xref: /dragonfly/sys/kern/kern_slaballoc.c (revision 9f3fc534)
1 /*
2  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
3  *
4  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.55 2008/10/22 01:42:17 dillon Exp $
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  *			API REQUIREMENTS AND SIDE EFFECTS
82  *
83  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
84  *    have remained compatible with the following API requirements:
85  *
86  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
87  *    + all power-of-2 sized allocations are power-of-2 aligned (twe)
88  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
89  *    + ability to allocate arbitrarily large chunks of memory
90  */
91 
92 #include "opt_vm.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/slaballoc.h>
98 #include <sys/mbuf.h>
99 #include <sys/vmmeter.h>
100 #include <sys/lock.h>
101 #include <sys/thread.h>
102 #include <sys/globaldata.h>
103 #include <sys/sysctl.h>
104 #include <sys/ktr.h>
105 
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_object.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_page.h>
114 #include <vm/vm_pageout.h>
115 
116 #include <machine/cpu.h>
117 
118 #include <sys/thread2.h>
119 
120 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
121 
122 #define MEMORY_STRING	"ptr=%p type=%p size=%d flags=%04x"
123 #define MEMORY_ARG_SIZE	(sizeof(void *) * 2 + sizeof(unsigned long) + 	\
124 			sizeof(int))
125 
126 #if !defined(KTR_MEMORY)
127 #define KTR_MEMORY	KTR_ALL
128 #endif
129 KTR_INFO_MASTER(memory);
130 KTR_INFO(KTR_MEMORY, memory, malloc, 0, MEMORY_STRING, MEMORY_ARG_SIZE);
131 KTR_INFO(KTR_MEMORY, memory, free_zero, 1, MEMORY_STRING, MEMORY_ARG_SIZE);
132 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 2, MEMORY_STRING, MEMORY_ARG_SIZE);
133 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 3, MEMORY_STRING, MEMORY_ARG_SIZE);
134 KTR_INFO(KTR_MEMORY, memory, free_chunk, 4, MEMORY_STRING, MEMORY_ARG_SIZE);
135 #ifdef SMP
136 KTR_INFO(KTR_MEMORY, memory, free_request, 5, MEMORY_STRING, MEMORY_ARG_SIZE);
137 KTR_INFO(KTR_MEMORY, memory, free_remote, 6, MEMORY_STRING, MEMORY_ARG_SIZE);
138 #endif
139 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0);
140 KTR_INFO(KTR_MEMORY, memory, free_beg, 0, "free begin", 0);
141 KTR_INFO(KTR_MEMORY, memory, free_end, 0, "free end", 0);
142 
143 #define logmemory(name, ptr, type, size, flags)				\
144 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
145 #define logmemory_quick(name)						\
146 	KTR_LOG(memory_ ## name)
147 
148 /*
149  * Fixed globals (not per-cpu)
150  */
151 static int ZoneSize;
152 static int ZoneLimit;
153 static int ZonePageCount;
154 static int ZoneMask;
155 struct malloc_type *kmemstatistics;	/* exported to vmstat */
156 static struct kmemusage *kmemusage;
157 static int32_t weirdary[16];
158 
159 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
160 static void kmem_slab_free(void *ptr, vm_size_t bytes);
161 #if defined(INVARIANTS)
162 static void chunk_mark_allocated(SLZone *z, void *chunk);
163 static void chunk_mark_free(SLZone *z, void *chunk);
164 #endif
165 
166 /*
167  * Misc constants.  Note that allocations that are exact multiples of
168  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
169  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
170  */
171 #define MIN_CHUNK_SIZE		8		/* in bytes */
172 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
173 #define ZONE_RELS_THRESH	2		/* threshold number of zones */
174 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
175 
176 /*
177  * The WEIRD_ADDR is used as known text to copy into free objects to
178  * try to create deterministic failure cases if the data is accessed after
179  * free.
180  */
181 #define WEIRD_ADDR      0xdeadc0de
182 #define MAX_COPY        sizeof(weirdary)
183 #define ZERO_LENGTH_PTR	((void *)-8)
184 
185 /*
186  * Misc global malloc buckets
187  */
188 
189 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
190 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
191 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
192 
193 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
194 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
195 
196 /*
197  * Initialize the slab memory allocator.  We have to choose a zone size based
198  * on available physical memory.  We choose a zone side which is approximately
199  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
200  * 128K.  The zone size is limited to the bounds set in slaballoc.h
201  * (typically 32K min, 128K max).
202  */
203 static void kmeminit(void *dummy);
204 
205 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
206 
207 #ifdef INVARIANTS
208 /*
209  * If enabled any memory allocated without M_ZERO is initialized to -1.
210  */
211 static int  use_malloc_pattern;
212 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
213 		&use_malloc_pattern, 0, "");
214 #endif
215 
216 static void
217 kmeminit(void *dummy)
218 {
219     vm_poff_t limsize;
220     int usesize;
221     int i;
222     vm_pindex_t npg;
223 
224     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
225     if (limsize > KvaSize)
226 	limsize = KvaSize;
227 
228     usesize = (int)(limsize / 1024);	/* convert to KB */
229 
230     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
231     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
232 	ZoneSize <<= 1;
233     ZoneLimit = ZoneSize / 4;
234     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
235 	ZoneLimit = ZALLOC_ZONE_LIMIT;
236     ZoneMask = ZoneSize - 1;
237     ZonePageCount = ZoneSize / PAGE_SIZE;
238 
239     npg = KvaSize / PAGE_SIZE;
240     kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage),
241 				PAGE_SIZE, M_WAITOK|M_ZERO);
242 
243     for (i = 0; i < arysize(weirdary); ++i)
244 	weirdary[i] = WEIRD_ADDR;
245 
246     if (bootverbose)
247 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
248 }
249 
250 /*
251  * Initialize a malloc type tracking structure.
252  */
253 void
254 malloc_init(void *data)
255 {
256     struct malloc_type *type = data;
257     vm_poff_t limsize;
258 
259     if (type->ks_magic != M_MAGIC)
260 	panic("malloc type lacks magic");
261 
262     if (type->ks_limit != 0)
263 	return;
264 
265     if (vmstats.v_page_count == 0)
266 	panic("malloc_init not allowed before vm init");
267 
268     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
269     if (limsize > KvaSize)
270 	limsize = KvaSize;
271     type->ks_limit = limsize / 10;
272 
273     type->ks_next = kmemstatistics;
274     kmemstatistics = type;
275 }
276 
277 void
278 malloc_uninit(void *data)
279 {
280     struct malloc_type *type = data;
281     struct malloc_type *t;
282 #ifdef INVARIANTS
283     int i;
284     long ttl;
285 #endif
286 
287     if (type->ks_magic != M_MAGIC)
288 	panic("malloc type lacks magic");
289 
290     if (vmstats.v_page_count == 0)
291 	panic("malloc_uninit not allowed before vm init");
292 
293     if (type->ks_limit == 0)
294 	panic("malloc_uninit on uninitialized type");
295 
296 #ifdef SMP
297     /* Make sure that all pending kfree()s are finished. */
298     lwkt_synchronize_ipiqs("muninit");
299 #endif
300 
301 #ifdef INVARIANTS
302     /*
303      * memuse is only correct in aggregation.  Due to memory being allocated
304      * on one cpu and freed on another individual array entries may be
305      * negative or positive (canceling each other out).
306      */
307     for (i = ttl = 0; i < ncpus; ++i)
308 	ttl += type->ks_memuse[i];
309     if (ttl) {
310 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
311 	    ttl, type->ks_shortdesc, i);
312     }
313 #endif
314     if (type == kmemstatistics) {
315 	kmemstatistics = type->ks_next;
316     } else {
317 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
318 	    if (t->ks_next == type) {
319 		t->ks_next = type->ks_next;
320 		break;
321 	    }
322 	}
323     }
324     type->ks_next = NULL;
325     type->ks_limit = 0;
326 }
327 
328 /*
329  * Increase the kmalloc pool limit for the specified pool.  No changes
330  * are the made if the pool would shrink.
331  */
332 void
333 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
334 {
335     if (type->ks_limit == 0)
336 	malloc_init(type);
337     if (type->ks_limit < bytes)
338 	type->ks_limit = bytes;
339 }
340 
341 /*
342  * Dynamically create a malloc pool.  This function is a NOP if *typep is
343  * already non-NULL.
344  */
345 void
346 kmalloc_create(struct malloc_type **typep, const char *descr)
347 {
348 	struct malloc_type *type;
349 
350 	if (*typep == NULL) {
351 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
352 		type->ks_magic = M_MAGIC;
353 		type->ks_shortdesc = descr;
354 		malloc_init(type);
355 		*typep = type;
356 	}
357 }
358 
359 /*
360  * Destroy a dynamically created malloc pool.  This function is a NOP if
361  * the pool has already been destroyed.
362  */
363 void
364 kmalloc_destroy(struct malloc_type **typep)
365 {
366 	if (*typep != NULL) {
367 		malloc_uninit(*typep);
368 		kfree(*typep, M_TEMP);
369 		*typep = NULL;
370 	}
371 }
372 
373 /*
374  * Calculate the zone index for the allocation request size and set the
375  * allocation request size to that particular zone's chunk size.
376  */
377 static __inline int
378 zoneindex(unsigned long *bytes)
379 {
380     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
381     if (n < 128) {
382 	*bytes = n = (n + 7) & ~7;
383 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
384     }
385     if (n < 256) {
386 	*bytes = n = (n + 15) & ~15;
387 	return(n / 16 + 7);
388     }
389     if (n < 8192) {
390 	if (n < 512) {
391 	    *bytes = n = (n + 31) & ~31;
392 	    return(n / 32 + 15);
393 	}
394 	if (n < 1024) {
395 	    *bytes = n = (n + 63) & ~63;
396 	    return(n / 64 + 23);
397 	}
398 	if (n < 2048) {
399 	    *bytes = n = (n + 127) & ~127;
400 	    return(n / 128 + 31);
401 	}
402 	if (n < 4096) {
403 	    *bytes = n = (n + 255) & ~255;
404 	    return(n / 256 + 39);
405 	}
406 	*bytes = n = (n + 511) & ~511;
407 	return(n / 512 + 47);
408     }
409 #if ZALLOC_ZONE_LIMIT > 8192
410     if (n < 16384) {
411 	*bytes = n = (n + 1023) & ~1023;
412 	return(n / 1024 + 55);
413     }
414 #endif
415 #if ZALLOC_ZONE_LIMIT > 16384
416     if (n < 32768) {
417 	*bytes = n = (n + 2047) & ~2047;
418 	return(n / 2048 + 63);
419     }
420 #endif
421     panic("Unexpected byte count %d", n);
422     return(0);
423 }
424 
425 /*
426  * malloc()	(SLAB ALLOCATOR)
427  *
428  *	Allocate memory via the slab allocator.  If the request is too large,
429  *	or if it page-aligned beyond a certain size, we fall back to the
430  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
431  *	&SlabMisc if you don't care.
432  *
433  *	M_RNOWAIT	- don't block.
434  *	M_NULLOK	- return NULL instead of blocking.
435  *	M_ZERO		- zero the returned memory.
436  *	M_USE_RESERVE	- allow greater drawdown of the free list
437  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
438  *
439  * MPSAFE
440  */
441 
442 void *
443 kmalloc(unsigned long size, struct malloc_type *type, int flags)
444 {
445     SLZone *z;
446     SLChunk *chunk;
447     SLGlobalData *slgd;
448     struct globaldata *gd;
449     int zi;
450 #ifdef INVARIANTS
451     int i;
452 #endif
453 
454     logmemory_quick(malloc_beg);
455     gd = mycpu;
456     slgd = &gd->gd_slab;
457 
458     /*
459      * XXX silly to have this in the critical path.
460      */
461     if (type->ks_limit == 0) {
462 	crit_enter();
463 	if (type->ks_limit == 0)
464 	    malloc_init(type);
465 	crit_exit();
466     }
467     ++type->ks_calls;
468 
469     /*
470      * Handle the case where the limit is reached.  Panic if we can't return
471      * NULL.  The original malloc code looped, but this tended to
472      * simply deadlock the computer.
473      *
474      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
475      * to determine if a more complete limit check should be done.  The
476      * actual memory use is tracked via ks_memuse[cpu].
477      */
478     while (type->ks_loosememuse >= type->ks_limit) {
479 	int i;
480 	long ttl;
481 
482 	for (i = ttl = 0; i < ncpus; ++i)
483 	    ttl += type->ks_memuse[i];
484 	type->ks_loosememuse = ttl;	/* not MP synchronized */
485 	if (ttl >= type->ks_limit) {
486 	    if (flags & M_NULLOK) {
487 		logmemory(malloc, NULL, type, size, flags);
488 		return(NULL);
489 	    }
490 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
491 	}
492     }
493 
494     /*
495      * Handle the degenerate size == 0 case.  Yes, this does happen.
496      * Return a special pointer.  This is to maintain compatibility with
497      * the original malloc implementation.  Certain devices, such as the
498      * adaptec driver, not only allocate 0 bytes, they check for NULL and
499      * also realloc() later on.  Joy.
500      */
501     if (size == 0) {
502 	logmemory(malloc, ZERO_LENGTH_PTR, type, size, flags);
503 	return(ZERO_LENGTH_PTR);
504     }
505 
506     /*
507      * Handle hysteresis from prior frees here in malloc().  We cannot
508      * safely manipulate the kernel_map in free() due to free() possibly
509      * being called via an IPI message or from sensitive interrupt code.
510      */
511     while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) {
512 	crit_enter();
513 	if (slgd->NFreeZones > ZONE_RELS_THRESH) {	/* crit sect race */
514 	    z = slgd->FreeZones;
515 	    slgd->FreeZones = z->z_Next;
516 	    --slgd->NFreeZones;
517 	    kmem_slab_free(z, ZoneSize);	/* may block */
518 	}
519 	crit_exit();
520     }
521     /*
522      * XXX handle oversized frees that were queued from free().
523      */
524     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
525 	crit_enter();
526 	if ((z = slgd->FreeOvZones) != NULL) {
527 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
528 	    slgd->FreeOvZones = z->z_Next;
529 	    kmem_slab_free(z, z->z_ChunkSize);	/* may block */
530 	}
531 	crit_exit();
532     }
533 
534     /*
535      * Handle large allocations directly.  There should not be very many of
536      * these so performance is not a big issue.
537      *
538      * The backend allocator is pretty nasty on a SMP system.   Use the
539      * slab allocator for one and two page-sized chunks even though we lose
540      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
541      */
542     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
543 	struct kmemusage *kup;
544 
545 	size = round_page(size);
546 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
547 	if (chunk == NULL) {
548 	    logmemory(malloc, NULL, type, size, flags);
549 	    return(NULL);
550 	}
551 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
552 	flags |= M_PASSIVE_ZERO;
553 	kup = btokup(chunk);
554 	kup->ku_pagecnt = size / PAGE_SIZE;
555 	kup->ku_cpu = gd->gd_cpuid;
556 	crit_enter();
557 	goto done;
558     }
559 
560     /*
561      * Attempt to allocate out of an existing zone.  First try the free list,
562      * then allocate out of unallocated space.  If we find a good zone move
563      * it to the head of the list so later allocations find it quickly
564      * (we might have thousands of zones in the list).
565      *
566      * Note: zoneindex() will panic of size is too large.
567      */
568     zi = zoneindex(&size);
569     KKASSERT(zi < NZONES);
570     crit_enter();
571     if ((z = slgd->ZoneAry[zi]) != NULL) {
572 	KKASSERT(z->z_NFree > 0);
573 
574 	/*
575 	 * Remove us from the ZoneAry[] when we become empty
576 	 */
577 	if (--z->z_NFree == 0) {
578 	    slgd->ZoneAry[zi] = z->z_Next;
579 	    z->z_Next = NULL;
580 	}
581 
582 	/*
583 	 * Locate a chunk in a free page.  This attempts to localize
584 	 * reallocations into earlier pages without us having to sort
585 	 * the chunk list.  A chunk may still overlap a page boundary.
586 	 */
587 	while (z->z_FirstFreePg < ZonePageCount) {
588 	    if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
589 #ifdef DIAGNOSTIC
590 		/*
591 		 * Diagnostic: c_Next is not total garbage.
592 		 */
593 		KKASSERT(chunk->c_Next == NULL ||
594 			((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
595 			((intptr_t)chunk & IN_SAME_PAGE_MASK));
596 #endif
597 #ifdef INVARIANTS
598 		if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
599 			panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount);
600 		if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
601 			panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount);
602 		chunk_mark_allocated(z, chunk);
603 #endif
604 		z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
605 		goto done;
606 	    }
607 	    ++z->z_FirstFreePg;
608 	}
609 
610 	/*
611 	 * No chunks are available but NFree said we had some memory, so
612 	 * it must be available in the never-before-used-memory area
613 	 * governed by UIndex.  The consequences are very serious if our zone
614 	 * got corrupted so we use an explicit panic rather then a KASSERT.
615 	 */
616 	if (z->z_UIndex + 1 != z->z_NMax)
617 	    z->z_UIndex = z->z_UIndex + 1;
618 	else
619 	    z->z_UIndex = 0;
620 	if (z->z_UIndex == z->z_UEndIndex)
621 	    panic("slaballoc: corrupted zone");
622 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
623 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
624 	    flags &= ~M_ZERO;
625 	    flags |= M_PASSIVE_ZERO;
626 	}
627 #if defined(INVARIANTS)
628 	chunk_mark_allocated(z, chunk);
629 #endif
630 	goto done;
631     }
632 
633     /*
634      * If all zones are exhausted we need to allocate a new zone for this
635      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
636      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
637      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
638      * we do not pre-zero it because we do not want to mess up the L1 cache.
639      *
640      * At least one subsystem, the tty code (see CROUND) expects power-of-2
641      * allocations to be power-of-2 aligned.  We maintain compatibility by
642      * adjusting the base offset below.
643      */
644     {
645 	int off;
646 
647 	if ((z = slgd->FreeZones) != NULL) {
648 	    slgd->FreeZones = z->z_Next;
649 	    --slgd->NFreeZones;
650 	    bzero(z, sizeof(SLZone));
651 	    z->z_Flags |= SLZF_UNOTZEROD;
652 	} else {
653 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
654 	    if (z == NULL)
655 		goto fail;
656 	}
657 
658 	/*
659 	 * How big is the base structure?
660 	 */
661 #if defined(INVARIANTS)
662 	/*
663 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
664 	 * complicated so don't make an exact calculation.
665 	 */
666 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
667 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
668 #else
669 	off = sizeof(SLZone);
670 #endif
671 
672 	/*
673 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
674 	 * Otherwise just 8-byte align the data.
675 	 */
676 	if ((size | (size - 1)) + 1 == (size << 1))
677 	    off = (off + size - 1) & ~(size - 1);
678 	else
679 	    off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
680 	z->z_Magic = ZALLOC_SLAB_MAGIC;
681 	z->z_ZoneIndex = zi;
682 	z->z_NMax = (ZoneSize - off) / size;
683 	z->z_NFree = z->z_NMax - 1;
684 	z->z_BasePtr = (char *)z + off;
685 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
686 	z->z_ChunkSize = size;
687 	z->z_FirstFreePg = ZonePageCount;
688 	z->z_CpuGd = gd;
689 	z->z_Cpu = gd->gd_cpuid;
690 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
691 	z->z_Next = slgd->ZoneAry[zi];
692 	slgd->ZoneAry[zi] = z;
693 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
694 	    flags &= ~M_ZERO;	/* already zero'd */
695 	    flags |= M_PASSIVE_ZERO;
696 	}
697 #if defined(INVARIANTS)
698 	chunk_mark_allocated(z, chunk);
699 #endif
700 
701 	/*
702 	 * Slide the base index for initial allocations out of the next
703 	 * zone we create so we do not over-weight the lower part of the
704 	 * cpu memory caches.
705 	 */
706 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
707 				& (ZALLOC_MAX_ZONE_SIZE - 1);
708     }
709 done:
710     ++type->ks_inuse[gd->gd_cpuid];
711     type->ks_memuse[gd->gd_cpuid] += size;
712     type->ks_loosememuse += size;	/* not MP synchronized */
713     crit_exit();
714     if (flags & M_ZERO)
715 	bzero(chunk, size);
716 #ifdef INVARIANTS
717     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
718 	if (use_malloc_pattern) {
719 	    for (i = 0; i < size; i += sizeof(int)) {
720 		*(int *)((char *)chunk + i) = -1;
721 	    }
722 	}
723 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
724     }
725 #endif
726     logmemory(malloc, chunk, type, size, flags);
727     return(chunk);
728 fail:
729     crit_exit();
730     logmemory(malloc, NULL, type, size, flags);
731     return(NULL);
732 }
733 
734 /*
735  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
736  *
737  * Generally speaking this routine is not called very often and we do
738  * not attempt to optimize it beyond reusing the same pointer if the
739  * new size fits within the chunking of the old pointer's zone.
740  */
741 void *
742 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
743 {
744     SLZone *z;
745     void *nptr;
746     unsigned long osize;
747 
748     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
749 
750     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
751 	return(kmalloc(size, type, flags));
752     if (size == 0) {
753 	kfree(ptr, type);
754 	return(NULL);
755     }
756 
757     /*
758      * Handle oversized allocations.  XXX we really should require that a
759      * size be passed to free() instead of this nonsense.
760      */
761     {
762 	struct kmemusage *kup;
763 
764 	kup = btokup(ptr);
765 	if (kup->ku_pagecnt) {
766 	    osize = kup->ku_pagecnt << PAGE_SHIFT;
767 	    if (osize == round_page(size))
768 		return(ptr);
769 	    if ((nptr = kmalloc(size, type, flags)) == NULL)
770 		return(NULL);
771 	    bcopy(ptr, nptr, min(size, osize));
772 	    kfree(ptr, type);
773 	    return(nptr);
774 	}
775     }
776 
777     /*
778      * Get the original allocation's zone.  If the new request winds up
779      * using the same chunk size we do not have to do anything.
780      */
781     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
782     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
783 
784     /*
785      * Allocate memory for the new request size.  Note that zoneindex has
786      * already adjusted the request size to the appropriate chunk size, which
787      * should optimize our bcopy().  Then copy and return the new pointer.
788      *
789      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
790      * necessary align the result.
791      *
792      * We can only zoneindex (to align size to the chunk size) if the new
793      * size is not too large.
794      */
795     if (size < ZoneLimit) {
796 	zoneindex(&size);
797 	if (z->z_ChunkSize == size)
798 	    return(ptr);
799     }
800     if ((nptr = kmalloc(size, type, flags)) == NULL)
801 	return(NULL);
802     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
803     kfree(ptr, type);
804     return(nptr);
805 }
806 
807 /*
808  * Return the kmalloc limit for this type, in bytes.
809  */
810 long
811 kmalloc_limit(struct malloc_type *type)
812 {
813     if (type->ks_limit == 0) {
814 	crit_enter();
815 	if (type->ks_limit == 0)
816 	    malloc_init(type);
817 	crit_exit();
818     }
819     return(type->ks_limit);
820 }
821 
822 /*
823  * Allocate a copy of the specified string.
824  *
825  * (MP SAFE) (MAY BLOCK)
826  */
827 char *
828 kstrdup(const char *str, struct malloc_type *type)
829 {
830     int zlen;	/* length inclusive of terminating NUL */
831     char *nstr;
832 
833     if (str == NULL)
834 	return(NULL);
835     zlen = strlen(str) + 1;
836     nstr = kmalloc(zlen, type, M_WAITOK);
837     bcopy(str, nstr, zlen);
838     return(nstr);
839 }
840 
841 #ifdef SMP
842 /*
843  * free()	(SLAB ALLOCATOR)
844  *
845  *	Free the specified chunk of memory.
846  */
847 static
848 void
849 free_remote(void *ptr)
850 {
851     logmemory(free_remote, ptr, *(struct malloc_type **)ptr, -1, 0);
852     kfree(ptr, *(struct malloc_type **)ptr);
853 }
854 
855 #endif
856 
857 /*
858  * free (SLAB ALLOCATOR)
859  *
860  * Free a memory block previously allocated by malloc.  Note that we do not
861  * attempt to uplodate ks_loosememuse as MP races could prevent us from
862  * checking memory limits in malloc.
863  *
864  * MPSAFE
865  */
866 void
867 kfree(void *ptr, struct malloc_type *type)
868 {
869     SLZone *z;
870     SLChunk *chunk;
871     SLGlobalData *slgd;
872     struct globaldata *gd;
873     int pgno;
874 
875     logmemory_quick(free_beg);
876     gd = mycpu;
877     slgd = &gd->gd_slab;
878 
879     if (ptr == NULL)
880 	panic("trying to free NULL pointer");
881 
882     /*
883      * Handle special 0-byte allocations
884      */
885     if (ptr == ZERO_LENGTH_PTR) {
886 	logmemory(free_zero, ptr, type, -1, 0);
887 	logmemory_quick(free_end);
888 	return;
889     }
890 
891     /*
892      * Handle oversized allocations.  XXX we really should require that a
893      * size be passed to free() instead of this nonsense.
894      *
895      * This code is never called via an ipi.
896      */
897     {
898 	struct kmemusage *kup;
899 	unsigned long size;
900 
901 	kup = btokup(ptr);
902 	if (kup->ku_pagecnt) {
903 	    size = kup->ku_pagecnt << PAGE_SHIFT;
904 	    kup->ku_pagecnt = 0;
905 #ifdef INVARIANTS
906 	    KKASSERT(sizeof(weirdary) <= size);
907 	    bcopy(weirdary, ptr, sizeof(weirdary));
908 #endif
909 	    /*
910 	     * note: we always adjust our cpu's slot, not the originating
911 	     * cpu (kup->ku_cpuid).  The statistics are in aggregate.
912 	     *
913 	     * note: XXX we have still inherited the interrupts-can't-block
914 	     * assumption.  An interrupt thread does not bump
915 	     * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
916 	     * primarily until we can fix softupdate's assumptions about free().
917 	     */
918 	    crit_enter();
919 	    --type->ks_inuse[gd->gd_cpuid];
920 	    type->ks_memuse[gd->gd_cpuid] -= size;
921 	    if (mycpu->gd_intr_nesting_level || (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
922 		logmemory(free_ovsz_delayed, ptr, type, size, 0);
923 		z = (SLZone *)ptr;
924 		z->z_Magic = ZALLOC_OVSZ_MAGIC;
925 		z->z_Next = slgd->FreeOvZones;
926 		z->z_ChunkSize = size;
927 		slgd->FreeOvZones = z;
928 		crit_exit();
929 	    } else {
930 		crit_exit();
931 		logmemory(free_ovsz, ptr, type, size, 0);
932 		kmem_slab_free(ptr, size);	/* may block */
933 	    }
934 	    logmemory_quick(free_end);
935 	    return;
936 	}
937     }
938 
939     /*
940      * Zone case.  Figure out the zone based on the fact that it is
941      * ZoneSize aligned.
942      */
943     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
944     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
945 
946     /*
947      * If we do not own the zone then forward the request to the
948      * cpu that does.  Since the timing is non-critical, a passive
949      * message is sent.
950      */
951     if (z->z_CpuGd != gd) {
952 	*(struct malloc_type **)ptr = type;
953 #ifdef SMP
954 	logmemory(free_request, ptr, type, z->z_ChunkSize, 0);
955 	lwkt_send_ipiq_passive(z->z_CpuGd, free_remote, ptr);
956 #else
957 	panic("Corrupt SLZone");
958 #endif
959 	logmemory_quick(free_end);
960 	return;
961     }
962 
963     logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0);
964 
965     if (type->ks_magic != M_MAGIC)
966 	panic("free: malloc type lacks magic");
967 
968     crit_enter();
969     pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
970     chunk = ptr;
971 
972 #ifdef INVARIANTS
973     /*
974      * Attempt to detect a double-free.  To reduce overhead we only check
975      * if there appears to be link pointer at the base of the data.
976      */
977     if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
978 	SLChunk *scan;
979 	for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
980 	    if (scan == chunk)
981 		panic("Double free at %p", chunk);
982 	}
983     }
984     chunk_mark_free(z, chunk);
985 #endif
986 
987     /*
988      * Put weird data into the memory to detect modifications after freeing,
989      * illegal pointer use after freeing (we should fault on the odd address),
990      * and so forth.  XXX needs more work, see the old malloc code.
991      */
992 #ifdef INVARIANTS
993     if (z->z_ChunkSize < sizeof(weirdary))
994 	bcopy(weirdary, chunk, z->z_ChunkSize);
995     else
996 	bcopy(weirdary, chunk, sizeof(weirdary));
997 #endif
998 
999     /*
1000      * Add this free non-zero'd chunk to a linked list for reuse, adjust
1001      * z_FirstFreePg.
1002      */
1003 #ifdef INVARIANTS
1004     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1005 	panic("BADFREE %p", chunk);
1006 #endif
1007     chunk->c_Next = z->z_PageAry[pgno];
1008     z->z_PageAry[pgno] = chunk;
1009 #ifdef INVARIANTS
1010     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1011 	panic("BADFREE2");
1012 #endif
1013     if (z->z_FirstFreePg > pgno)
1014 	z->z_FirstFreePg = pgno;
1015 
1016     /*
1017      * Bump the number of free chunks.  If it becomes non-zero the zone
1018      * must be added back onto the appropriate list.
1019      */
1020     if (z->z_NFree++ == 0) {
1021 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1022 	slgd->ZoneAry[z->z_ZoneIndex] = z;
1023     }
1024 
1025     --type->ks_inuse[z->z_Cpu];
1026     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1027 
1028     /*
1029      * If the zone becomes totally free, and there are other zones we
1030      * can allocate from, move this zone to the FreeZones list.  Since
1031      * this code can be called from an IPI callback, do *NOT* try to mess
1032      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1033      */
1034     if (z->z_NFree == z->z_NMax &&
1035 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
1036     ) {
1037 	SLZone **pz;
1038 
1039 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
1040 	    ;
1041 	*pz = z->z_Next;
1042 	z->z_Magic = -1;
1043 	z->z_Next = slgd->FreeZones;
1044 	slgd->FreeZones = z;
1045 	++slgd->NFreeZones;
1046     }
1047     logmemory_quick(free_end);
1048     crit_exit();
1049 }
1050 
1051 #if defined(INVARIANTS)
1052 /*
1053  * Helper routines for sanity checks
1054  */
1055 static
1056 void
1057 chunk_mark_allocated(SLZone *z, void *chunk)
1058 {
1059     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1060     __uint32_t *bitptr;
1061 
1062     KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1063     bitptr = &z->z_Bitmap[bitdex >> 5];
1064     bitdex &= 31;
1065     KASSERT((*bitptr & (1 << bitdex)) == 0, ("memory chunk %p is already allocated!", chunk));
1066     *bitptr |= 1 << bitdex;
1067 }
1068 
1069 static
1070 void
1071 chunk_mark_free(SLZone *z, void *chunk)
1072 {
1073     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1074     __uint32_t *bitptr;
1075 
1076     KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1077     bitptr = &z->z_Bitmap[bitdex >> 5];
1078     bitdex &= 31;
1079     KASSERT((*bitptr & (1 << bitdex)) != 0, ("memory chunk %p is already free!", chunk));
1080     *bitptr &= ~(1 << bitdex);
1081 }
1082 
1083 #endif
1084 
1085 /*
1086  * kmem_slab_alloc()
1087  *
1088  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1089  *	specified alignment.  M_* flags are expected in the flags field.
1090  *
1091  *	Alignment must be a multiple of PAGE_SIZE.
1092  *
1093  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1094  *	but when we move zalloc() over to use this function as its backend
1095  *	we will have to switch to kreserve/krelease and call reserve(0)
1096  *	after the new space is made available.
1097  *
1098  *	Interrupt code which has preempted other code is not allowed to
1099  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1100  *	non-preemptively or blocks and then runs non-preemptively, then
1101  *	it is free to use PQ_CACHE pages.
1102  *
1103  *	This routine will currently obtain the BGL.
1104  *
1105  * MPALMOSTSAFE - acquires mplock
1106  */
1107 static void *
1108 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1109 {
1110     vm_size_t i;
1111     vm_offset_t addr;
1112     int count, vmflags, base_vmflags;
1113     thread_t td;
1114 
1115     size = round_page(size);
1116     addr = vm_map_min(&kernel_map);
1117 
1118     /*
1119      * Reserve properly aligned space from kernel_map.  RNOWAIT allocations
1120      * cannot block.
1121      */
1122     if (flags & M_RNOWAIT) {
1123 	if (try_mplock() == 0)
1124 	    return(NULL);
1125     } else {
1126 	get_mplock();
1127     }
1128     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1129     crit_enter();
1130     vm_map_lock(&kernel_map);
1131     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1132 	vm_map_unlock(&kernel_map);
1133 	if ((flags & M_NULLOK) == 0)
1134 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1135 	crit_exit();
1136 	vm_map_entry_release(count);
1137 	rel_mplock();
1138 	return(NULL);
1139     }
1140 
1141     /*
1142      * kernel_object maps 1:1 to kernel_map.
1143      */
1144     vm_object_reference(&kernel_object);
1145     vm_map_insert(&kernel_map, &count,
1146 		    &kernel_object, addr, addr, addr + size,
1147 		    VM_MAPTYPE_NORMAL,
1148 		    VM_PROT_ALL, VM_PROT_ALL,
1149 		    0);
1150 
1151     td = curthread;
1152 
1153     base_vmflags = 0;
1154     if (flags & M_ZERO)
1155         base_vmflags |= VM_ALLOC_ZERO;
1156     if (flags & M_USE_RESERVE)
1157 	base_vmflags |= VM_ALLOC_SYSTEM;
1158     if (flags & M_USE_INTERRUPT_RESERVE)
1159         base_vmflags |= VM_ALLOC_INTERRUPT;
1160     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0)
1161     	panic("kmem_slab_alloc: bad flags %08x (%p)", flags, ((int **)&size)[-1]);
1162 
1163 
1164     /*
1165      * Allocate the pages.  Do not mess with the PG_ZERO flag yet.
1166      */
1167     for (i = 0; i < size; i += PAGE_SIZE) {
1168 	vm_page_t m;
1169 
1170 	/*
1171 	 * VM_ALLOC_NORMAL can only be set if we are not preempting.
1172 	 *
1173 	 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1174 	 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1175 	 * implied in this case), though I'm not sure if we really need to
1176 	 * do that.
1177 	 */
1178 	vmflags = base_vmflags;
1179 	if (flags & M_WAITOK) {
1180 	    if (td->td_preempted)
1181 		vmflags |= VM_ALLOC_SYSTEM;
1182 	    else
1183 		vmflags |= VM_ALLOC_NORMAL;
1184 	}
1185 
1186 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1187 
1188 	/*
1189 	 * If the allocation failed we either return NULL or we retry.
1190 	 *
1191 	 * If M_WAITOK is specified we wait for more memory and retry.
1192 	 * If M_WAITOK is specified from a preemption we yield instead of
1193 	 * wait.  Livelock will not occur because the interrupt thread
1194 	 * will not be preempting anyone the second time around after the
1195 	 * yield.
1196 	 */
1197 	if (m == NULL) {
1198 	    if (flags & M_WAITOK) {
1199 		if (td->td_preempted) {
1200 		    vm_map_unlock(&kernel_map);
1201 		    lwkt_yield();
1202 		    vm_map_lock(&kernel_map);
1203 		} else {
1204 		    vm_map_unlock(&kernel_map);
1205 		    vm_wait(0);
1206 		    vm_map_lock(&kernel_map);
1207 		}
1208 		i -= PAGE_SIZE;	/* retry */
1209 		continue;
1210 	    }
1211 
1212 	    /*
1213 	     * We were unable to recover, cleanup and return NULL
1214 	     */
1215 	    while (i != 0) {
1216 		i -= PAGE_SIZE;
1217 		m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1218 		/* page should already be busy */
1219 		vm_page_free(m);
1220 	    }
1221 	    vm_map_delete(&kernel_map, addr, addr + size, &count);
1222 	    vm_map_unlock(&kernel_map);
1223 	    crit_exit();
1224 	    vm_map_entry_release(count);
1225 	    rel_mplock();
1226 	    return(NULL);
1227 	}
1228     }
1229 
1230     /*
1231      * Success!
1232      *
1233      * Mark the map entry as non-pageable using a routine that allows us to
1234      * populate the underlying pages.
1235      *
1236      * The pages were busied by the allocations above.
1237      */
1238     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1239     crit_exit();
1240 
1241     /*
1242      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1243      */
1244     for (i = 0; i < size; i += PAGE_SIZE) {
1245 	vm_page_t m;
1246 
1247 	m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1248 	m->valid = VM_PAGE_BITS_ALL;
1249 	/* page should already be busy */
1250 	vm_page_wire(m);
1251 	vm_page_wakeup(m);
1252 	pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
1253 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1254 	    bzero((char *)addr + i, PAGE_SIZE);
1255 	vm_page_flag_clear(m, PG_ZERO);
1256 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1257 	vm_page_flag_set(m, PG_REFERENCED);
1258     }
1259     vm_map_unlock(&kernel_map);
1260     vm_map_entry_release(count);
1261     rel_mplock();
1262     return((void *)addr);
1263 }
1264 
1265 /*
1266  * kmem_slab_free()
1267  *
1268  * MPALMOSTSAFE - acquires mplock
1269  */
1270 static void
1271 kmem_slab_free(void *ptr, vm_size_t size)
1272 {
1273     get_mplock();
1274     crit_enter();
1275     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1276     crit_exit();
1277     rel_mplock();
1278 }
1279 
1280