xref: /dragonfly/sys/kern/kern_slaballoc.c (revision 9f020288)
1 /*
2  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
3  *
4  * Copyright (c) 2003,2004,2010-2019 The DragonFly Project.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Matthew Dillon <dillon@backplane.com>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * This module implements a slab allocator drop-in replacement for the
38  * kernel malloc().
39  *
40  * A slab allocator reserves a ZONE for each chunk size, then lays the
41  * chunks out in an array within the zone.  Allocation and deallocation
42  * is nearly instantanious, and fragmentation/overhead losses are limited
43  * to a fixed worst-case amount.
44  *
45  * The downside of this slab implementation is in the chunk size
46  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
47  * In a kernel implementation all this memory will be physical so
48  * the zone size is adjusted downward on machines with less physical
49  * memory.  The upside is that overhead is bounded... this is the *worst*
50  * case overhead.
51  *
52  * Slab management is done on a per-cpu basis and no locking or mutexes
53  * are required, only a critical section.  When one cpu frees memory
54  * belonging to another cpu's slab manager an asynchronous IPI message
55  * will be queued to execute the operation.   In addition, both the
56  * high level slab allocator and the low level zone allocator optimize
57  * M_ZERO requests, and the slab allocator does not have to pre initialize
58  * the linked list of chunks.
59  *
60  * XXX Balancing is needed between cpus.  Balance will be handled through
61  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
62  *
63  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
64  * the new zone should be restricted to M_USE_RESERVE requests only.
65  *
66  *	Alloc Size	Chunking        Number of zones
67  *	0-127		8		16
68  *	128-255		16		8
69  *	256-511		32		8
70  *	512-1023	64		8
71  *	1024-2047	128		8
72  *	2048-4095	256		8
73  *	4096-8191	512		8
74  *	8192-16383	1024		8
75  *	16384-32767	2048		8
76  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
77  *
78  *	Allocations >= ZoneLimit go directly to kmem.
79  *	(n * PAGE_SIZE, n > 2) allocations go directly to kmem.
80  *
81  * Alignment properties:
82  * - All power-of-2 sized allocations are power-of-2 aligned.
83  * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84  *   power-of-2 round up of 'size'.
85  * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86  *   above table 'Chunking' column).
87  *
88  *			API REQUIREMENTS AND SIDE EFFECTS
89  *
90  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91  *    have remained compatible with the following API requirements:
92  *
93  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
94  *    + ability to allocate arbitrarily large chunks of memory
95  */
96 
97 #include "opt_vm.h"
98 
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/kernel.h>
102 #include <sys/slaballoc.h>
103 #include <sys/mbuf.h>
104 #include <sys/vmmeter.h>
105 #include <sys/lock.h>
106 #include <sys/thread.h>
107 #include <sys/globaldata.h>
108 #include <sys/sysctl.h>
109 #include <sys/ktr.h>
110 #include <sys/malloc.h>
111 
112 #include <vm/vm.h>
113 #include <vm/vm_param.h>
114 #include <vm/vm_kern.h>
115 #include <vm/vm_extern.h>
116 #include <vm/vm_object.h>
117 #include <vm/pmap.h>
118 #include <vm/vm_map.h>
119 #include <vm/vm_page.h>
120 #include <vm/vm_pageout.h>
121 
122 #include <machine/cpu.h>
123 
124 #include <sys/thread2.h>
125 #include <vm/vm_page2.h>
126 
127 #if (__VM_CACHELINE_SIZE == 32)
128 #define CAN_CACHEALIGN(sz)	((sz) >= 256)
129 #elif (__VM_CACHELINE_SIZE == 64)
130 #define CAN_CACHEALIGN(sz)	((sz) >= 512)
131 #elif (__VM_CACHELINE_SIZE == 128)
132 #define CAN_CACHEALIGN(sz)	((sz) >= 1024)
133 #else
134 #error "unsupported cacheline size"
135 #endif
136 
137 #define btokup(z)	(&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
138 
139 #define MEMORY_STRING	"ptr=%p type=%p size=%lu flags=%04x"
140 #define MEMORY_ARGS	void *ptr, void *type, unsigned long size, int flags
141 
142 #if !defined(KTR_MEMORY)
143 #define KTR_MEMORY	KTR_ALL
144 #endif
145 KTR_INFO_MASTER(memory);
146 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
147 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
148 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
149 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
150 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
151 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
152 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
153 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
154 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
155 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
156 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
157 
158 #define logmemory(name, ptr, type, size, flags)				\
159 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
160 #define logmemory_quick(name)						\
161 	KTR_LOG(memory_ ## name)
162 
163 /*
164  * Fixed globals (not per-cpu)
165  */
166 __read_frequently static int ZoneSize;
167 __read_frequently static int ZoneLimit;
168 __read_frequently static int ZonePageCount;
169 __read_frequently static uintptr_t ZoneMask;
170 __read_frequently struct malloc_type *kmemstatistics;	/* exported to vmstat */
171 
172 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
173 static void kmem_slab_free(void *ptr, vm_size_t bytes);
174 
175 #if defined(INVARIANTS)
176 static void chunk_mark_allocated(SLZone *z, void *chunk);
177 static void chunk_mark_free(SLZone *z, void *chunk);
178 #else
179 #define chunk_mark_allocated(z, chunk)
180 #define chunk_mark_free(z, chunk)
181 #endif
182 
183 /*
184  * Misc constants.  Note that allocations that are exact multiples of
185  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
186  */
187 #define ZONE_RELS_THRESH	32		/* threshold number of zones */
188 
189 #ifdef INVARIANTS
190 /*
191  * The WEIRD_ADDR is used as known text to copy into free objects to
192  * try to create deterministic failure cases if the data is accessed after
193  * free.
194  */
195 #define WEIRD_ADDR      0xdeadc0de
196 #endif
197 #define ZERO_LENGTH_PTR	((void *)-8)
198 
199 /*
200  * Misc global malloc buckets
201  */
202 
203 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
204 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
205 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
206 MALLOC_DEFINE(M_DRM, "m_drm", "DRM memory allocations");
207 
208 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
209 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
210 
211 /*
212  * Initialize the slab memory allocator.  We have to choose a zone size based
213  * on available physical memory.  We choose a zone side which is approximately
214  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
215  * 128K.  The zone size is limited to the bounds set in slaballoc.h
216  * (typically 32K min, 128K max).
217  */
218 static void kmeminit(void *dummy);
219 static void kmemfinishinit(void *dummy);
220 
221 char *ZeroPage;
222 
223 SYSINIT(kmem1, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL);
224 SYSINIT(kmem2, SI_BOOT2_POST_SMP, SI_ORDER_FIRST, kmemfinishinit, NULL);
225 
226 #ifdef INVARIANTS
227 /*
228  * If enabled any memory allocated without M_ZERO is initialized to -1.
229  */
230 __read_frequently static int  use_malloc_pattern;
231 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
232     &use_malloc_pattern, 0,
233     "Initialize memory to -1 if M_ZERO not specified");
234 
235 __read_frequently static int32_t weirdary[16];
236 __read_frequently static int  use_weird_array;
237 SYSCTL_INT(_debug, OID_AUTO, use_weird_array, CTLFLAG_RW,
238     &use_weird_array, 0,
239     "Initialize memory to weird values on kfree()");
240 #endif
241 
242 __read_frequently static int ZoneRelsThresh = ZONE_RELS_THRESH;
243 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
244 
245 static struct spinlock kmemstat_spin =
246 			SPINLOCK_INITIALIZER(&kmemstat_spin, "malinit");
247 
248 /*
249  * Returns the kernel memory size limit for the purposes of initializing
250  * various subsystem caches.  The smaller of available memory and the KVM
251  * memory space is returned.
252  *
253  * The size in megabytes is returned.
254  */
255 size_t
256 kmem_lim_size(void)
257 {
258     size_t limsize;
259 
260     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
261     if (limsize > KvaSize)
262 	limsize = KvaSize;
263     return (limsize / (1024 * 1024));
264 }
265 
266 static void
267 kmeminit(void *dummy)
268 {
269     size_t limsize;
270     int usesize;
271 #ifdef INVARIANTS
272     int i;
273 #endif
274 
275     limsize = kmem_lim_size();
276     usesize = (int)(limsize * 1024);	/* convert to KB */
277 
278     /*
279      * If the machine has a large KVM space and more than 8G of ram,
280      * double the zone release threshold to reduce SMP invalidations.
281      * If more than 16G of ram, do it again.
282      *
283      * The BIOS eats a little ram so add some slop.  We want 8G worth of
284      * memory sticks to trigger the first adjustment.
285      */
286     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
287 	    if (limsize >= 7 * 1024)
288 		    ZoneRelsThresh *= 2;
289 	    if (limsize >= 15 * 1024)
290 		    ZoneRelsThresh *= 2;
291 	    if (limsize >= 31 * 1024)
292 		    ZoneRelsThresh *= 2;
293 	    if (limsize >= 63 * 1024)
294 		    ZoneRelsThresh *= 2;
295 	    if (limsize >= 127 * 1024)
296 		    ZoneRelsThresh *= 2;
297     }
298 
299     /*
300      * Calculate the zone size.  This typically calculates to
301      * ZALLOC_MAX_ZONE_SIZE
302      */
303     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
304     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
305 	ZoneSize <<= 1;
306     ZoneLimit = ZoneSize / 4;
307     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
308 	ZoneLimit = ZALLOC_ZONE_LIMIT;
309     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
310     ZonePageCount = ZoneSize / PAGE_SIZE;
311 
312 #ifdef INVARIANTS
313     for (i = 0; i < NELEM(weirdary); ++i)
314 	weirdary[i] = WEIRD_ADDR;
315 #endif
316 
317     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
318 
319     if (bootverbose)
320 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
321 }
322 
323 /*
324  * Once we know how many cpus are configured reduce ZoneRelsThresh
325  * based on multiples of 32 cpu threads.
326  */
327 static void
328 kmemfinishinit(void *dummy)
329 {
330 	if (ncpus > 32)
331 		ZoneRelsThresh = ZoneRelsThresh * 32 / ncpus;
332 }
333 
334 /*
335  * (low level) Initialize slab-related elements in the globaldata structure.
336  *
337  * Occurs after kmeminit().
338  */
339 void
340 slab_gdinit(globaldata_t gd)
341 {
342 	SLGlobalData *slgd;
343 	int i;
344 
345 	slgd = &gd->gd_slab;
346 	for (i = 0; i < NZONES; ++i)
347 		TAILQ_INIT(&slgd->ZoneAry[i]);
348 	TAILQ_INIT(&slgd->FreeZones);
349 	TAILQ_INIT(&slgd->FreeOvZones);
350 }
351 
352 /*
353  * Initialize a malloc type tracking structure.
354  */
355 void
356 malloc_init(void *data)
357 {
358     struct malloc_type *type = data;
359     struct kmalloc_use *use;
360     size_t limsize;
361 
362     if (type->ks_magic != M_MAGIC)
363 	panic("malloc type lacks magic");
364 
365     if (type->ks_limit != 0)
366 	return;
367 
368     if (vmstats.v_page_count == 0)
369 	panic("malloc_init not allowed before vm init");
370 
371     limsize = kmem_lim_size() * (1024 * 1024);
372     type->ks_limit = limsize / 10;
373 
374     if (ncpus == 1)
375 	use = &type->ks_use0;
376     else
377 	use = kmalloc(ncpus * sizeof(*use), M_TEMP, M_WAITOK | M_ZERO);
378 
379     spin_lock(&kmemstat_spin);
380     type->ks_next = kmemstatistics;
381     type->ks_use = use;
382     kmemstatistics = type;
383     spin_unlock(&kmemstat_spin);
384 }
385 
386 void
387 malloc_uninit(void *data)
388 {
389     struct malloc_type *type = data;
390     struct malloc_type *t;
391 #ifdef INVARIANTS
392     int i;
393     long ttl;
394 #endif
395 
396     if (type->ks_magic != M_MAGIC)
397 	panic("malloc type lacks magic");
398 
399     if (vmstats.v_page_count == 0)
400 	panic("malloc_uninit not allowed before vm init");
401 
402     if (type->ks_limit == 0)
403 	panic("malloc_uninit on uninitialized type");
404 
405     /* Make sure that all pending kfree()s are finished. */
406     lwkt_synchronize_ipiqs("muninit");
407 
408 #ifdef INVARIANTS
409     /*
410      * memuse is only correct in aggregation.  Due to memory being allocated
411      * on one cpu and freed on another individual array entries may be
412      * negative or positive (canceling each other out).
413      */
414     for (i = ttl = 0; i < ncpus; ++i)
415 	ttl += type->ks_use[i].memuse;
416     if (ttl) {
417 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
418 	    ttl, type->ks_shortdesc, i);
419     }
420 #endif
421     spin_lock(&kmemstat_spin);
422     if (type == kmemstatistics) {
423 	kmemstatistics = type->ks_next;
424     } else {
425 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
426 	    if (t->ks_next == type) {
427 		t->ks_next = type->ks_next;
428 		break;
429 	    }
430 	}
431     }
432     type->ks_next = NULL;
433     type->ks_limit = 0;
434     spin_unlock(&kmemstat_spin);
435 
436     if (type->ks_use != &type->ks_use0) {
437 	kfree(type->ks_use, M_TEMP);
438 	type->ks_use = NULL;
439     }
440 }
441 
442 /*
443  * Reinitialize all installed malloc regions after ncpus has been
444  * determined.  type->ks_use0 is initially set to &type->ks_use0,
445  * this function will dynamically allocate it as appropriate for ncpus.
446  */
447 void
448 malloc_reinit_ncpus(void)
449 {
450     struct malloc_type *t;
451     struct kmalloc_use *use;
452 
453     /*
454      * If only one cpu we can leave ks_use set to ks_use0
455      */
456     if (ncpus <= 1)
457 	return;
458 
459     /*
460      * Expand ks_use for all kmalloc blocks
461      */
462     for (t = kmemstatistics; t; t = t->ks_next) {
463 	KKASSERT(t->ks_use == &t->ks_use0);
464 	t->ks_use = kmalloc(sizeof(*use) * ncpus, M_TEMP, M_WAITOK|M_ZERO);
465 	t->ks_use[0] = t->ks_use0;
466     }
467 }
468 
469 /*
470  * Increase the kmalloc pool limit for the specified pool.  No changes
471  * are the made if the pool would shrink.
472  */
473 void
474 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
475 {
476     KKASSERT(type->ks_limit != 0);
477     if (bytes == 0)
478 	bytes = KvaSize;
479     if (type->ks_limit < bytes)
480 	type->ks_limit = bytes;
481 }
482 
483 void
484 kmalloc_set_unlimited(struct malloc_type *type)
485 {
486     type->ks_limit = kmem_lim_size() * (1024 * 1024);
487 }
488 
489 /*
490  * Dynamically create a malloc pool.  This function is a NOP if *typep is
491  * already non-NULL.
492  */
493 void
494 kmalloc_create(struct malloc_type **typep, const char *descr)
495 {
496 	struct malloc_type *type;
497 
498 	if (*typep == NULL) {
499 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
500 		type->ks_magic = M_MAGIC;
501 		type->ks_shortdesc = descr;
502 		malloc_init(type);
503 		*typep = type;
504 	}
505 }
506 
507 /*
508  * Destroy a dynamically created malloc pool.  This function is a NOP if
509  * the pool has already been destroyed.
510  */
511 void
512 kmalloc_destroy(struct malloc_type **typep)
513 {
514 	if (*typep != NULL) {
515 		malloc_uninit(*typep);
516 		kfree(*typep, M_TEMP);
517 		*typep = NULL;
518 	}
519 }
520 
521 /*
522  * Calculate the zone index for the allocation request size and set the
523  * allocation request size to that particular zone's chunk size.
524  */
525 static __inline int
526 zoneindex(unsigned long *bytes, unsigned long *align)
527 {
528     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
529 
530     if (n < 128) {
531 	*bytes = n = (n + 7) & ~7;
532 	*align = 8;
533 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
534     }
535     if (n < 256) {
536 	*bytes = n = (n + 15) & ~15;
537 	*align = 16;
538 	return(n / 16 + 7);
539     }
540     if (n < 8192) {
541 	if (n < 512) {
542 	    *bytes = n = (n + 31) & ~31;
543 	    *align = 32;
544 	    return(n / 32 + 15);
545 	}
546 	if (n < 1024) {
547 	    *bytes = n = (n + 63) & ~63;
548 	    *align = 64;
549 	    return(n / 64 + 23);
550 	}
551 	if (n < 2048) {
552 	    *bytes = n = (n + 127) & ~127;
553 	    *align = 128;
554 	    return(n / 128 + 31);
555 	}
556 	if (n < 4096) {
557 	    *bytes = n = (n + 255) & ~255;
558 	    *align = 256;
559 	    return(n / 256 + 39);
560 	}
561 	*bytes = n = (n + 511) & ~511;
562 	*align = 512;
563 	return(n / 512 + 47);
564     }
565 #if ZALLOC_ZONE_LIMIT > 8192
566     if (n < 16384) {
567 	*bytes = n = (n + 1023) & ~1023;
568 	*align = 1024;
569 	return(n / 1024 + 55);
570     }
571 #endif
572 #if ZALLOC_ZONE_LIMIT > 16384
573     if (n < 32768) {
574 	*bytes = n = (n + 2047) & ~2047;
575 	*align = 2048;
576 	return(n / 2048 + 63);
577     }
578 #endif
579     panic("Unexpected byte count %d", n);
580     return(0);
581 }
582 
583 static __inline void
584 clean_zone_rchunks(SLZone *z)
585 {
586     SLChunk *bchunk;
587 
588     while ((bchunk = z->z_RChunks) != NULL) {
589 	cpu_ccfence();
590 	if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
591 	    *z->z_LChunksp = bchunk;
592 	    while (bchunk) {
593 		chunk_mark_free(z, bchunk);
594 		z->z_LChunksp = &bchunk->c_Next;
595 		bchunk = bchunk->c_Next;
596 		++z->z_NFree;
597 	    }
598 	    break;
599 	}
600 	/* retry */
601     }
602 }
603 
604 /*
605  * If the zone becomes totally free and is not the only zone listed for a
606  * chunk size we move it to the FreeZones list.  We always leave at least
607  * one zone per chunk size listed, even if it is freeable.
608  *
609  * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
610  * otherwise MP races can result in our free_remote code accessing a
611  * destroyed zone.  The remote end interlocks z_RCount with z_RChunks
612  * so one has to test both z_NFree and z_RCount.
613  *
614  * Since this code can be called from an IPI callback, do *NOT* try to mess
615  * with kernel_map here.  Hysteresis will be performed at kmalloc() time.
616  */
617 static __inline SLZone *
618 check_zone_free(SLGlobalData *slgd, SLZone *z)
619 {
620     SLZone *znext;
621 
622     znext = TAILQ_NEXT(z, z_Entry);
623     if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
624 	(TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || znext)) {
625 	int *kup;
626 
627 	TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
628 
629 	z->z_Magic = -1;
630 	TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
631 	++slgd->NFreeZones;
632 	kup = btokup(z);
633 	*kup = 0;
634     }
635     return znext;
636 }
637 
638 #ifdef SLAB_DEBUG
639 /*
640  * Used to debug memory corruption issues.  Record up to (typically 32)
641  * allocation sources for this zone (for a particular chunk size).
642  */
643 
644 static void
645 slab_record_source(SLZone *z, const char *file, int line)
646 {
647     int i;
648     int b = line & (SLAB_DEBUG_ENTRIES - 1);
649 
650     i = b;
651     do {
652 	if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
653 		return;
654 	if (z->z_Sources[i].file == NULL)
655 		break;
656 	i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
657     } while (i != b);
658     z->z_Sources[i].file = file;
659     z->z_Sources[i].line = line;
660 }
661 
662 #endif
663 
664 static __inline unsigned long
665 powerof2_size(unsigned long size)
666 {
667 	int i;
668 
669 	if (size == 0 || powerof2(size))
670 		return size;
671 
672 	i = flsl(size);
673 	return (1UL << i);
674 }
675 
676 /*
677  * kmalloc()	(SLAB ALLOCATOR)
678  *
679  *	Allocate memory via the slab allocator.  If the request is too large,
680  *	or if it page-aligned beyond a certain size, we fall back to the
681  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
682  *	&SlabMisc if you don't care.
683  *
684  *	M_RNOWAIT	- don't block.
685  *	M_NULLOK	- return NULL instead of blocking.
686  *	M_ZERO		- zero the returned memory.
687  *	M_USE_RESERVE	- allow greater drawdown of the free list
688  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
689  *	M_POWEROF2	- roundup size to the nearest power of 2
690  *
691  * MPSAFE
692  */
693 
694 /* don't let kmalloc macro mess up function declaration */
695 #undef kmalloc
696 
697 #ifdef SLAB_DEBUG
698 void *
699 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
700 	      const char *file, int line)
701 #else
702 void *
703 kmalloc(unsigned long size, struct malloc_type *type, int flags)
704 #endif
705 {
706     SLZone *z;
707     SLChunk *chunk;
708     SLGlobalData *slgd;
709     struct globaldata *gd;
710     unsigned long align;
711     int zi;
712 #ifdef INVARIANTS
713     int i;
714 #endif
715 
716     logmemory_quick(malloc_beg);
717     gd = mycpu;
718     slgd = &gd->gd_slab;
719 
720     /*
721      * XXX silly to have this in the critical path.
722      */
723     KKASSERT(type->ks_limit != 0);
724     ++type->ks_use[gd->gd_cpuid].calls;
725 
726     /*
727      * Flagged for cache-alignment
728      */
729     if (flags & M_CACHEALIGN) {
730 	if (size < __VM_CACHELINE_SIZE)
731 		size = __VM_CACHELINE_SIZE;
732 	else if (!CAN_CACHEALIGN(size))
733 		flags |= M_POWEROF2;
734     }
735 
736     /*
737      * Flagged to force nearest power-of-2 (higher or same)
738      */
739     if (flags & M_POWEROF2)
740 	size = powerof2_size(size);
741 
742     /*
743      * Handle the case where the limit is reached.  Panic if we can't return
744      * NULL.  The original malloc code looped, but this tended to
745      * simply deadlock the computer.
746      *
747      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
748      * to determine if a more complete limit check should be done.  The
749      * actual memory use is tracked via ks_use[cpu].memuse.
750      */
751     while (type->ks_loosememuse >= type->ks_limit) {
752 	int i;
753 	long ttl;
754 
755 	for (i = ttl = 0; i < ncpus; ++i)
756 	    ttl += type->ks_use[i].memuse;
757 	type->ks_loosememuse = ttl;	/* not MP synchronized */
758 	if ((ssize_t)ttl < 0)		/* deal with occassional race */
759 		ttl = 0;
760 	if (ttl >= type->ks_limit) {
761 	    if (flags & M_NULLOK) {
762 		logmemory(malloc_end, NULL, type, size, flags);
763 		return(NULL);
764 	    }
765 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
766 	}
767     }
768 
769     /*
770      * Handle the degenerate size == 0 case.  Yes, this does happen.
771      * Return a special pointer.  This is to maintain compatibility with
772      * the original malloc implementation.  Certain devices, such as the
773      * adaptec driver, not only allocate 0 bytes, they check for NULL and
774      * also realloc() later on.  Joy.
775      */
776     if (size == 0) {
777 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
778 	return(ZERO_LENGTH_PTR);
779     }
780 
781     /*
782      * Handle hysteresis from prior frees here in malloc().  We cannot
783      * safely manipulate the kernel_map in free() due to free() possibly
784      * being called via an IPI message or from sensitive interrupt code.
785      *
786      * NOTE: ku_pagecnt must be cleared before we free the slab or we
787      *	     might race another cpu allocating the kva and setting
788      *	     ku_pagecnt.
789      */
790     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
791 	crit_enter();
792 	if (slgd->NFreeZones > ZoneRelsThresh) {	/* crit sect race */
793 	    int *kup;
794 
795 	    z = TAILQ_LAST(&slgd->FreeZones, SLZoneList);
796 	    KKASSERT(z != NULL);
797 	    TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
798 	    --slgd->NFreeZones;
799 	    kup = btokup(z);
800 	    *kup = 0;
801 	    kmem_slab_free(z, ZoneSize);	/* may block */
802 	}
803 	crit_exit();
804     }
805 
806     /*
807      * XXX handle oversized frees that were queued from kfree().
808      */
809     while (TAILQ_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) {
810 	crit_enter();
811 	if ((z = TAILQ_LAST(&slgd->FreeOvZones, SLZoneList)) != NULL) {
812 	    vm_size_t tsize;
813 
814 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
815 	    TAILQ_REMOVE(&slgd->FreeOvZones, z, z_Entry);
816 	    tsize = z->z_ChunkSize;
817 	    kmem_slab_free(z, tsize);	/* may block */
818 	}
819 	crit_exit();
820     }
821 
822     /*
823      * Handle large allocations directly.  There should not be very many of
824      * these so performance is not a big issue.
825      *
826      * The backend allocator is pretty nasty on a SMP system.   Use the
827      * slab allocator for one and two page-sized chunks even though we lose
828      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
829      */
830     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
831 	int *kup;
832 
833 	size = round_page(size);
834 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
835 	if (chunk == NULL) {
836 	    logmemory(malloc_end, NULL, type, size, flags);
837 	    return(NULL);
838 	}
839 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
840 	flags |= M_PASSIVE_ZERO;
841 	kup = btokup(chunk);
842 	*kup = size / PAGE_SIZE;
843 	crit_enter();
844 	goto done;
845     }
846 
847     /*
848      * Attempt to allocate out of an existing zone.  First try the free list,
849      * then allocate out of unallocated space.  If we find a good zone move
850      * it to the head of the list so later allocations find it quickly
851      * (we might have thousands of zones in the list).
852      *
853      * Note: zoneindex() will panic of size is too large.
854      */
855     zi = zoneindex(&size, &align);
856     KKASSERT(zi < NZONES);
857     crit_enter();
858 
859     if ((z = TAILQ_LAST(&slgd->ZoneAry[zi], SLZoneList)) != NULL) {
860 	/*
861 	 * Locate a chunk - we have to have at least one.  If this is the
862 	 * last chunk go ahead and do the work to retrieve chunks freed
863 	 * from remote cpus, and if the zone is still empty move it off
864 	 * the ZoneAry.
865 	 */
866 	if (--z->z_NFree <= 0) {
867 	    KKASSERT(z->z_NFree == 0);
868 
869 	    /*
870 	     * WARNING! This code competes with other cpus.  It is ok
871 	     * for us to not drain RChunks here but we might as well, and
872 	     * it is ok if more accumulate after we're done.
873 	     *
874 	     * Set RSignal before pulling rchunks off, indicating that we
875 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
876 	     * read RSignal before putting rchunks on thus interlocking
877 	     * their IPI signaling.
878 	     */
879 	    if (z->z_RChunks == NULL)
880 		atomic_swap_int(&z->z_RSignal, 1);
881 
882 	    clean_zone_rchunks(z);
883 
884 	    /*
885 	     * Remove from the zone list if no free chunks remain.
886 	     * Clear RSignal
887 	     */
888 	    if (z->z_NFree == 0) {
889 		TAILQ_REMOVE(&slgd->ZoneAry[zi], z, z_Entry);
890 	    } else {
891 		z->z_RSignal = 0;
892 	    }
893 	}
894 
895 	/*
896 	 * Fast path, we have chunks available in z_LChunks.
897 	 */
898 	chunk = z->z_LChunks;
899 	if (chunk) {
900 		chunk_mark_allocated(z, chunk);
901 		z->z_LChunks = chunk->c_Next;
902 		if (z->z_LChunks == NULL)
903 			z->z_LChunksp = &z->z_LChunks;
904 #ifdef SLAB_DEBUG
905 		slab_record_source(z, file, line);
906 #endif
907 		goto done;
908 	}
909 
910 	/*
911 	 * No chunks are available in LChunks, the free chunk MUST be
912 	 * in the never-before-used memory area, controlled by UIndex.
913 	 *
914 	 * The consequences are very serious if our zone got corrupted so
915 	 * we use an explicit panic rather than a KASSERT.
916 	 */
917 	if (z->z_UIndex + 1 != z->z_NMax)
918 	    ++z->z_UIndex;
919 	else
920 	    z->z_UIndex = 0;
921 
922 	if (z->z_UIndex == z->z_UEndIndex)
923 	    panic("slaballoc: corrupted zone");
924 
925 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
926 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
927 	    flags &= ~M_ZERO;
928 	    flags |= M_PASSIVE_ZERO;
929 	}
930 	chunk_mark_allocated(z, chunk);
931 #ifdef SLAB_DEBUG
932 	slab_record_source(z, file, line);
933 #endif
934 	goto done;
935     }
936 
937     /*
938      * If all zones are exhausted we need to allocate a new zone for this
939      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
940      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
941      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
942      * we do not pre-zero it because we do not want to mess up the L1 cache.
943      *
944      * At least one subsystem, the tty code (see CROUND) expects power-of-2
945      * allocations to be power-of-2 aligned.  We maintain compatibility by
946      * adjusting the base offset below.
947      */
948     {
949 	int off;
950 	int *kup;
951 
952 	if ((z = TAILQ_FIRST(&slgd->FreeZones)) != NULL) {
953 	    TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
954 	    --slgd->NFreeZones;
955 	    bzero(z, sizeof(SLZone));
956 	    z->z_Flags |= SLZF_UNOTZEROD;
957 	} else {
958 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
959 	    if (z == NULL)
960 		goto fail;
961 	}
962 
963 	/*
964 	 * How big is the base structure?
965 	 */
966 #if defined(INVARIANTS)
967 	/*
968 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
969 	 * complicated so don't make an exact calculation.
970 	 */
971 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
972 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
973 #else
974 	off = sizeof(SLZone);
975 #endif
976 
977 	/*
978 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
979 	 * Otherwise properly align the data according to the chunk size.
980 	 */
981 	if (powerof2(size))
982 	    align = size;
983 	off = roundup2(off, align);
984 
985 	z->z_Magic = ZALLOC_SLAB_MAGIC;
986 	z->z_ZoneIndex = zi;
987 	z->z_NMax = (ZoneSize - off) / size;
988 	z->z_NFree = z->z_NMax - 1;
989 	z->z_BasePtr = (char *)z + off;
990 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
991 	z->z_ChunkSize = size;
992 	z->z_CpuGd = gd;
993 	z->z_Cpu = gd->gd_cpuid;
994 	z->z_LChunksp = &z->z_LChunks;
995 #ifdef SLAB_DEBUG
996 	bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
997 	bzero(z->z_Sources, sizeof(z->z_Sources));
998 #endif
999 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
1000 	TAILQ_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry);
1001 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
1002 	    flags &= ~M_ZERO;	/* already zero'd */
1003 	    flags |= M_PASSIVE_ZERO;
1004 	}
1005 	kup = btokup(z);
1006 	*kup = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
1007 	chunk_mark_allocated(z, chunk);
1008 #ifdef SLAB_DEBUG
1009 	slab_record_source(z, file, line);
1010 #endif
1011 
1012 	/*
1013 	 * Slide the base index for initial allocations out of the next
1014 	 * zone we create so we do not over-weight the lower part of the
1015 	 * cpu memory caches.
1016 	 */
1017 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
1018 				& (ZALLOC_MAX_ZONE_SIZE - 1);
1019     }
1020 
1021 done:
1022     ++type->ks_use[gd->gd_cpuid].inuse;
1023     type->ks_use[gd->gd_cpuid].memuse += size;
1024     type->ks_use[gd->gd_cpuid].loosememuse += size;
1025     if (type->ks_use[gd->gd_cpuid].loosememuse >= ZoneSize) {
1026 	/* not MP synchronized */
1027 	type->ks_loosememuse += type->ks_use[gd->gd_cpuid].loosememuse;
1028 	type->ks_use[gd->gd_cpuid].loosememuse = 0;
1029     }
1030     crit_exit();
1031 
1032     if (flags & M_ZERO)
1033 	bzero(chunk, size);
1034 #ifdef INVARIANTS
1035     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
1036 	if (use_malloc_pattern) {
1037 	    for (i = 0; i < size; i += sizeof(int)) {
1038 		*(int *)((char *)chunk + i) = -1;
1039 	    }
1040 	}
1041 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
1042     }
1043 #endif
1044     logmemory(malloc_end, chunk, type, size, flags);
1045     return(chunk);
1046 fail:
1047     crit_exit();
1048     logmemory(malloc_end, NULL, type, size, flags);
1049     return(NULL);
1050 }
1051 
1052 /*
1053  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
1054  *
1055  * Generally speaking this routine is not called very often and we do
1056  * not attempt to optimize it beyond reusing the same pointer if the
1057  * new size fits within the chunking of the old pointer's zone.
1058  */
1059 #ifdef SLAB_DEBUG
1060 void *
1061 krealloc_debug(void *ptr, unsigned long size,
1062 	       struct malloc_type *type, int flags,
1063 	       const char *file, int line)
1064 #else
1065 void *
1066 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
1067 #endif
1068 {
1069     unsigned long osize;
1070     unsigned long align;
1071     SLZone *z;
1072     void *nptr;
1073     int *kup;
1074 
1075     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
1076 
1077     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
1078 	return(kmalloc_debug(size, type, flags, file, line));
1079     if (size == 0) {
1080 	kfree(ptr, type);
1081 	return(NULL);
1082     }
1083 
1084     /*
1085      * Handle oversized allocations.  XXX we really should require that a
1086      * size be passed to free() instead of this nonsense.
1087      */
1088     kup = btokup(ptr);
1089     if (*kup > 0) {
1090 	osize = *kup << PAGE_SHIFT;
1091 	if (osize == round_page(size))
1092 	    return(ptr);
1093 	if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1094 	    return(NULL);
1095 	bcopy(ptr, nptr, min(size, osize));
1096 	kfree(ptr, type);
1097 	return(nptr);
1098     }
1099 
1100     /*
1101      * Get the original allocation's zone.  If the new request winds up
1102      * using the same chunk size we do not have to do anything.
1103      */
1104     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1105     kup = btokup(z);
1106     KKASSERT(*kup < 0);
1107     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1108 
1109     /*
1110      * Allocate memory for the new request size.  Note that zoneindex has
1111      * already adjusted the request size to the appropriate chunk size, which
1112      * should optimize our bcopy().  Then copy and return the new pointer.
1113      *
1114      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
1115      * necessary align the result.
1116      *
1117      * We can only zoneindex (to align size to the chunk size) if the new
1118      * size is not too large.
1119      */
1120     if (size < ZoneLimit) {
1121 	zoneindex(&size, &align);
1122 	if (z->z_ChunkSize == size)
1123 	    return(ptr);
1124     }
1125     if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1126 	return(NULL);
1127     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
1128     kfree(ptr, type);
1129     return(nptr);
1130 }
1131 
1132 /*
1133  * Return the kmalloc limit for this type, in bytes.
1134  */
1135 long
1136 kmalloc_limit(struct malloc_type *type)
1137 {
1138     KKASSERT(type->ks_limit != 0);
1139     return(type->ks_limit);
1140 }
1141 
1142 /*
1143  * Allocate a copy of the specified string.
1144  *
1145  * (MP SAFE) (MAY BLOCK)
1146  */
1147 #ifdef SLAB_DEBUG
1148 char *
1149 kstrdup_debug(const char *str, struct malloc_type *type,
1150 	      const char *file, int line)
1151 #else
1152 char *
1153 kstrdup(const char *str, struct malloc_type *type)
1154 #endif
1155 {
1156     int zlen;	/* length inclusive of terminating NUL */
1157     char *nstr;
1158 
1159     if (str == NULL)
1160 	return(NULL);
1161     zlen = strlen(str) + 1;
1162     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1163     bcopy(str, nstr, zlen);
1164     return(nstr);
1165 }
1166 
1167 #ifdef SLAB_DEBUG
1168 char *
1169 kstrndup_debug(const char *str, size_t maxlen, struct malloc_type *type,
1170 	      const char *file, int line)
1171 #else
1172 char *
1173 kstrndup(const char *str, size_t maxlen, struct malloc_type *type)
1174 #endif
1175 {
1176     int zlen;	/* length inclusive of terminating NUL */
1177     char *nstr;
1178 
1179     if (str == NULL)
1180 	return(NULL);
1181     zlen = strnlen(str, maxlen) + 1;
1182     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1183     bcopy(str, nstr, zlen);
1184     nstr[zlen - 1] = '\0';
1185     return(nstr);
1186 }
1187 
1188 /*
1189  * Notify our cpu that a remote cpu has freed some chunks in a zone that
1190  * we own.  RCount will be bumped so the memory should be good, but validate
1191  * that it really is.
1192  */
1193 static void
1194 kfree_remote(void *ptr)
1195 {
1196     SLGlobalData *slgd;
1197     SLZone *z;
1198     int nfree;
1199     int *kup;
1200 
1201     slgd = &mycpu->gd_slab;
1202     z = ptr;
1203     kup = btokup(z);
1204     KKASSERT(*kup == -((int)mycpuid + 1));
1205     KKASSERT(z->z_RCount > 0);
1206     atomic_subtract_int(&z->z_RCount, 1);
1207 
1208     logmemory(free_rem_beg, z, NULL, 0L, 0);
1209     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1210     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
1211     nfree = z->z_NFree;
1212 
1213     /*
1214      * Indicate that we will no longer be off of the ZoneAry by
1215      * clearing RSignal.
1216      */
1217     if (z->z_RChunks)
1218 	z->z_RSignal = 0;
1219 
1220     /*
1221      * Atomically extract the bchunks list and then process it back
1222      * into the lchunks list.  We want to append our bchunks to the
1223      * lchunks list and not prepend since we likely do not have
1224      * cache mastership of the related data (not that it helps since
1225      * we are using c_Next).
1226      */
1227     clean_zone_rchunks(z);
1228     if (z->z_NFree && nfree == 0) {
1229 	TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1230     }
1231 
1232     check_zone_free(slgd, z);
1233     logmemory(free_rem_end, z, NULL, 0L, 0);
1234 }
1235 
1236 /*
1237  * free (SLAB ALLOCATOR)
1238  *
1239  * Free a memory block previously allocated by malloc.
1240  *
1241  * Note: We do not attempt to update ks_loosememuse as MP races could
1242  * prevent us from checking memory limits in malloc.   YYY we may
1243  * consider updating ks_cpu.loosememuse.
1244  *
1245  * MPSAFE
1246  */
1247 void
1248 kfree(void *ptr, struct malloc_type *type)
1249 {
1250     SLZone *z;
1251     SLChunk *chunk;
1252     SLGlobalData *slgd;
1253     struct globaldata *gd;
1254     int *kup;
1255     unsigned long size;
1256     SLChunk *bchunk;
1257     int rsignal;
1258 
1259     logmemory_quick(free_beg);
1260     gd = mycpu;
1261     slgd = &gd->gd_slab;
1262 
1263     if (ptr == NULL)
1264 	panic("trying to free NULL pointer");
1265 
1266     /*
1267      * Handle special 0-byte allocations
1268      */
1269     if (ptr == ZERO_LENGTH_PTR) {
1270 	logmemory(free_zero, ptr, type, -1UL, 0);
1271 	logmemory_quick(free_end);
1272 	return;
1273     }
1274 
1275     /*
1276      * Panic on bad malloc type
1277      */
1278     if (type->ks_magic != M_MAGIC)
1279 	panic("free: malloc type lacks magic");
1280 
1281     /*
1282      * Handle oversized allocations.  XXX we really should require that a
1283      * size be passed to free() instead of this nonsense.
1284      *
1285      * This code is never called via an ipi.
1286      */
1287     kup = btokup(ptr);
1288     if (*kup > 0) {
1289 	size = *kup << PAGE_SHIFT;
1290 	*kup = 0;
1291 #ifdef INVARIANTS
1292 	if (use_weird_array) {
1293 		KKASSERT(sizeof(weirdary) <= size);
1294 		bcopy(weirdary, ptr, sizeof(weirdary));
1295 	}
1296 #endif
1297 	/*
1298 	 * NOTE: For oversized allocations we do not record the
1299 	 *	     originating cpu.  It gets freed on the cpu calling
1300 	 *	     kfree().  The statistics are in aggregate.
1301 	 *
1302 	 * note: XXX we have still inherited the interrupts-can't-block
1303 	 * assumption.  An interrupt thread does not bump
1304 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1305 	 * primarily until we can fix softupdate's assumptions about free().
1306 	 */
1307 	crit_enter();
1308 	--type->ks_use[gd->gd_cpuid].inuse;
1309 	type->ks_use[gd->gd_cpuid].memuse -= size;
1310 	if (mycpu->gd_intr_nesting_level ||
1311 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
1312 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1313 	    z = (SLZone *)ptr;
1314 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1315 	    z->z_ChunkSize = size;
1316 
1317 	    TAILQ_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry);
1318 	    crit_exit();
1319 	} else {
1320 	    crit_exit();
1321 	    logmemory(free_ovsz, ptr, type, size, 0);
1322 	    kmem_slab_free(ptr, size);	/* may block */
1323 	}
1324 	logmemory_quick(free_end);
1325 	return;
1326     }
1327 
1328     /*
1329      * Zone case.  Figure out the zone based on the fact that it is
1330      * ZoneSize aligned.
1331      */
1332     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1333     kup = btokup(z);
1334     KKASSERT(*kup < 0);
1335     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1336 
1337     /*
1338      * If we do not own the zone then use atomic ops to free to the
1339      * remote cpu linked list and notify the target zone using a
1340      * passive message.
1341      *
1342      * The target zone cannot be deallocated while we own a chunk of it,
1343      * so the zone header's storage is stable until the very moment
1344      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1345      *
1346      * (no critical section needed)
1347      */
1348     if (z->z_CpuGd != gd) {
1349 	/*
1350 	 * Making these adjustments now allow us to avoid passing (type)
1351 	 * to the remote cpu.  Note that inuse/memuse is being
1352 	 * adjusted on OUR cpu, not the zone cpu, but it should all still
1353 	 * sum up properly and cancel out.
1354 	 */
1355 	crit_enter();
1356 	--type->ks_use[gd->gd_cpuid].inuse;
1357 	type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1358 	crit_exit();
1359 
1360 	/*
1361 	 * WARNING! This code competes with other cpus.  Once we
1362 	 *	    successfully link the chunk to RChunks the remote
1363 	 *	    cpu can rip z's storage out from under us.
1364 	 *
1365 	 *	    Bumping RCount prevents z's storage from getting
1366 	 *	    ripped out.
1367 	 */
1368 	rsignal = z->z_RSignal;
1369 	cpu_lfence();
1370 	if (rsignal)
1371 		atomic_add_int(&z->z_RCount, 1);
1372 
1373 	chunk = ptr;
1374 	for (;;) {
1375 	    bchunk = z->z_RChunks;
1376 	    cpu_ccfence();
1377 	    chunk->c_Next = bchunk;
1378 	    cpu_sfence();
1379 
1380 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1381 		break;
1382 	}
1383 
1384 	/*
1385 	 * We have to signal the remote cpu if our actions will cause
1386 	 * the remote zone to be placed back on ZoneAry so it can
1387 	 * move the zone back on.
1388 	 *
1389 	 * We only need to deal with NULL->non-NULL RChunk transitions
1390 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1391 	 * before adding our chunk to RChunks.  This should result in
1392 	 * virtually no IPI traffic.
1393 	 *
1394 	 * We can use a passive IPI to reduce overhead even further.
1395 	 */
1396 	if (bchunk == NULL && rsignal) {
1397 	    logmemory(free_request, ptr, type,
1398 		      (unsigned long)z->z_ChunkSize, 0);
1399 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1400 	    /* z can get ripped out from under us from this point on */
1401 	} else if (rsignal) {
1402 	    atomic_subtract_int(&z->z_RCount, 1);
1403 	    /* z can get ripped out from under us from this point on */
1404 	}
1405 	logmemory_quick(free_end);
1406 	return;
1407     }
1408 
1409     /*
1410      * kfree locally
1411      */
1412     logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1413 
1414     crit_enter();
1415     chunk = ptr;
1416     chunk_mark_free(z, chunk);
1417 
1418     /*
1419      * Put weird data into the memory to detect modifications after freeing,
1420      * illegal pointer use after freeing (we should fault on the odd address),
1421      * and so forth.  XXX needs more work, see the old malloc code.
1422      */
1423 #ifdef INVARIANTS
1424     if (use_weird_array) {
1425 	    if (z->z_ChunkSize < sizeof(weirdary))
1426 		bcopy(weirdary, chunk, z->z_ChunkSize);
1427 	    else
1428 		bcopy(weirdary, chunk, sizeof(weirdary));
1429     }
1430 #endif
1431 
1432     /*
1433      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1434      * to the front of the linked list so it is more likely to be
1435      * reallocated, since it is already in our L1 cache.
1436      */
1437 #ifdef INVARIANTS
1438     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1439 	panic("BADFREE %p", chunk);
1440 #endif
1441     chunk->c_Next = z->z_LChunks;
1442     z->z_LChunks = chunk;
1443     if (chunk->c_Next == NULL)
1444 	z->z_LChunksp = &chunk->c_Next;
1445 
1446 #ifdef INVARIANTS
1447     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1448 	panic("BADFREE2");
1449 #endif
1450 
1451     /*
1452      * Bump the number of free chunks.  If it becomes non-zero the zone
1453      * must be added back onto the appropriate list.  A fully allocated
1454      * zone that sees its first free is considered 'mature' and is placed
1455      * at the head, giving the system time to potentially free the remaining
1456      * entries even while other allocations are going on and making the zone
1457      * freeable.
1458      */
1459     if (z->z_NFree++ == 0)
1460 	    TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1461 
1462     --type->ks_use[gd->gd_cpuid].inuse;
1463     type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1464 
1465     check_zone_free(slgd, z);
1466     logmemory_quick(free_end);
1467     crit_exit();
1468 }
1469 
1470 /*
1471  * Cleanup slabs which are hanging around due to RChunks or which are wholely
1472  * free and can be moved to the free list if not moved by other means.
1473  *
1474  * Called once every 10 seconds on all cpus.
1475  */
1476 void
1477 slab_cleanup(void)
1478 {
1479     SLGlobalData *slgd = &mycpu->gd_slab;
1480     SLZone *z;
1481     int i;
1482 
1483     crit_enter();
1484     for (i = 0; i < NZONES; ++i) {
1485 	if ((z = TAILQ_FIRST(&slgd->ZoneAry[i])) == NULL)
1486 		continue;
1487 
1488 	/*
1489 	 * Scan zones.
1490 	 */
1491 	while (z) {
1492 	    /*
1493 	     * Shift all RChunks to the end of the LChunks list.  This is
1494 	     * an O(1) operation.
1495 	     *
1496 	     * Then free the zone if possible.
1497 	     */
1498 	    clean_zone_rchunks(z);
1499 	    z = check_zone_free(slgd, z);
1500 	}
1501     }
1502     crit_exit();
1503 }
1504 
1505 #if defined(INVARIANTS)
1506 
1507 /*
1508  * Helper routines for sanity checks
1509  */
1510 static void
1511 chunk_mark_allocated(SLZone *z, void *chunk)
1512 {
1513     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1514     uint32_t *bitptr;
1515 
1516     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1517     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1518 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1519     bitptr = &z->z_Bitmap[bitdex >> 5];
1520     bitdex &= 31;
1521     KASSERT((*bitptr & (1 << bitdex)) == 0,
1522 	    ("memory chunk %p is already allocated!", chunk));
1523     *bitptr |= 1 << bitdex;
1524 }
1525 
1526 static void
1527 chunk_mark_free(SLZone *z, void *chunk)
1528 {
1529     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1530     uint32_t *bitptr;
1531 
1532     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1533     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1534 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1535     bitptr = &z->z_Bitmap[bitdex >> 5];
1536     bitdex &= 31;
1537     KASSERT((*bitptr & (1 << bitdex)) != 0,
1538 	    ("memory chunk %p is already free!", chunk));
1539     *bitptr &= ~(1 << bitdex);
1540 }
1541 
1542 #endif
1543 
1544 /*
1545  * kmem_slab_alloc()
1546  *
1547  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1548  *	specified alignment.  M_* flags are expected in the flags field.
1549  *
1550  *	Alignment must be a multiple of PAGE_SIZE.
1551  *
1552  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1553  *	but when we move zalloc() over to use this function as its backend
1554  *	we will have to switch to kreserve/krelease and call reserve(0)
1555  *	after the new space is made available.
1556  *
1557  *	Interrupt code which has preempted other code is not allowed to
1558  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1559  *	non-preemptively or blocks and then runs non-preemptively, then
1560  *	it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
1561  */
1562 static void *
1563 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1564 {
1565     vm_size_t i;
1566     vm_offset_t addr;
1567     int count, vmflags, base_vmflags;
1568     vm_page_t mbase = NULL;
1569     vm_page_t m;
1570     thread_t td;
1571 
1572     size = round_page(size);
1573     addr = vm_map_min(&kernel_map);
1574 
1575     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1576     crit_enter();
1577     vm_map_lock(&kernel_map);
1578     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1579 	vm_map_unlock(&kernel_map);
1580 	if ((flags & M_NULLOK) == 0)
1581 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1582 	vm_map_entry_release(count);
1583 	crit_exit();
1584 	return(NULL);
1585     }
1586 
1587     /*
1588      * kernel_object maps 1:1 to kernel_map.
1589      */
1590     vm_object_hold(&kernel_object);
1591     vm_object_reference_locked(&kernel_object);
1592     vm_map_insert(&kernel_map, &count,
1593 		  &kernel_object, NULL,
1594 		  addr, NULL,
1595 		  addr, addr + size,
1596 		  VM_MAPTYPE_NORMAL,
1597 		  VM_SUBSYS_KMALLOC,
1598 		  VM_PROT_ALL, VM_PROT_ALL, 0);
1599     vm_object_drop(&kernel_object);
1600     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1601     vm_map_unlock(&kernel_map);
1602 
1603     td = curthread;
1604 
1605     base_vmflags = 0;
1606     if (flags & M_ZERO)
1607         base_vmflags |= VM_ALLOC_ZERO;
1608     if (flags & M_USE_RESERVE)
1609 	base_vmflags |= VM_ALLOC_SYSTEM;
1610     if (flags & M_USE_INTERRUPT_RESERVE)
1611         base_vmflags |= VM_ALLOC_INTERRUPT;
1612     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1613 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1614 	      flags, ((int **)&size)[-1]);
1615     }
1616 
1617     /*
1618      * Allocate the pages.  Do not map them yet.  VM_ALLOC_NORMAL can only
1619      * be set if we are not preempting.
1620      *
1621      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1622      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1623      * implied in this case), though I'm not sure if we really need to
1624      * do that.
1625      */
1626     vmflags = base_vmflags;
1627     if (flags & M_WAITOK) {
1628 	if (td->td_preempted)
1629 	    vmflags |= VM_ALLOC_SYSTEM;
1630 	else
1631 	    vmflags |= VM_ALLOC_NORMAL;
1632     }
1633 
1634     vm_object_hold(&kernel_object);
1635     for (i = 0; i < size; i += PAGE_SIZE) {
1636 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1637 	if (i == 0)
1638 		mbase = m;
1639 
1640 	/*
1641 	 * If the allocation failed we either return NULL or we retry.
1642 	 *
1643 	 * If M_WAITOK is specified we wait for more memory and retry.
1644 	 * If M_WAITOK is specified from a preemption we yield instead of
1645 	 * wait.  Livelock will not occur because the interrupt thread
1646 	 * will not be preempting anyone the second time around after the
1647 	 * yield.
1648 	 */
1649 	if (m == NULL) {
1650 	    if (flags & M_WAITOK) {
1651 		if (td->td_preempted) {
1652 		    lwkt_switch();
1653 		} else {
1654 		    vm_wait(0);
1655 		}
1656 		i -= PAGE_SIZE;	/* retry */
1657 		continue;
1658 	    }
1659 	    break;
1660 	}
1661     }
1662 
1663     /*
1664      * Check and deal with an allocation failure
1665      */
1666     if (i != size) {
1667 	while (i != 0) {
1668 	    i -= PAGE_SIZE;
1669 	    m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1670 	    /* page should already be busy */
1671 	    vm_page_free(m);
1672 	}
1673 	vm_map_lock(&kernel_map);
1674 	vm_map_delete(&kernel_map, addr, addr + size, &count);
1675 	vm_map_unlock(&kernel_map);
1676 	vm_object_drop(&kernel_object);
1677 
1678 	vm_map_entry_release(count);
1679 	crit_exit();
1680 	return(NULL);
1681     }
1682 
1683     /*
1684      * Success!
1685      *
1686      * NOTE: The VM pages are still busied.  mbase points to the first one
1687      *	     but we have to iterate via vm_page_next()
1688      */
1689     vm_object_drop(&kernel_object);
1690     crit_exit();
1691 
1692     /*
1693      * Enter the pages into the pmap and deal with M_ZERO.
1694      */
1695     m = mbase;
1696     i = 0;
1697 
1698     while (i < size) {
1699 	/*
1700 	 * page should already be busy
1701 	 */
1702 	m->valid = VM_PAGE_BITS_ALL;
1703 	vm_page_wire(m);
1704 	pmap_enter(&kernel_pmap, addr + i, m,
1705 		   VM_PROT_ALL | VM_PROT_NOSYNC, 1, NULL);
1706 	if (flags & M_ZERO)
1707 		pagezero((char *)addr + i);
1708 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1709 	vm_page_flag_set(m, PG_REFERENCED);
1710 	vm_page_wakeup(m);
1711 
1712 	i += PAGE_SIZE;
1713 	vm_object_hold(&kernel_object);
1714 	m = vm_page_next(m);
1715 	vm_object_drop(&kernel_object);
1716     }
1717     smp_invltlb();
1718     vm_map_entry_release(count);
1719     return((void *)addr);
1720 }
1721 
1722 /*
1723  * kmem_slab_free()
1724  */
1725 static void
1726 kmem_slab_free(void *ptr, vm_size_t size)
1727 {
1728     crit_enter();
1729     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1730     crit_exit();
1731 }
1732