	 * from remote cpus, and if the zone is still empty move it off
641 	 * the ZoneAry.
642 	 */
643 	if (--z->z_NFree <= 0) {
644 	    KKASSERT(z->z_NFree == 0);
645 
646 #ifdef SMP
647 	    /*
648 	     * WARNING! This code competes with other cpus.  It is ok
649 	     * for us to not drain RChunks here but we might as well, and
650 	     * it is ok if more accumulate after we're done.
651 	     *
652 	     * Set RSignal before pulling rchunks off, indicating that we
653 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
654 	     * read RSignal before putting rchunks on thus interlocking
655 	     * their IPI signaling.
656 	     */
657 	    if (z->z_RChunks == NULL)
658 		atomic_swap_int(&z->z_RSignal, 1);
659 
660 	    while ((bchunk = z->z_RChunks) != NULL) {
661 		cpu_ccfence();
662 		if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
663 		    *z->z_LChunksp = bchunk;
664 		    while (bchunk) {
665 			chunk_mark_free(z, bchunk);
666 			z->z_LChunksp = &bchunk->c_Next;
667 			bchunk = bchunk->c_Next;
668 			++z->z_NFree;
669 		    }
670 		    break;
671 		}
672 	    }
673 #endif
674 	    /*
675 	     * Remove from the zone list if no free chunks remain.
676 	     * Clear RSignal
677 	     */
678 	    if (z->z_NFree == 0) {
679 		slgd->ZoneAry[zi] = z->z_Next;
680 		z->z_Next = NULL;
681 	    } else {
682 		z->z_RSignal = 0;
683 	    }
684 	}
685 
686 	/*
687 	 * Fast path, we have chunks available in z_LChunks.
688 	 */
689 	chunk = z->z_LChunks;
690 	if (chunk) {
691 		chunk_mark_allocated(z, chunk);
692 		z->z_LChunks = chunk->c_Next;
693 		if (z->z_LChunks == NULL)
694 			z->z_LChunksp = &z->z_LChunks;
695 #ifdef SLAB_DEBUG
696 		slab_record_source(z, file, line);
697 #endif
698 		goto done;
699 	}
700 
701 	/*
702 	 * No chunks are available in LChunks, the free chunk MUST be
703 	 * in the never-before-used memory area, controlled by UIndex.
704 	 *
705 	 * The consequences are very serious if our zone got corrupted so
706 	 * we use an explicit panic rather than a KASSERT.
707 	 */
708 	if (z->z_UIndex + 1 != z->z_NMax)
709 	    ++z->z_UIndex;
710 	else
711 	    z->z_UIndex = 0;
712 
713 	if (z->z_UIndex == z->z_UEndIndex)
714 	    panic("slaballoc: corrupted zone");
715 
716 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
717 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
718 	    flags &= ~M_ZERO;
719 	    flags |= M_PASSIVE_ZERO;
720 	}
721 	chunk_mark_allocated(z, chunk);
722 #ifdef SLAB_DEBUG
723 	slab_record_source(z, file, line);
724 #endif
725 	goto done;
726     }
727 
728     /*
729      * If all zones are exhausted we need to allocate a new zone for this
730      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
731      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
732      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
733      * we do not pre-zero it because we do not want to mess up the L1 cache.
734      *
735      * At least one subsystem, the tty code (see CROUND) expects power-of-2
736      * allocations to be power-of-2 aligned.  We maintain compatibility by
737      * adjusting the base offset below.
738      */
739     {
740 	int off;
741 	int *kup;
742 
743 	if ((z = slgd->FreeZones) != NULL) {
744 	    slgd->FreeZones = z->z_Next;
745 	    --slgd->NFreeZones;
746 	    bzero(z, sizeof(SLZone));
747 	    z->z_Flags |= SLZF_UNOTZEROD;
748 	} else {
749 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
750 	    if (z == NULL)
751 		goto fail;
752 	    atomic_add_int(&ZoneGenAlloc, (int)ZoneSize / 1024);
753 	}
754 
755 	/*
756 	 * How big is the base structure?
757 	 */
758 #if defined(INVARIANTS)
759 	/*
760 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
761 	 * complicated so don't make an exact calculation.
762 	 */
763 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
764 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
765 #else
766 	off = sizeof(SLZone);
767 #endif
768 
769 	/*
770 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
771 	 * Otherwise just 8-byte align the data.
772 	 */
773 	if ((size | (size - 1)) + 1 == (size << 1))
774 	    off = (off + size - 1) & ~(size - 1);
775 	else
776 	    off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
777 	z->z_Magic = ZALLOC_SLAB_MAGIC;
778 	z->z_ZoneIndex = zi;
779 	z->z_NMax = (ZoneSize - off) / size;
780 	z->z_NFree = z->z_NMax - 1;
781 	z->z_BasePtr = (char *)z + off;
782 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
783 	z->z_ChunkSize = size;
784 	z->z_CpuGd = gd;
785 	z->z_Cpu = gd->gd_cpuid;
786 	z->z_LChunksp = &z->z_LChunks;
787 #ifdef SLAB_DEBUG
788 	bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
789 	bzero(z->z_Sources, sizeof(z->z_Sources));
790 #endif
791 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
792 	z->z_Next = slgd->ZoneAry[zi];
793 	slgd->ZoneAry[zi] = z;
794 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
795 	    flags &= ~M_ZERO;	/* already zero'd */
796 	    flags |= M_PASSIVE_ZERO;
797 	}
798 	kup = btokup(z);
799 	*kup = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
800 	chunk_mark_allocated(z, chunk);
801 #ifdef SLAB_DEBUG
802 	slab_record_source(z, file, line);
803 #endif
804 
805 	/*
806 	 * Slide the base index for initial allocations out of the next
807 	 * zone we create so we do not over-weight the lower part of the
808 	 * cpu memory caches.
809 	 */
810 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
811 				& (ZALLOC_MAX_ZONE_SIZE - 1);
812     }
813 
814 done:
815     ++type->ks_inuse[gd->gd_cpuid];
816     type->ks_memuse[gd->gd_cpuid] += size;
817     type->ks_loosememuse += size;	/* not MP synchronized */
818     crit_exit();
819 
820     if (flags & M_ZERO)
821 	bzero(chunk, size);
822 #ifdef INVARIANTS
823     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
824 	if (use_malloc_pattern) {
825 	    for (i = 0; i < size; i += sizeof(int)) {
826 		*(int *)((char *)chunk + i) = -1;
827 	    }
828 	}
829 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
830     }
831 #endif
832     logmemory(malloc_end, chunk, type, size, flags);
833     return(chunk);
834 fail:
835     crit_exit();
836     logmemory(malloc_end, NULL, type, size, flags);
837     return(NULL);
838 }
839 
840 /*
841  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
842  *
843  * Generally speaking this routine is not called very often and we do
844  * not attempt to optimize it beyond reusing the same pointer if the
845  * new size fits within the chunking of the old pointer's zone.
846  */
847 #ifdef SLAB_DEBUG
848 void *
849 krealloc_debug(void *ptr, unsigned long size,
850 	       struct malloc_type *type, int flags,
851 	       const char *file, int line)
852 #else
853 void *
854 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
855 #endif
856 {
857     unsigned long osize;
858     SLZone *z;
859     void *nptr;
860     int *kup;
861 
862     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
863 
864     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
865 	return(kmalloc_debug(size, type, flags, file, line));
866     if (size == 0) {
867 	kfree(ptr, type);
868 	return(NULL);
869     }
870 
871     /*
872      * Handle oversized allocations.  XXX we really should require that a
873      * size be passed to free() instead of this nonsense.
874      */
875     kup = btokup(ptr);
876     if (*kup > 0) {
877 	osize = *kup << PAGE_SHIFT;
878 	if (osize == round_page(size))
879 	    return(ptr);
880 	if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
881 	    return(NULL);
882 	bcopy(ptr, nptr, min(size, osize));
883 	kfree(ptr, type);
884 	return(nptr);
885     }
886 
887     /*
888      * Get the original allocation's zone.  If the new request winds up
889      * using the same chunk size we do not have to do anything.
890      */
891     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
892     kup = btokup(z);
893     KKASSERT(*kup < 0);
894     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
895 
896     /*
897      * Allocate memory for the new request size.  Note that zoneindex has
898      * already adjusted the request size to the appropriate chunk size, which
899      * should optimize our bcopy().  Then copy and return the new pointer.
900      *
901      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
902      * necessary align the result.
903      *
904      * We can only zoneindex (to align size to the chunk size) if the new
905      * size is not too large.
906      */
907     if (size < ZoneLimit) {
908 	zoneindex(&size);
909 	if (z->z_ChunkSize == size)
910 	    return(ptr);
911     }
912     if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
913 	return(NULL);
914     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
915     kfree(ptr, type);
916     return(nptr);
917 }
918 
919 /*
920  * Return the kmalloc limit for this type, in bytes.
921  */
922 long
923 kmalloc_limit(struct malloc_type *type)
924 {
925     if (type->ks_limit == 0) {
926 	crit_enter();
927 	if (type->ks_limit == 0)
928 	    malloc_init(type);
929 	crit_exit();
930     }
931     return(type->ks_limit);
932 }
933 
934 /*
935  * Allocate a copy of the specified string.
936  *
937  * (MP SAFE) (MAY BLOCK)
938  */
939 #ifdef SLAB_DEBUG
940 char *
941 kstrdup_debug(const char *str, struct malloc_type *type,
942 	      const char *file, int line)
943 #else
944 char *
945 kstrdup(const char *str, struct malloc_type *type)
946 #endif
947 {
948     int zlen;	/* length inclusive of terminating NUL */
949     char *nstr;
950 
951     if (str == NULL)
952 	return(NULL);
953     zlen = strlen(str) + 1;
954     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
955     bcopy(str, nstr, zlen);
956     return(nstr);
957 }
958 
959 #ifdef SMP
960 /*
961  * Notify our cpu that a remote cpu has freed some chunks in a zone that
962  * we own.  RCount will be bumped so the memory should be good, but validate
963  * that it really is.
964  */
965 static
966 void
967 kfree_remote(void *ptr)
968 {
969     SLGlobalData *slgd;
970     SLChunk *bchunk;
971     SLZone *z;
972     int nfree;
973     int *kup;
974 
975     slgd = &mycpu->gd_slab;
976     z = ptr;
977     kup = btokup(z);
978     KKASSERT(*kup == -((int)mycpuid + 1));
979     KKASSERT(z->z_RCount > 0);
980     atomic_subtract_int(&z->z_RCount, 1);
981 
982     logmemory(free_rem_beg, z, NULL, 0, 0);
983     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
984     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
985     nfree = z->z_NFree;
986 
987     /*
988      * Indicate that we will no longer be off of the ZoneAry by
989      * clearing RSignal.
990      */
991     if (z->z_RChunks)
992 	z->z_RSignal = 0;
993 
994     /*
995      * Atomically extract the bchunks list and then process it back
996      * into the lchunks list.  We want to append our bchunks to the
997      * lchunks list and not prepend since we likely do not have
998      * cache mastership of the related data (not that it helps since
999      * we are using c_Next).
1000      */
1001     while ((bchunk = z->z_RChunks) != NULL) {
1002 	cpu_ccfence();
1003 	if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
1004 	    *z->z_LChunksp = bchunk;
1005 	    while (bchunk) {
1006 		    chunk_mark_free(z, bchunk);
1007 		    z->z_LChunksp = &bchunk->c_Next;
1008 		    bchunk = bchunk->c_Next;
1009 		    ++z->z_NFree;
1010 	    }
1011 	    break;
1012 	}
1013     }
1014     if (z->z_NFree && nfree == 0) {
1015 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1016 	slgd->ZoneAry[z->z_ZoneIndex] = z;
1017     }
1018 
1019     /*
1020      * If the zone becomes totally free, and there are other zones we
1021      * can allocate from, move this zone to the FreeZones list.  Since
1022      * this code can be called from an IPI callback, do *NOT* try to mess
1023      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1024      *
1025      * Do not move the zone if there is an IPI inflight, otherwise MP
1026      * races can result in our free_remote code accessing a destroyed
1027      * zone.
1028      */
1029     if (z->z_NFree == z->z_NMax &&
1030 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1031 	z->z_RCount == 0
1032     ) {
1033 	SLZone **pz;
1034 	int *kup;
1035 
1036 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex];
1037 	     z != *pz;
1038 	     pz = &(*pz)->z_Next) {
1039 	    ;
1040 	}
1041 	*pz = z->z_Next;
1042 	z->z_Magic = -1;
1043 	z->z_Next = slgd->FreeZones;
1044 	slgd->FreeZones = z;
1045 	++slgd->NFreeZones;
1046 	kup = btokup(z);
1047 	*kup = 0;
1048     }
1049     logmemory(free_rem_end, z, bchunk, 0, 0);
1050 }
1051 
1052 #endif
1053 
1054 /*
1055  * free (SLAB ALLOCATOR)
1056  *
1057  * Free a memory block previously allocated by malloc.  Note that we do not
1058  * attempt to update ks_loosememuse as MP races could prevent us from
1059  * checking memory limits in malloc.
1060  *
1061  * MPSAFE
1062  */
1063 void
1064 kfree(void *ptr, struct malloc_type *type)
1065 {
1066     SLZone *z;
1067     SLChunk *chunk;
1068     SLGlobalData *slgd;
1069     struct globaldata *gd;
1070     int *kup;
1071     unsigned long size;
1072 #ifdef SMP
1073     SLChunk *bchunk;
1074     int rsignal;
1075 #endif
1076 
1077     logmemory_quick(free_beg);
1078     gd = mycpu;
1079     slgd = &gd->gd_slab;
1080 
1081     if (ptr == NULL)
1082 	panic("trying to free NULL pointer");
1083 
1084     /*
1085      * Handle special 0-byte allocations
1086      */
1087     if (ptr == ZERO_LENGTH_PTR) {
1088 	logmemory(free_zero, ptr, type, -1, 0);
1089 	logmemory_quick(free_end);
1090 	return;
1091     }
1092 
1093     /*
1094      * Panic on bad malloc type
1095      */
1096     if (type->ks_magic != M_MAGIC)
1097 	panic("free: malloc type lacks magic");
1098 
1099     /*
1100      * Handle oversized allocations.  XXX we really should require that a
1101      * size be passed to free() instead of this nonsense.
1102      *
1103      * This code is never called via an ipi.
1104      */
1105     kup = btokup(ptr);
1106     if (*kup > 0) {
1107 	size = *kup << PAGE_SHIFT;
1108 	*kup = 0;
1109 #ifdef INVARIANTS
1110 	KKASSERT(sizeof(weirdary) <= size);
1111 	bcopy(weirdary, ptr, sizeof(weirdary));
1112 #endif
1113 	/*
1114 	 * NOTE: For oversized allocations we do not record the
1115 	 *	     originating cpu.  It gets freed on the cpu calling
1116 	 *	     kfree().  The statistics are in aggregate.
1117 	 *
1118 	 * note: XXX we have still inherited the interrupts-can't-block
1119 	 * assumption.  An interrupt thread does not bump
1120 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1121 	 * primarily until we can fix softupdate's assumptions about free().
1122 	 */
1123 	crit_enter();
1124 	--type->ks_inuse[gd->gd_cpuid];
1125 	type->ks_memuse[gd->gd_cpuid] -= size;
1126 	if (mycpu->gd_intr_nesting_level ||
1127 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1128 	{
1129 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1130 	    z = (SLZone *)ptr;
1131 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1132 	    z->z_Next = slgd->FreeOvZones;
1133 	    z->z_ChunkSize = size;
1134 	    slgd->FreeOvZones = z;
1135 	    crit_exit();
1136 	} else {
1137 	    crit_exit();
1138 	    logmemory(free_ovsz, ptr, type, size, 0);
1139 	    kmem_slab_free(ptr, size);	/* may block */
1140 	    atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1141 	}
1142 	logmemory_quick(free_end);
1143 	return;
1144     }
1145 
1146     /*
1147      * Zone case.  Figure out the zone based on the fact that it is
1148      * ZoneSize aligned.
1149      */
1150     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1151     kup = btokup(z);
1152     KKASSERT(*kup < 0);
1153     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1154 
1155     /*
1156      * If we do not own the zone then use atomic ops to free to the
1157      * remote cpu linked list and notify the target zone using a
1158      * passive message.
1159      *
1160      * The target zone cannot be deallocated while we own a chunk of it,
1161      * so the zone header's storage is stable until the very moment
1162      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1163      *
1164      * (no critical section needed)
1165      */
1166     if (z->z_CpuGd != gd) {
1167 #ifdef SMP
1168 	/*
1169 	 * Making these adjustments now allow us to avoid passing (type)
1170 	 * to the remote cpu.  Note that ks_inuse/ks_memuse is being
1171 	 * adjusted on OUR cpu, not the zone cpu, but it should all still
1172 	 * sum up properly and cancel out.
1173 	 */
1174 	crit_enter();
1175 	--type->ks_inuse[gd->gd_cpuid];
1176 	type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize;
1177 	crit_exit();
1178 
1179 	/*
1180 	 * WARNING! This code competes with other cpus.  Once we
1181 	 *	    successfully link the chunk to RChunks the remote
1182 	 *	    cpu can rip z's storage out from under us.
1183 	 *
1184 	 *	    Bumping RCount prevents z's storage from getting
1185 	 *	    ripped out.
1186 	 */
1187 	rsignal = z->z_RSignal;
1188 	cpu_lfence();
1189 	if (rsignal)
1190 		atomic_add_int(&z->z_RCount, 1);
1191 
1192 	chunk = ptr;
1193 	for (;;) {
1194 	    bchunk = z->z_RChunks;
1195 	    cpu_ccfence();
1196 	    chunk->c_Next = bchunk;
1197 	    cpu_sfence();
1198 
1199 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1200 		break;
1201 	}
1202 
1203 	/*
1204 	 * We have to signal the remote cpu if our actions will cause
1205 	 * the remote zone to be placed back on ZoneAry so it can
1206 	 * move the zone back on.
1207 	 *
1208 	 * We only need to deal with NULL->non-NULL RChunk transitions
1209 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1210 	 * before adding our chunk to RChunks.  This should result in
1211 	 * virtually no IPI traffic.
1212 	 *
1213 	 * We can use a passive IPI to reduce overhead even further.
1214 	 */
1215 	if (bchunk == NULL && rsignal) {
1216 	    logmemory(free_request, ptr, type, z->z_ChunkSize, 0);
1217 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1218 	    /* z can get ripped out from under us from this point on */
1219 	} else if (rsignal) {
1220 	    atomic_subtract_int(&z->z_RCount, 1);
1221 	    /* z can get ripped out from under us from this point on */
1222 	}
1223 #else
1224 	panic("Corrupt SLZone");
1225 #endif
1226 	logmemory_quick(free_end);
1227 	return;
1228     }
1229 
1230     /*
1231      * kfree locally
1232      */
1233     logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0);
1234 
1235     crit_enter();
1236     chunk = ptr;
1237     chunk_mark_free(z, chunk);
1238 
1239     /*
1240      * Put weird data into the memory to detect modifications after freeing,
1241      * illegal pointer use after freeing (we should fault on the odd address),
1242      * and so forth.  XXX needs more work, see the old malloc code.
1243      */
1244 #ifdef INVARIANTS
1245     if (z->z_ChunkSize < sizeof(weirdary))
1246 	bcopy(weirdary, chunk, z->z_ChunkSize);
1247     else
1248 	bcopy(weirdary, chunk, sizeof(weirdary));
1249 #endif
1250 
1251     /*
1252      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1253      * to the front of the linked list so it is more likely to be
1254      * reallocated, since it is already in our L1 cache.
1255      */
1256 #ifdef INVARIANTS
1257     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1258 	panic("BADFREE %p", chunk);
1259 #endif
1260     chunk->c_Next = z->z_LChunks;
1261     z->z_LChunks = chunk;
1262     if (chunk->c_Next == NULL)
1263 	    z->z_LChunksp = &chunk->c_Next;
1264 
1265 #ifdef INVARIANTS
1266     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1267 	panic("BADFREE2");
1268 #endif
1269 
1270     /*
1271      * Bump the number of free chunks.  If it becomes non-zero the zone
1272      * must be added back onto the appropriate list.
1273      */
1274     if (z->z_NFree++ == 0) {
1275 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1276 	slgd->ZoneAry[z->z_ZoneIndex] = z;
1277     }
1278 
1279     --type->ks_inuse[z->z_Cpu];
1280     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1281 
1282     /*
1283      * If the zone becomes totally free, and there are other zones we
1284      * can allocate from, move this zone to the FreeZones list.  Since
1285      * this code can be called from an IPI callback, do *NOT* try to mess
1286      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1287      */
1288     if (z->z_NFree == z->z_NMax &&
1289 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1290 	z->z_RCount == 0
1291     ) {
1292 	SLZone **pz;
1293 	int *kup;
1294 
1295 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
1296 	    ;
1297 	*pz = z->z_Next;
1298 	z->z_Magic = -1;
1299 	z->z_Next = slgd->FreeZones;
1300 	slgd->FreeZones = z;
1301 	++slgd->NFreeZones;
1302 	kup = btokup(z);
1303 	*kup = 0;
1304     }
1305     logmemory_quick(free_end);
1306     crit_exit();
1307 }
1308 
1309 #if defined(INVARIANTS)
1310 
1311 /*
1312  * Helper routines for sanity checks
1313  */
1314 static
1315 void
1316 chunk_mark_allocated(SLZone *z, void *chunk)
1317 {
1318     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1319     __uint32_t *bitptr;
1320 
1321     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1322     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1323 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1324     bitptr = &z->z_Bitmap[bitdex >> 5];
1325     bitdex &= 31;
1326     KASSERT((*bitptr & (1 << bitdex)) == 0,
1327 	    ("memory chunk %p is already allocated!", chunk));
1328     *bitptr |= 1 << bitdex;
1329 }
1330 
1331 static
1332 void
1333 chunk_mark_free(SLZone *z, void *chunk)
1334 {
1335     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1336     __uint32_t *bitptr;
1337 
1338     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1339     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1340 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1341     bitptr = &z->z_Bitmap[bitdex >> 5];
1342     bitdex &= 31;
1343     KASSERT((*bitptr & (1 << bitdex)) != 0,
1344 	    ("memory chunk %p is already free!", chunk));
1345     *bitptr &= ~(1 << bitdex);
1346 }
1347 
1348 #endif
1349 
1350 /*
1351  * kmem_slab_alloc()
1352  *
1353  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1354  *	specified alignment.  M_* flags are expected in the flags field.
1355  *
1356  *	Alignment must be a multiple of PAGE_SIZE.
1357  *
1358  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1359  *	but when we move zalloc() over to use this function as its backend
1360  *	we will have to switch to kreserve/krelease and call reserve(0)
1361  *	after the new space is made available.
1362  *
1363  *	Interrupt code which has preempted other code is not allowed to
1364  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1365  *	non-preemptively or blocks and then runs non-preemptively, then
1366  *	it is free to use PQ_CACHE pages.
1367  */
1368 static void *
1369 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1370 {
1371     vm_size_t i;
1372     vm_offset_t addr;
1373     int count, vmflags, base_vmflags;
1374     vm_page_t mp[ZALLOC_MAX_ZONE_SIZE / PAGE_SIZE];
1375     thread_t td;
1376 
1377     size = round_page(size);
1378     addr = vm_map_min(&kernel_map);
1379 
1380     /*
1381      * Reserve properly aligned space from kernel_map.  RNOWAIT allocations
1382      * cannot block.
1383      */
1384     if (flags & M_RNOWAIT) {
1385 	if (lwkt_trytoken(&vm_token) == 0)
1386 	    return(NULL);
1387     } else {
1388 	lwkt_gettoken(&vm_token);
1389     }
1390     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1391     crit_enter();
1392     vm_map_lock(&kernel_map);
1393     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1394 	vm_map_unlock(&kernel_map);
1395 	if ((flags & M_NULLOK) == 0)
1396 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1397 	vm_map_entry_release(count);
1398 	crit_exit();
1399 	lwkt_reltoken(&vm_token);
1400 	return(NULL);
1401     }
1402 
1403     /*
1404      * kernel_object maps 1:1 to kernel_map.
1405      */
1406     vm_object_reference(&kernel_object);
1407     vm_map_insert(&kernel_map, &count,
1408 		    &kernel_object, addr, addr, addr + size,
1409 		    VM_MAPTYPE_NORMAL,
1410 		    VM_PROT_ALL, VM_PROT_ALL,
1411 		    0);
1412 
1413     td = curthread;
1414 
1415     base_vmflags = 0;
1416     if (flags & M_ZERO)
1417         base_vmflags |= VM_ALLOC_ZERO;
1418     if (flags & M_USE_RESERVE)
1419 	base_vmflags |= VM_ALLOC_SYSTEM;
1420     if (flags & M_USE_INTERRUPT_RESERVE)
1421         base_vmflags |= VM_ALLOC_INTERRUPT;
1422     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1423 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1424 	      flags, ((int **)&size)[-1]);
1425     }
1426 
1427 
1428     /*
1429      * Allocate the pages.  Do not mess with the PG_ZERO flag yet.
1430      */
1431     for (i = 0; i < size; i += PAGE_SIZE) {
1432 	vm_page_t m;
1433 
1434 	/*
1435 	 * VM_ALLOC_NORMAL can only be set if we are not preempting.
1436 	 *
1437 	 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1438 	 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1439 	 * implied in this case), though I'm not sure if we really need to
1440 	 * do that.
1441 	 */
1442 	vmflags = base_vmflags;
1443 	if (flags & M_WAITOK) {
1444 	    if (td->td_preempted)
1445 		vmflags |= VM_ALLOC_SYSTEM;
1446 	    else
1447 		vmflags |= VM_ALLOC_NORMAL;
1448 	}
1449 
1450 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1451 	if (i / PAGE_SIZE < NELEM(mp))
1452 		mp[i / PAGE_SIZE] = m;
1453 
1454 	/*
1455 	 * If the allocation failed we either return NULL or we retry.
1456 	 *
1457 	 * If M_WAITOK is specified we wait for more memory and retry.
1458 	 * If M_WAITOK is specified from a preemption we yield instead of
1459 	 * wait.  Livelock will not occur because the interrupt thread
1460 	 * will not be preempting anyone the second time around after the
1461 	 * yield.
1462 	 */
1463 	if (m == NULL) {
1464 	    if (flags & M_WAITOK) {
1465 		if (td->td_preempted) {
1466 		    vm_map_unlock(&kernel_map);
1467 		    lwkt_switch();
1468 		    vm_map_lock(&kernel_map);
1469 		} else {
1470 		    vm_map_unlock(&kernel_map);
1471 		    vm_wait(0);
1472 		    vm_map_lock(&kernel_map);
1473 		}
1474 		i -= PAGE_SIZE;	/* retry */
1475 		continue;
1476 	    }
1477 
1478 	    /*
1479 	     * We were unable to recover, cleanup and return NULL
1480 	     *
1481 	     * (vm_token already held)
1482 	     */
1483 	    while (i != 0) {
1484 		i -= PAGE_SIZE;
1485 		m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1486 		/* page should already be busy */
1487 		vm_page_free(m);
1488 	    }
1489 	    vm_map_delete(&kernel_map, addr, addr + size, &count);
1490 	    vm_map_unlock(&kernel_map);
1491 	    vm_map_entry_release(count);
1492 	    crit_exit();
1493 	    lwkt_reltoken(&vm_token);
1494 	    return(NULL);
1495 	}
1496     }
1497 
1498     /*
1499      * Success!
1500      *
1501      * Mark the map entry as non-pageable using a routine that allows us to
1502      * populate the underlying pages.
1503      *
1504      * The pages were busied by the allocations above.
1505      */
1506     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1507     crit_exit();
1508 
1509     /*
1510      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1511      */
1512     for (i = 0; i < size; i += PAGE_SIZE) {
1513 	vm_page_t m;
1514 
1515 	if (i / PAGE_SIZE < NELEM(mp))
1516 	   m = mp[i / PAGE_SIZE];
1517 	else
1518 	   m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1519 	m->valid = VM_PAGE_BITS_ALL;
1520 	/* page should already be busy */
1521 	vm_page_wire(m);
1522 	pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
1523 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1524 	    bzero((char *)addr + i, PAGE_SIZE);
1525 	vm_page_flag_clear(m, PG_ZERO);
1526 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1527 	vm_page_flag_set(m, PG_REFERENCED);
1528 	vm_page_wakeup(m);
1529     }
1530     vm_map_unlock(&kernel_map);
1531     vm_map_entry_release(count);
1532     lwkt_reltoken(&vm_token);
1533     return((void *)addr);
1534 }
1535 
1536 /*
1537  * kmem_slab_free()
1538  */
1539 static void
1540 kmem_slab_free(void *ptr, vm_size_t size)
1541 {
1542     crit_enter();
1543     lwkt_gettoken(&vm_token);
1544     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1545     lwkt_reltoken(&vm_token);
1546     crit_exit();
1547 }
1548 
1549