xref: /dragonfly/sys/kern/kern_slaballoc.c (revision b866b1da)
1 /*
2  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
3  *
4  * Copyright (c) 2003,2004,2010-2019 The DragonFly Project.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Matthew Dillon <dillon@backplane.com>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * This module implements a slab allocator drop-in replacement for the
38  * kernel malloc().
39  *
40  * A slab allocator reserves a ZONE for each chunk size, then lays the
41  * chunks out in an array within the zone.  Allocation and deallocation
42  * is nearly instantanious, and fragmentation/overhead losses are limited
43  * to a fixed worst-case amount.
44  *
45  * The downside of this slab implementation is in the chunk size
46  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
47  * In a kernel implementation all this memory will be physical so
48  * the zone size is adjusted downward on machines with less physical
49  * memory.  The upside is that overhead is bounded... this is the *worst*
50  * case overhead.
51  *
52  * Slab management is done on a per-cpu basis and no locking or mutexes
53  * are required, only a critical section.  When one cpu frees memory
54  * belonging to another cpu's slab manager an asynchronous IPI message
55  * will be queued to execute the operation.   In addition, both the
56  * high level slab allocator and the low level zone allocator optimize
57  * M_ZERO requests, and the slab allocator does not have to pre initialize
58  * the linked list of chunks.
59  *
60  * XXX Balancing is needed between cpus.  Balance will be handled through
61  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
62  *
63  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
64  * the new zone should be restricted to M_USE_RESERVE requests only.
65  *
66  *	Alloc Size	Chunking        Number of zones
67  *	0-127		8		16
68  *	128-255		16		8
69  *	256-511		32		8
70  *	512-1023	64		8
71  *	1024-2047	128		8
72  *	2048-4095	256		8
73  *	4096-8191	512		8
74  *	8192-16383	1024		8
75  *	16384-32767	2048		8
76  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
77  *
78  *	Allocations >= ZoneLimit go directly to kmem.
79  *	(n * PAGE_SIZE, n > 2) allocations go directly to kmem.
80  *
81  * Alignment properties:
82  * - All power-of-2 sized allocations are power-of-2 aligned.
83  * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84  *   power-of-2 round up of 'size'.
85  * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86  *   above table 'Chunking' column).
87  *
88  *			API REQUIREMENTS AND SIDE EFFECTS
89  *
90  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91  *    have remained compatible with the following API requirements:
92  *
93  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
94  *    + ability to allocate arbitrarily large chunks of memory
95  */
96 
97 #include "opt_vm.h"
98 
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/kernel.h>
102 #include <sys/slaballoc.h>
103 #include <sys/mbuf.h>
104 #include <sys/vmmeter.h>
105 #include <sys/lock.h>
106 #include <sys/thread.h>
107 #include <sys/globaldata.h>
108 #include <sys/sysctl.h>
109 #include <sys/ktr.h>
110 #include <sys/kthread.h>
111 #include <sys/malloc.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_extern.h>
117 #include <vm/vm_object.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_page.h>
121 #include <vm/vm_pageout.h>
122 
123 #include <machine/cpu.h>
124 
125 #include <sys/thread2.h>
126 #include <vm/vm_page2.h>
127 
128 #if (__VM_CACHELINE_SIZE == 32)
129 #define CAN_CACHEALIGN(sz)	((sz) >= 256)
130 #elif (__VM_CACHELINE_SIZE == 64)
131 #define CAN_CACHEALIGN(sz)	((sz) >= 512)
132 #elif (__VM_CACHELINE_SIZE == 128)
133 #define CAN_CACHEALIGN(sz)	((sz) >= 1024)
134 #else
135 #error "unsupported cacheline size"
136 #endif
137 
138 #define btokup(z)	(&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
139 
140 #define MEMORY_STRING	"ptr=%p type=%p size=%lu flags=%04x"
141 #define MEMORY_ARGS	void *ptr, void *type, unsigned long size, int flags
142 
143 #if !defined(KTR_MEMORY)
144 #define KTR_MEMORY	KTR_ALL
145 #endif
146 KTR_INFO_MASTER(memory);
147 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
148 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
149 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
150 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
151 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
152 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
153 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
154 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
155 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
156 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
157 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
158 
159 #define logmemory(name, ptr, type, size, flags)				\
160 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
161 #define logmemory_quick(name)						\
162 	KTR_LOG(memory_ ## name)
163 
164 /*
165  * Fixed globals (not per-cpu)
166  */
167 __read_frequently static int ZoneSize;
168 __read_frequently static int ZoneLimit;
169 __read_frequently static int ZonePageCount;
170 __read_frequently static uintptr_t ZoneMask;
171 __read_frequently struct malloc_type *kmemstatistics;	/* exported to vmstat */
172 
173 #if defined(INVARIANTS)
174 static void chunk_mark_allocated(SLZone *z, void *chunk);
175 static void chunk_mark_free(SLZone *z, void *chunk);
176 #else
177 #define chunk_mark_allocated(z, chunk)
178 #define chunk_mark_free(z, chunk)
179 #endif
180 
181 /*
182  * Misc constants.  Note that allocations that are exact multiples of
183  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
184  */
185 #define ZONE_RELS_THRESH	32		/* threshold number of zones */
186 
187 #ifdef INVARIANTS
188 /*
189  * The WEIRD_ADDR is used as known text to copy into free objects to
190  * try to create deterministic failure cases if the data is accessed after
191  * free.
192  */
193 #define WEIRD_ADDR      0xdeadc0de
194 #endif
195 #define ZERO_LENGTH_PTR	((void *)-8)
196 
197 /*
198  * Misc global malloc buckets
199  */
200 
201 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
202 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
203 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
204 MALLOC_DEFINE(M_DRM, "m_drm", "DRM memory allocations");
205 
206 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
207 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
208 
209 /*
210  * Initialize the slab memory allocator.  We have to choose a zone size based
211  * on available physical memory.  We choose a zone side which is approximately
212  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
213  * 128K.  The zone size is limited to the bounds set in slaballoc.h
214  * (typically 32K min, 128K max).
215  */
216 static void kmeminit(void *dummy);
217 static void kmemfinishinit(void *dummy);
218 
219 char *ZeroPage;
220 
221 SYSINIT(kmem1, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL);
222 SYSINIT(kmem2, SI_BOOT2_POST_SMP, SI_ORDER_FIRST, kmemfinishinit, NULL);
223 
224 #ifdef INVARIANTS
225 /*
226  * If enabled any memory allocated without M_ZERO is initialized to -1.
227  */
228 __read_frequently static int  use_malloc_pattern;
229 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
230 	   &use_malloc_pattern, 0,
231 	   "Initialize memory to -1 if M_ZERO not specified");
232 
233 __read_frequently static int32_t weirdary[16];
234 __read_frequently static int  use_weird_array;
235 SYSCTL_INT(_debug, OID_AUTO, use_weird_array, CTLFLAG_RW,
236 	   &use_weird_array, 0,
237 	   "Initialize memory to weird values on kfree()");
238 #endif
239 
240 __read_frequently static int ZoneRelsThresh = ZONE_RELS_THRESH;
241 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
242 __read_frequently static int kzone_pollfreq = 1;
243 SYSCTL_INT(_kern, OID_AUTO, kzone_pollfreq, CTLFLAG_RW, &kzone_pollfreq, 0, "");
244 
245 static struct spinlock kmemstat_spin =
246 			SPINLOCK_INITIALIZER(&kmemstat_spin, "malinit");
247 static struct malloc_type *kmemstat_poll;
248 
249 /*
250  * Returns the kernel memory size limit for the purposes of initializing
251  * various subsystem caches.  The smaller of available memory and the KVM
252  * memory space is returned.
253  *
254  * The size in megabytes is returned.
255  */
256 size_t
257 kmem_lim_size(void)
258 {
259     size_t limsize;
260 
261     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
262     if (limsize > KvaSize)
263 	limsize = KvaSize;
264     return (limsize / (1024 * 1024));
265 }
266 
267 static void
268 kmeminit(void *dummy)
269 {
270     size_t limsize;
271     int usesize;
272 #ifdef INVARIANTS
273     int i;
274 #endif
275 
276     limsize = kmem_lim_size();
277     usesize = (int)(limsize * 1024);	/* convert to KB */
278 
279     /*
280      * If the machine has a large KVM space and more than 8G of ram,
281      * double the zone release threshold to reduce SMP invalidations.
282      * If more than 16G of ram, do it again.
283      *
284      * The BIOS eats a little ram so add some slop.  We want 8G worth of
285      * memory sticks to trigger the first adjustment.
286      */
287     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
288 	    if (limsize >= 7 * 1024)
289 		    ZoneRelsThresh *= 2;
290 	    if (limsize >= 15 * 1024)
291 		    ZoneRelsThresh *= 2;
292 	    if (limsize >= 31 * 1024)
293 		    ZoneRelsThresh *= 2;
294 	    if (limsize >= 63 * 1024)
295 		    ZoneRelsThresh *= 2;
296 	    if (limsize >= 127 * 1024)
297 		    ZoneRelsThresh *= 2;
298     }
299 
300     /*
301      * Calculate the zone size.  This typically calculates to
302      * ZALLOC_MAX_ZONE_SIZE
303      */
304     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
305     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
306 	ZoneSize <<= 1;
307     ZoneLimit = ZoneSize / 4;
308     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
309 	ZoneLimit = ZALLOC_ZONE_LIMIT;
310     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
311     ZonePageCount = ZoneSize / PAGE_SIZE;
312 
313 #ifdef INVARIANTS
314     for (i = 0; i < NELEM(weirdary); ++i)
315 	weirdary[i] = WEIRD_ADDR;
316 #endif
317 
318     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
319 
320     if (bootverbose)
321 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
322 }
323 
324 /*
325  * Once we know how many cpus are configured reduce ZoneRelsThresh
326  * based on multiples of 32 cpu threads.
327  */
328 static void
329 kmemfinishinit(void *dummy)
330 {
331 	if (ncpus > 32)
332 		ZoneRelsThresh = ZoneRelsThresh * 32 / ncpus;
333 }
334 
335 /*
336  * (low level) Initialize slab-related elements in the globaldata structure.
337  *
338  * Occurs after kmeminit().
339  */
340 void
341 slab_gdinit(globaldata_t gd)
342 {
343 	SLGlobalData *slgd;
344 	int i;
345 
346 	slgd = &gd->gd_slab;
347 	for (i = 0; i < NZONES; ++i)
348 		TAILQ_INIT(&slgd->ZoneAry[i]);
349 	TAILQ_INIT(&slgd->FreeZones);
350 	TAILQ_INIT(&slgd->FreeOvZones);
351 }
352 
353 /*
354  * Initialize a malloc type tracking structure.
355  */
356 void
357 malloc_init(void *data)
358 {
359     struct malloc_type *type = data;
360     struct kmalloc_use *use;
361     size_t limsize;
362     int n;
363 
364     if (type->ks_magic != M_MAGIC)
365 	panic("malloc type lacks magic");
366 
367     if (type->ks_limit != 0)
368 	return;
369 
370     if (vmstats.v_page_count == 0)
371 	panic("malloc_init not allowed before vm init");
372 
373     limsize = kmem_lim_size() * (1024 * 1024);
374     type->ks_limit = limsize / 10;
375     if (type->ks_flags & KSF_OBJSIZE)
376 	    malloc_mgt_init(type, &type->ks_mgt, type->ks_objsize);
377 
378     if (ncpus == 1)
379 	use = &type->ks_use0;
380     else
381 	use = kmalloc(ncpus * sizeof(*use), M_TEMP, M_WAITOK | M_ZERO);
382     if (type->ks_flags & KSF_OBJSIZE) {
383 	for (n = 0; n < ncpus; ++n)
384 	    malloc_mgt_init(type, &use[n].mgt, type->ks_objsize);
385     }
386 
387     spin_lock(&kmemstat_spin);
388     type->ks_next = kmemstatistics;
389     type->ks_use = use;
390     kmemstatistics = type;
391     spin_unlock(&kmemstat_spin);
392 }
393 
394 void
395 malloc_uninit(void *data)
396 {
397     struct malloc_type *type = data;
398     struct malloc_type *t;
399     int i;
400 #ifdef INVARIANTS
401     long ttl;
402 #endif
403 
404     if (type->ks_magic != M_MAGIC)
405 	panic("malloc type lacks magic");
406 
407     if (vmstats.v_page_count == 0)
408 	panic("malloc_uninit not allowed before vm init");
409 
410     if (type->ks_limit == 0)
411 	panic("malloc_uninit on uninitialized type");
412 
413     /* Make sure that all pending kfree()s are finished. */
414     lwkt_synchronize_ipiqs("muninit");
415 
416     /*
417      * Remove from the kmemstatistics list, blocking if the removal races
418      * the kmalloc poller.
419      *
420      * Advance kmemstat_poll if necessary.
421      */
422     spin_lock(&kmemstat_spin);
423     while (type->ks_flags & KSF_POLLING)
424 	ssleep(type, &kmemstat_spin, 0, "kmuninit", 0);
425 
426     if (kmemstat_poll == type)
427 	kmemstat_poll = type->ks_next;
428 
429     if (kmemstatistics == type) {
430 	kmemstatistics = type->ks_next;
431     } else {
432 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
433 	    if (t->ks_next == type) {
434 		t->ks_next = type->ks_next;
435 		break;
436 	    }
437 	}
438     }
439     type->ks_next = NULL;
440     type->ks_limit = 0;
441     spin_unlock(&kmemstat_spin);
442 
443     /*
444      * memuse is only correct in aggregation.  Due to memory being allocated
445      * on one cpu and freed on another individual array entries may be
446      * negative or positive (canceling each other out).
447      */
448 #ifdef INVARIANTS
449     ttl = 0;
450 #endif
451     for (i = 0; i < ncpus; ++i) {
452 #ifdef INVARIANTS
453 	ttl += type->ks_use[i].memuse;
454 #endif
455 	if (type->ks_flags & KSF_OBJSIZE)
456 	    malloc_mgt_uninit(type, &type->ks_use[i].mgt);
457     }
458     if (type->ks_flags & KSF_OBJSIZE)
459 	malloc_mgt_uninit(type, &type->ks_mgt);
460 #ifdef INVARIANTS
461     if (ttl) {
462 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
463 	    ttl, type->ks_shortdesc, i);
464     }
465 #endif
466 
467     if (type->ks_use != &type->ks_use0) {
468 	kfree(type->ks_use, M_TEMP);
469 	type->ks_use = NULL;
470     }
471 }
472 
473 /*
474  * Slowly polls all kmalloc zones for cleanup
475  */
476 static void
477 kmalloc_poller_thread(void)
478 {
479     struct malloc_type *type;
480 
481     for (;;) {
482 	/*
483 	 * Very slow poll by default, adjustable with sysctl
484 	 */
485 	int sticks;
486 
487 	sticks = kzone_pollfreq;
488 	cpu_ccfence();
489 	if (sticks > 0)
490 		sticks = hz / sticks + 1;	/* approximate */
491 	else
492 		sticks = hz;			/* safety */
493 	tsleep((caddr_t)&sticks, 0, "kmslp", sticks);
494 
495 	/*
496 	 * [re]poll one zone each period.
497 	 */
498 	spin_lock(&kmemstat_spin);
499 	type = kmemstat_poll;
500 
501 	if (type == NULL)
502 		type = kmemstatistics;
503 	if (type) {
504 		atomic_set_int(&type->ks_flags, KSF_POLLING);
505 		spin_unlock(&kmemstat_spin);
506 		if (malloc_mgt_poll(type)) {
507 			spin_lock(&kmemstat_spin);
508 			kmemstat_poll = type->ks_next;
509 		} else {
510 			spin_lock(&kmemstat_spin);
511 		}
512 		atomic_clear_int(&type->ks_flags, KSF_POLLING);
513 		wakeup(type);
514 	} else {
515 		kmemstat_poll = NULL;
516 	}
517 	spin_unlock(&kmemstat_spin);
518     }
519 }
520 
521 static struct thread *kmalloc_poller_td;
522 static struct kproc_desc kmalloc_poller_kp = {
523         "kmalloc_poller",
524 	kmalloc_poller_thread,
525 	&kmalloc_poller_td
526 };
527 SYSINIT(kmalloc_polller, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST,
528 	kproc_start, &kmalloc_poller_kp);
529 
530 /*
531  * Reinitialize all installed malloc regions after ncpus has been
532  * determined.  type->ks_use0 is initially set to &type->ks_use0,
533  * this function will dynamically allocate it as appropriate for ncpus.
534  */
535 void
536 malloc_reinit_ncpus(void)
537 {
538     struct malloc_type *t;
539     struct kmalloc_use *use;
540     int n;
541 
542     /*
543      * If only one cpu we can leave ks_use set to ks_use0
544      */
545     if (ncpus <= 1)
546 	return;
547 
548     /*
549      * Expand ks_use for all kmalloc blocks
550      */
551     for (t = kmemstatistics; t; t = t->ks_next) {
552 	KKASSERT(t->ks_use == &t->ks_use0);
553 	t->ks_use = kmalloc(sizeof(*use) * ncpus, M_TEMP, M_WAITOK|M_ZERO);
554 	t->ks_use[0] = t->ks_use0;
555 	if (t->ks_flags & KSF_OBJSIZE) {
556 	    malloc_mgt_relocate(&t->ks_use0.mgt, &t->ks_use[0].mgt);
557 	    for (n = 1; n < ncpus; ++n)
558 		malloc_mgt_init(t, &t->ks_use[n].mgt, t->ks_objsize);
559 	}
560     }
561 }
562 
563 /*
564  * Increase the kmalloc pool limit for the specified pool.  No changes
565  * are the made if the pool would shrink.
566  */
567 void
568 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
569 {
570     KKASSERT(type->ks_limit != 0);
571     if (bytes == 0)
572 	bytes = KvaSize;
573     if (type->ks_limit < bytes)
574 	type->ks_limit = bytes;
575 }
576 
577 void
578 kmalloc_set_unlimited(struct malloc_type *type)
579 {
580     type->ks_limit = kmem_lim_size() * (1024 * 1024);
581 }
582 
583 /*
584  * Dynamically create a malloc pool.  This function is a NOP if *typep is
585  * already non-NULL.
586  */
587 void
588 kmalloc_create(struct malloc_type **typep, const char *descr)
589 {
590 	struct malloc_type *type;
591 
592 	if (*typep == NULL) {
593 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
594 		type->ks_magic = M_MAGIC;
595 		type->ks_shortdesc = descr;
596 		malloc_init(type);
597 		*typep = type;
598 	}
599 }
600 
601 void
602 _kmalloc_create_obj(struct malloc_type **typep, const char *descr,
603 		    size_t objsize)
604 {
605 	struct malloc_type *type;
606 
607 	if (*typep == NULL) {
608 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
609 		type->ks_magic = M_MAGIC;
610 		type->ks_shortdesc = descr;
611 		type->ks_flags = KSF_OBJSIZE;
612 		type->ks_objsize = __VM_CACHELINE_ALIGN(objsize);
613 		malloc_init(type);
614 		*typep = type;
615 	}
616 }
617 
618 /*
619  * Destroy a dynamically created malloc pool.  This function is a NOP if
620  * the pool has already been destroyed.
621  *
622  * WARNING! For kmalloc_obj's, the exis state for related slabs is ignored,
623  *	    only call once all references are 100% known to be gone.
624  */
625 void
626 kmalloc_destroy(struct malloc_type **typep)
627 {
628 	if (*typep != NULL) {
629 		malloc_uninit(*typep);
630 		kfree(*typep, M_TEMP);
631 		*typep = NULL;
632 	}
633 }
634 
635 /*
636  * Calculate the zone index for the allocation request size and set the
637  * allocation request size to that particular zone's chunk size.
638  */
639 static __inline int
640 zoneindex(unsigned long *bytes, unsigned long *align)
641 {
642     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
643 
644     if (n < 128) {
645 	*bytes = n = (n + 7) & ~7;
646 	*align = 8;
647 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
648     }
649     if (n < 256) {
650 	*bytes = n = (n + 15) & ~15;
651 	*align = 16;
652 	return(n / 16 + 7);
653     }
654     if (n < 8192) {
655 	if (n < 512) {
656 	    *bytes = n = (n + 31) & ~31;
657 	    *align = 32;
658 	    return(n / 32 + 15);
659 	}
660 	if (n < 1024) {
661 	    *bytes = n = (n + 63) & ~63;
662 	    *align = 64;
663 	    return(n / 64 + 23);
664 	}
665 	if (n < 2048) {
666 	    *bytes = n = (n + 127) & ~127;
667 	    *align = 128;
668 	    return(n / 128 + 31);
669 	}
670 	if (n < 4096) {
671 	    *bytes = n = (n + 255) & ~255;
672 	    *align = 256;
673 	    return(n / 256 + 39);
674 	}
675 	*bytes = n = (n + 511) & ~511;
676 	*align = 512;
677 	return(n / 512 + 47);
678     }
679 #if ZALLOC_ZONE_LIMIT > 8192
680     if (n < 16384) {
681 	*bytes = n = (n + 1023) & ~1023;
682 	*align = 1024;
683 	return(n / 1024 + 55);
684     }
685 #endif
686 #if ZALLOC_ZONE_LIMIT > 16384
687     if (n < 32768) {
688 	*bytes = n = (n + 2047) & ~2047;
689 	*align = 2048;
690 	return(n / 2048 + 63);
691     }
692 #endif
693     panic("Unexpected byte count %d", n);
694     return(0);
695 }
696 
697 static __inline void
698 clean_zone_rchunks(SLZone *z)
699 {
700     SLChunk *bchunk;
701 
702     while ((bchunk = z->z_RChunks) != NULL) {
703 	cpu_ccfence();
704 	if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
705 	    *z->z_LChunksp = bchunk;
706 	    while (bchunk) {
707 		chunk_mark_free(z, bchunk);
708 		z->z_LChunksp = &bchunk->c_Next;
709 		bchunk = bchunk->c_Next;
710 		++z->z_NFree;
711 	    }
712 	    break;
713 	}
714 	/* retry */
715     }
716 }
717 
718 /*
719  * If the zone becomes totally free and is not the only zone listed for a
720  * chunk size we move it to the FreeZones list.  We always leave at least
721  * one zone per chunk size listed, even if it is freeable.
722  *
723  * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
724  * otherwise MP races can result in our free_remote code accessing a
725  * destroyed zone.  The remote end interlocks z_RCount with z_RChunks
726  * so one has to test both z_NFree and z_RCount.
727  *
728  * Since this code can be called from an IPI callback, do *NOT* try to mess
729  * with kernel_map here.  Hysteresis will be performed at kmalloc() time.
730  */
731 static __inline SLZone *
732 check_zone_free(SLGlobalData *slgd, SLZone *z)
733 {
734     SLZone *znext;
735 
736     znext = TAILQ_NEXT(z, z_Entry);
737     if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
738 	(TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || znext)) {
739 	int *kup;
740 
741 	TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
742 
743 	z->z_Magic = -1;
744 	TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
745 	++slgd->NFreeZones;
746 	kup = btokup(z);
747 	*kup = 0;
748     }
749     return znext;
750 }
751 
752 #ifdef SLAB_DEBUG
753 /*
754  * Used to debug memory corruption issues.  Record up to (typically 32)
755  * allocation sources for this zone (for a particular chunk size).
756  */
757 
758 static void
759 slab_record_source(SLZone *z, const char *file, int line)
760 {
761     int i;
762     int b = line & (SLAB_DEBUG_ENTRIES - 1);
763 
764     i = b;
765     do {
766 	if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
767 		return;
768 	if (z->z_Sources[i].file == NULL)
769 		break;
770 	i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
771     } while (i != b);
772     z->z_Sources[i].file = file;
773     z->z_Sources[i].line = line;
774 }
775 
776 #endif
777 
778 static __inline unsigned long
779 powerof2_size(unsigned long size)
780 {
781 	int i;
782 
783 	if (size == 0 || powerof2(size))
784 		return size;
785 
786 	i = flsl(size);
787 	return (1UL << i);
788 }
789 
790 /*
791  * kmalloc()	(SLAB ALLOCATOR)
792  *
793  *	Allocate memory via the slab allocator.  If the request is too large,
794  *	or if it page-aligned beyond a certain size, we fall back to the
795  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
796  *	&SlabMisc if you don't care.
797  *
798  *	M_RNOWAIT	- don't block.
799  *	M_NULLOK	- return NULL instead of blocking.
800  *	M_ZERO		- zero the returned memory.
801  *	M_USE_RESERVE	- allow greater drawdown of the free list
802  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
803  *	M_POWEROF2	- roundup size to the nearest power of 2
804  *
805  * MPSAFE
806  */
807 
808 /* don't let kmalloc macro mess up function declaration */
809 #undef kmalloc
810 
811 #ifdef SLAB_DEBUG
812 void *
813 _kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
814 	      const char *file, int line)
815 #else
816 void *
817 _kmalloc(unsigned long size, struct malloc_type *type, int flags)
818 #endif
819 {
820     SLZone *z;
821     SLChunk *chunk;
822     SLGlobalData *slgd;
823     struct globaldata *gd;
824     unsigned long align;
825     int zi;
826 #ifdef INVARIANTS
827     int i;
828 #endif
829 
830     logmemory_quick(malloc_beg);
831     gd = mycpu;
832     slgd = &gd->gd_slab;
833 
834     /*
835      * XXX silly to have this in the critical path.
836      */
837     KKASSERT(type->ks_limit != 0);
838     ++type->ks_use[gd->gd_cpuid].calls;
839 
840     /*
841      * Flagged for cache-alignment
842      */
843     if (flags & M_CACHEALIGN) {
844 	if (size < __VM_CACHELINE_SIZE)
845 		size = __VM_CACHELINE_SIZE;
846 	else if (!CAN_CACHEALIGN(size))
847 		flags |= M_POWEROF2;
848     }
849 
850     /*
851      * Flagged to force nearest power-of-2 (higher or same)
852      */
853     if (flags & M_POWEROF2)
854 	size = powerof2_size(size);
855 
856     /*
857      * Handle the case where the limit is reached.  Panic if we can't return
858      * NULL.  The original malloc code looped, but this tended to
859      * simply deadlock the computer.
860      *
861      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
862      * to determine if a more complete limit check should be done.  The
863      * actual memory use is tracked via ks_use[cpu].memuse.
864      */
865     while (type->ks_loosememuse >= type->ks_limit) {
866 	int i;
867 	long ttl;
868 
869 	for (i = ttl = 0; i < ncpus; ++i)
870 	    ttl += type->ks_use[i].memuse;
871 	type->ks_loosememuse = ttl;	/* not MP synchronized */
872 	if ((ssize_t)ttl < 0)		/* deal with occassional race */
873 		ttl = 0;
874 	if (ttl >= type->ks_limit) {
875 	    if (flags & M_NULLOK) {
876 		logmemory(malloc_end, NULL, type, size, flags);
877 		return(NULL);
878 	    }
879 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
880 	}
881     }
882 
883     /*
884      * Handle the degenerate size == 0 case.  Yes, this does happen.
885      * Return a special pointer.  This is to maintain compatibility with
886      * the original malloc implementation.  Certain devices, such as the
887      * adaptec driver, not only allocate 0 bytes, they check for NULL and
888      * also realloc() later on.  Joy.
889      */
890     if (size == 0) {
891 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
892 	return(ZERO_LENGTH_PTR);
893     }
894 
895     /*
896      * Handle hysteresis from prior frees here in malloc().  We cannot
897      * safely manipulate the kernel_map in free() due to free() possibly
898      * being called via an IPI message or from sensitive interrupt code.
899      *
900      * NOTE: ku_pagecnt must be cleared before we free the slab or we
901      *	     might race another cpu allocating the kva and setting
902      *	     ku_pagecnt.
903      */
904     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
905 	crit_enter();
906 	if (slgd->NFreeZones > ZoneRelsThresh) {	/* crit sect race */
907 	    int *kup;
908 
909 	    z = TAILQ_LAST(&slgd->FreeZones, SLZoneList);
910 	    KKASSERT(z != NULL);
911 	    TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
912 	    --slgd->NFreeZones;
913 	    kup = btokup(z);
914 	    *kup = 0;
915 	    kmem_slab_free(z, ZoneSize);	/* may block */
916 	}
917 	crit_exit();
918     }
919 
920     /*
921      * XXX handle oversized frees that were queued from kfree().
922      */
923     while (TAILQ_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) {
924 	crit_enter();
925 	if ((z = TAILQ_LAST(&slgd->FreeOvZones, SLZoneList)) != NULL) {
926 	    vm_size_t tsize;
927 
928 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
929 	    TAILQ_REMOVE(&slgd->FreeOvZones, z, z_Entry);
930 	    tsize = z->z_ChunkSize;
931 	    kmem_slab_free(z, tsize);	/* may block */
932 	}
933 	crit_exit();
934     }
935 
936     /*
937      * Handle large allocations directly.  There should not be very many of
938      * these so performance is not a big issue.
939      *
940      * The backend allocator is pretty nasty on a SMP system.   Use the
941      * slab allocator for one and two page-sized chunks even though we lose
942      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
943      */
944     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
945 	int *kup;
946 
947 	size = round_page(size);
948 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
949 	if (chunk == NULL) {
950 	    logmemory(malloc_end, NULL, type, size, flags);
951 	    return(NULL);
952 	}
953 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
954 	flags |= M_PASSIVE_ZERO;
955 	kup = btokup(chunk);
956 	*kup = size / PAGE_SIZE;
957 	crit_enter();
958 	goto done;
959     }
960 
961     /*
962      * Attempt to allocate out of an existing zone.  First try the free list,
963      * then allocate out of unallocated space.  If we find a good zone move
964      * it to the head of the list so later allocations find it quickly
965      * (we might have thousands of zones in the list).
966      *
967      * Note: zoneindex() will panic of size is too large.
968      */
969     zi = zoneindex(&size, &align);
970     KKASSERT(zi < NZONES);
971     crit_enter();
972 
973     if ((z = TAILQ_LAST(&slgd->ZoneAry[zi], SLZoneList)) != NULL) {
974 	/*
975 	 * Locate a chunk - we have to have at least one.  If this is the
976 	 * last chunk go ahead and do the work to retrieve chunks freed
977 	 * from remote cpus, and if the zone is still empty move it off
978 	 * the ZoneAry.
979 	 */
980 	if (--z->z_NFree <= 0) {
981 	    KKASSERT(z->z_NFree == 0);
982 
983 	    /*
984 	     * WARNING! This code competes with other cpus.  It is ok
985 	     * for us to not drain RChunks here but we might as well, and
986 	     * it is ok if more accumulate after we're done.
987 	     *
988 	     * Set RSignal before pulling rchunks off, indicating that we
989 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
990 	     * read RSignal before putting rchunks on thus interlocking
991 	     * their IPI signaling.
992 	     */
993 	    if (z->z_RChunks == NULL)
994 		atomic_swap_int(&z->z_RSignal, 1);
995 
996 	    clean_zone_rchunks(z);
997 
998 	    /*
999 	     * Remove from the zone list if no free chunks remain.
1000 	     * Clear RSignal
1001 	     */
1002 	    if (z->z_NFree == 0) {
1003 		TAILQ_REMOVE(&slgd->ZoneAry[zi], z, z_Entry);
1004 	    } else {
1005 		z->z_RSignal = 0;
1006 	    }
1007 	}
1008 
1009 	/*
1010 	 * Fast path, we have chunks available in z_LChunks.
1011 	 */
1012 	chunk = z->z_LChunks;
1013 	if (chunk) {
1014 		chunk_mark_allocated(z, chunk);
1015 		z->z_LChunks = chunk->c_Next;
1016 		if (z->z_LChunks == NULL)
1017 			z->z_LChunksp = &z->z_LChunks;
1018 #ifdef SLAB_DEBUG
1019 		slab_record_source(z, file, line);
1020 #endif
1021 		goto done;
1022 	}
1023 
1024 	/*
1025 	 * No chunks are available in LChunks, the free chunk MUST be
1026 	 * in the never-before-used memory area, controlled by UIndex.
1027 	 *
1028 	 * The consequences are very serious if our zone got corrupted so
1029 	 * we use an explicit panic rather than a KASSERT.
1030 	 */
1031 	if (z->z_UIndex + 1 != z->z_NMax)
1032 	    ++z->z_UIndex;
1033 	else
1034 	    z->z_UIndex = 0;
1035 
1036 	if (z->z_UIndex == z->z_UEndIndex)
1037 	    panic("slaballoc: corrupted zone");
1038 
1039 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
1040 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
1041 	    flags &= ~M_ZERO;
1042 	    flags |= M_PASSIVE_ZERO;
1043 	}
1044 	chunk_mark_allocated(z, chunk);
1045 #ifdef SLAB_DEBUG
1046 	slab_record_source(z, file, line);
1047 #endif
1048 	goto done;
1049     }
1050 
1051     /*
1052      * If all zones are exhausted we need to allocate a new zone for this
1053      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
1054      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
1055      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
1056      * we do not pre-zero it because we do not want to mess up the L1 cache.
1057      *
1058      * At least one subsystem, the tty code (see CROUND) expects power-of-2
1059      * allocations to be power-of-2 aligned.  We maintain compatibility by
1060      * adjusting the base offset below.
1061      */
1062     {
1063 	int off;
1064 	int *kup;
1065 
1066 	if ((z = TAILQ_FIRST(&slgd->FreeZones)) != NULL) {
1067 	    TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
1068 	    --slgd->NFreeZones;
1069 	    bzero(z, sizeof(SLZone));
1070 	    z->z_Flags |= SLZF_UNOTZEROD;
1071 	} else {
1072 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
1073 	    if (z == NULL)
1074 		goto fail;
1075 	}
1076 
1077 	/*
1078 	 * How big is the base structure?
1079 	 */
1080 #if defined(INVARIANTS)
1081 	/*
1082 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
1083 	 * complicated so don't make an exact calculation.
1084 	 */
1085 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
1086 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
1087 #else
1088 	off = sizeof(SLZone);
1089 #endif
1090 
1091 	/*
1092 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
1093 	 * Otherwise properly align the data according to the chunk size.
1094 	 */
1095 	if (powerof2(size))
1096 	    align = size;
1097 	off = roundup2(off, align);
1098 
1099 	z->z_Magic = ZALLOC_SLAB_MAGIC;
1100 	z->z_ZoneIndex = zi;
1101 	z->z_NMax = (ZoneSize - off) / size;
1102 	z->z_NFree = z->z_NMax - 1;
1103 	z->z_BasePtr = (char *)z + off;
1104 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
1105 	z->z_ChunkSize = size;
1106 	z->z_CpuGd = gd;
1107 	z->z_Cpu = gd->gd_cpuid;
1108 	z->z_LChunksp = &z->z_LChunks;
1109 #ifdef SLAB_DEBUG
1110 	bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
1111 	bzero(z->z_Sources, sizeof(z->z_Sources));
1112 #endif
1113 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
1114 	TAILQ_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry);
1115 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
1116 	    flags &= ~M_ZERO;	/* already zero'd */
1117 	    flags |= M_PASSIVE_ZERO;
1118 	}
1119 	kup = btokup(z);
1120 	*kup = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
1121 	chunk_mark_allocated(z, chunk);
1122 #ifdef SLAB_DEBUG
1123 	slab_record_source(z, file, line);
1124 #endif
1125 
1126 	/*
1127 	 * Slide the base index for initial allocations out of the next
1128 	 * zone we create so we do not over-weight the lower part of the
1129 	 * cpu memory caches.
1130 	 */
1131 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
1132 				& (ZALLOC_MAX_ZONE_SIZE - 1);
1133     }
1134 
1135 done:
1136     ++type->ks_use[gd->gd_cpuid].inuse;
1137     type->ks_use[gd->gd_cpuid].memuse += size;
1138     type->ks_use[gd->gd_cpuid].loosememuse += size;
1139     if (type->ks_use[gd->gd_cpuid].loosememuse >= ZoneSize) {
1140 	/* not MP synchronized */
1141 	type->ks_loosememuse += type->ks_use[gd->gd_cpuid].loosememuse;
1142 	type->ks_use[gd->gd_cpuid].loosememuse = 0;
1143     }
1144     crit_exit();
1145 
1146     if (flags & M_ZERO)
1147 	bzero(chunk, size);
1148 #ifdef INVARIANTS
1149     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
1150 	if (use_malloc_pattern) {
1151 	    for (i = 0; i < size; i += sizeof(int)) {
1152 		*(int *)((char *)chunk + i) = -1;
1153 	    }
1154 	}
1155 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
1156     }
1157 #endif
1158     logmemory(malloc_end, chunk, type, size, flags);
1159     return(chunk);
1160 fail:
1161     crit_exit();
1162     logmemory(malloc_end, NULL, type, size, flags);
1163     return(NULL);
1164 }
1165 
1166 /*
1167  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
1168  *
1169  * Generally speaking this routine is not called very often and we do
1170  * not attempt to optimize it beyond reusing the same pointer if the
1171  * new size fits within the chunking of the old pointer's zone.
1172  */
1173 #ifdef SLAB_DEBUG
1174 void *
1175 krealloc_debug(void *ptr, unsigned long size,
1176 	       struct malloc_type *type, int flags,
1177 	       const char *file, int line)
1178 #else
1179 void *
1180 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
1181 #endif
1182 {
1183     unsigned long osize;
1184     unsigned long align;
1185     SLZone *z;
1186     void *nptr;
1187     int *kup;
1188 
1189     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
1190 
1191     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
1192 	return(_kmalloc_debug(size, type, flags, file, line));
1193     if (size == 0) {
1194 	kfree(ptr, type);
1195 	return(NULL);
1196     }
1197 
1198     /*
1199      * Handle oversized allocations.  XXX we really should require that a
1200      * size be passed to free() instead of this nonsense.
1201      */
1202     kup = btokup(ptr);
1203     if (*kup > 0) {
1204 	osize = *kup << PAGE_SHIFT;
1205 	if (osize == round_page(size))
1206 	    return(ptr);
1207 	if ((nptr = _kmalloc_debug(size, type, flags, file, line)) == NULL)
1208 	    return(NULL);
1209 	bcopy(ptr, nptr, min(size, osize));
1210 	kfree(ptr, type);
1211 	return(nptr);
1212     }
1213 
1214     /*
1215      * Get the original allocation's zone.  If the new request winds up
1216      * using the same chunk size we do not have to do anything.
1217      */
1218     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1219     kup = btokup(z);
1220     KKASSERT(*kup < 0);
1221     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1222 
1223     /*
1224      * Allocate memory for the new request size.  Note that zoneindex has
1225      * already adjusted the request size to the appropriate chunk size, which
1226      * should optimize our bcopy().  Then copy and return the new pointer.
1227      *
1228      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
1229      * necessary align the result.
1230      *
1231      * We can only zoneindex (to align size to the chunk size) if the new
1232      * size is not too large.
1233      */
1234     if (size < ZoneLimit) {
1235 	zoneindex(&size, &align);
1236 	if (z->z_ChunkSize == size)
1237 	    return(ptr);
1238     }
1239     if ((nptr = _kmalloc_debug(size, type, flags, file, line)) == NULL)
1240 	return(NULL);
1241     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
1242     kfree(ptr, type);
1243     return(nptr);
1244 }
1245 
1246 size_t
1247 kmalloc_usable_size(const void *ptr)
1248 {
1249     unsigned long size;
1250     SLZone *z;
1251     int *kup;
1252 
1253     if (ptr == NULL)
1254 	return 0;
1255     if (ptr == ZERO_LENGTH_PTR)
1256 	return 0;
1257 
1258     /*
1259      * Check to see if the pointer blongs to an oversized segment
1260      */
1261     kup = btokup(ptr);
1262     if (*kup > 0) {
1263 	size = *kup << PAGE_SHIFT;
1264 	return size;
1265     }
1266 
1267     /*
1268      * Zone case.  Figure out the zone based on the fact that it is
1269      * ZoneSize aligned.
1270      */
1271     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1272     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1273 
1274     return (z->z_ChunkSize);
1275 }
1276 
1277 /*
1278  * Return the kmalloc limit for this type, in bytes.
1279  */
1280 long
1281 kmalloc_limit(struct malloc_type *type)
1282 {
1283     KKASSERT(type->ks_limit != 0);
1284     return(type->ks_limit);
1285 }
1286 
1287 /*
1288  * Allocate a copy of the specified string.
1289  *
1290  * (MP SAFE) (MAY BLOCK)
1291  */
1292 #ifdef SLAB_DEBUG
1293 char *
1294 kstrdup_debug(const char *str, struct malloc_type *type,
1295 	      const char *file, int line)
1296 #else
1297 char *
1298 kstrdup(const char *str, struct malloc_type *type)
1299 #endif
1300 {
1301     int zlen;	/* length inclusive of terminating NUL */
1302     char *nstr;
1303 
1304     if (str == NULL)
1305 	return(NULL);
1306     zlen = strlen(str) + 1;
1307     nstr = _kmalloc_debug(zlen, type, M_WAITOK, file, line);
1308     bcopy(str, nstr, zlen);
1309     return(nstr);
1310 }
1311 
1312 #ifdef SLAB_DEBUG
1313 char *
1314 kstrndup_debug(const char *str, size_t maxlen, struct malloc_type *type,
1315 	      const char *file, int line)
1316 #else
1317 char *
1318 kstrndup(const char *str, size_t maxlen, struct malloc_type *type)
1319 #endif
1320 {
1321     int zlen;	/* length inclusive of terminating NUL */
1322     char *nstr;
1323 
1324     if (str == NULL)
1325 	return(NULL);
1326     zlen = strnlen(str, maxlen) + 1;
1327     nstr = _kmalloc_debug(zlen, type, M_WAITOK, file, line);
1328     bcopy(str, nstr, zlen);
1329     nstr[zlen - 1] = '\0';
1330     return(nstr);
1331 }
1332 
1333 /*
1334  * Notify our cpu that a remote cpu has freed some chunks in a zone that
1335  * we own.  RCount will be bumped so the memory should be good, but validate
1336  * that it really is.
1337  */
1338 static void
1339 kfree_remote(void *ptr)
1340 {
1341     SLGlobalData *slgd;
1342     SLZone *z;
1343     int nfree;
1344     int *kup;
1345 
1346     slgd = &mycpu->gd_slab;
1347     z = ptr;
1348     kup = btokup(z);
1349     KKASSERT(*kup == -((int)mycpuid + 1));
1350     KKASSERT(z->z_RCount > 0);
1351     atomic_subtract_int(&z->z_RCount, 1);
1352 
1353     logmemory(free_rem_beg, z, NULL, 0L, 0);
1354     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1355     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
1356     nfree = z->z_NFree;
1357 
1358     /*
1359      * Indicate that we will no longer be off of the ZoneAry by
1360      * clearing RSignal.
1361      */
1362     if (z->z_RChunks)
1363 	z->z_RSignal = 0;
1364 
1365     /*
1366      * Atomically extract the bchunks list and then process it back
1367      * into the lchunks list.  We want to append our bchunks to the
1368      * lchunks list and not prepend since we likely do not have
1369      * cache mastership of the related data (not that it helps since
1370      * we are using c_Next).
1371      */
1372     clean_zone_rchunks(z);
1373     if (z->z_NFree && nfree == 0) {
1374 	TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1375     }
1376 
1377     check_zone_free(slgd, z);
1378     logmemory(free_rem_end, z, NULL, 0L, 0);
1379 }
1380 
1381 /*
1382  * free (SLAB ALLOCATOR)
1383  *
1384  * Free a memory block previously allocated by malloc.
1385  *
1386  * Note: We do not attempt to update ks_loosememuse as MP races could
1387  * prevent us from checking memory limits in malloc.   YYY we may
1388  * consider updating ks_cpu.loosememuse.
1389  *
1390  * MPSAFE
1391  */
1392 void
1393 _kfree(void *ptr, struct malloc_type *type)
1394 {
1395     SLZone *z;
1396     SLChunk *chunk;
1397     SLGlobalData *slgd;
1398     struct globaldata *gd;
1399     int *kup;
1400     unsigned long size;
1401     SLChunk *bchunk;
1402     int rsignal;
1403 
1404     logmemory_quick(free_beg);
1405     gd = mycpu;
1406     slgd = &gd->gd_slab;
1407 
1408     if (ptr == NULL)
1409 	panic("trying to free NULL pointer");
1410 
1411     /*
1412      * Handle special 0-byte allocations
1413      */
1414     if (ptr == ZERO_LENGTH_PTR) {
1415 	logmemory(free_zero, ptr, type, -1UL, 0);
1416 	logmemory_quick(free_end);
1417 	return;
1418     }
1419 
1420     /*
1421      * Panic on bad malloc type
1422      */
1423     if (type->ks_magic != M_MAGIC)
1424 	panic("free: malloc type lacks magic");
1425 
1426     /*
1427      * Handle oversized allocations.  XXX we really should require that a
1428      * size be passed to free() instead of this nonsense.
1429      *
1430      * This code is never called via an ipi.
1431      */
1432     kup = btokup(ptr);
1433     if (*kup > 0) {
1434 	size = *kup << PAGE_SHIFT;
1435 	*kup = 0;
1436 #ifdef INVARIANTS
1437 	if (use_weird_array) {
1438 		KKASSERT(sizeof(weirdary) <= size);
1439 		bcopy(weirdary, ptr, sizeof(weirdary));
1440 	}
1441 #endif
1442 	/*
1443 	 * NOTE: For oversized allocations we do not record the
1444 	 *	     originating cpu.  It gets freed on the cpu calling
1445 	 *	     kfree().  The statistics are in aggregate.
1446 	 *
1447 	 * note: XXX we have still inherited the interrupts-can't-block
1448 	 * assumption.  An interrupt thread does not bump
1449 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1450 	 * primarily until we can fix softupdate's assumptions about free().
1451 	 */
1452 	crit_enter();
1453 	--type->ks_use[gd->gd_cpuid].inuse;
1454 	type->ks_use[gd->gd_cpuid].memuse -= size;
1455 	if (mycpu->gd_intr_nesting_level ||
1456 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
1457 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1458 	    z = (SLZone *)ptr;
1459 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1460 	    z->z_ChunkSize = size;
1461 
1462 	    TAILQ_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry);
1463 	    crit_exit();
1464 	} else {
1465 	    crit_exit();
1466 	    logmemory(free_ovsz, ptr, type, size, 0);
1467 	    kmem_slab_free(ptr, size);	/* may block */
1468 	}
1469 	logmemory_quick(free_end);
1470 	return;
1471     }
1472 
1473     /*
1474      * Zone case.  Figure out the zone based on the fact that it is
1475      * ZoneSize aligned.
1476      */
1477     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1478     kup = btokup(z);
1479     KKASSERT(*kup < 0);
1480     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1481 
1482     /*
1483      * If we do not own the zone then use atomic ops to free to the
1484      * remote cpu linked list and notify the target zone using a
1485      * passive message.
1486      *
1487      * The target zone cannot be deallocated while we own a chunk of it,
1488      * so the zone header's storage is stable until the very moment
1489      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1490      *
1491      * (no critical section needed)
1492      */
1493     if (z->z_CpuGd != gd) {
1494 	/*
1495 	 * Making these adjustments now allow us to avoid passing (type)
1496 	 * to the remote cpu.  Note that inuse/memuse is being
1497 	 * adjusted on OUR cpu, not the zone cpu, but it should all still
1498 	 * sum up properly and cancel out.
1499 	 */
1500 	crit_enter();
1501 	--type->ks_use[gd->gd_cpuid].inuse;
1502 	type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1503 	crit_exit();
1504 
1505 	/*
1506 	 * WARNING! This code competes with other cpus.  Once we
1507 	 *	    successfully link the chunk to RChunks the remote
1508 	 *	    cpu can rip z's storage out from under us.
1509 	 *
1510 	 *	    Bumping RCount prevents z's storage from getting
1511 	 *	    ripped out.
1512 	 */
1513 	rsignal = z->z_RSignal;
1514 	cpu_lfence();
1515 	if (rsignal)
1516 		atomic_add_int(&z->z_RCount, 1);
1517 
1518 	chunk = ptr;
1519 	for (;;) {
1520 	    bchunk = z->z_RChunks;
1521 	    cpu_ccfence();
1522 	    chunk->c_Next = bchunk;
1523 	    cpu_sfence();
1524 
1525 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1526 		break;
1527 	}
1528 
1529 	/*
1530 	 * We have to signal the remote cpu if our actions will cause
1531 	 * the remote zone to be placed back on ZoneAry so it can
1532 	 * move the zone back on.
1533 	 *
1534 	 * We only need to deal with NULL->non-NULL RChunk transitions
1535 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1536 	 * before adding our chunk to RChunks.  This should result in
1537 	 * virtually no IPI traffic.
1538 	 *
1539 	 * We can use a passive IPI to reduce overhead even further.
1540 	 */
1541 	if (bchunk == NULL && rsignal) {
1542 	    logmemory(free_request, ptr, type,
1543 		      (unsigned long)z->z_ChunkSize, 0);
1544 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1545 	    /* z can get ripped out from under us from this point on */
1546 	} else if (rsignal) {
1547 	    atomic_subtract_int(&z->z_RCount, 1);
1548 	    /* z can get ripped out from under us from this point on */
1549 	}
1550 	logmemory_quick(free_end);
1551 	return;
1552     }
1553 
1554     /*
1555      * kfree locally
1556      */
1557     logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1558 
1559     crit_enter();
1560     chunk = ptr;
1561     chunk_mark_free(z, chunk);
1562 
1563     /*
1564      * Put weird data into the memory to detect modifications after freeing,
1565      * illegal pointer use after freeing (we should fault on the odd address),
1566      * and so forth.  XXX needs more work, see the old malloc code.
1567      */
1568 #ifdef INVARIANTS
1569     if (use_weird_array) {
1570 	    if (z->z_ChunkSize < sizeof(weirdary))
1571 		bcopy(weirdary, chunk, z->z_ChunkSize);
1572 	    else
1573 		bcopy(weirdary, chunk, sizeof(weirdary));
1574     }
1575 #endif
1576 
1577     /*
1578      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1579      * to the front of the linked list so it is more likely to be
1580      * reallocated, since it is already in our L1 cache.
1581      */
1582 #ifdef INVARIANTS
1583     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1584 	panic("BADFREE %p", chunk);
1585 #endif
1586     chunk->c_Next = z->z_LChunks;
1587     z->z_LChunks = chunk;
1588     if (chunk->c_Next == NULL)
1589 	z->z_LChunksp = &chunk->c_Next;
1590 
1591 #ifdef INVARIANTS
1592     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1593 	panic("BADFREE2");
1594 #endif
1595 
1596     /*
1597      * Bump the number of free chunks.  If it becomes non-zero the zone
1598      * must be added back onto the appropriate list.  A fully allocated
1599      * zone that sees its first free is considered 'mature' and is placed
1600      * at the head, giving the system time to potentially free the remaining
1601      * entries even while other allocations are going on and making the zone
1602      * freeable.
1603      */
1604     if (z->z_NFree++ == 0)
1605 	    TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1606 
1607     --type->ks_use[gd->gd_cpuid].inuse;
1608     type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1609 
1610     check_zone_free(slgd, z);
1611     logmemory_quick(free_end);
1612     crit_exit();
1613 }
1614 
1615 /*
1616  * Cleanup slabs which are hanging around due to RChunks or which are wholely
1617  * free and can be moved to the free list if not moved by other means.
1618  *
1619  * Called once every 10 seconds on all cpus.
1620  */
1621 void
1622 slab_cleanup(void)
1623 {
1624     SLGlobalData *slgd = &mycpu->gd_slab;
1625     SLZone *z;
1626     int i;
1627 
1628     crit_enter();
1629     for (i = 0; i < NZONES; ++i) {
1630 	if ((z = TAILQ_FIRST(&slgd->ZoneAry[i])) == NULL)
1631 		continue;
1632 
1633 	/*
1634 	 * Scan zones.
1635 	 */
1636 	while (z) {
1637 	    /*
1638 	     * Shift all RChunks to the end of the LChunks list.  This is
1639 	     * an O(1) operation.
1640 	     *
1641 	     * Then free the zone if possible.
1642 	     */
1643 	    clean_zone_rchunks(z);
1644 	    z = check_zone_free(slgd, z);
1645 	}
1646     }
1647     crit_exit();
1648 }
1649 
1650 #if defined(INVARIANTS)
1651 
1652 /*
1653  * Helper routines for sanity checks
1654  */
1655 static void
1656 chunk_mark_allocated(SLZone *z, void *chunk)
1657 {
1658     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1659     uint32_t *bitptr;
1660 
1661     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1662     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1663 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1664     bitptr = &z->z_Bitmap[bitdex >> 5];
1665     bitdex &= 31;
1666     KASSERT((*bitptr & (1 << bitdex)) == 0,
1667 	    ("memory chunk %p is already allocated!", chunk));
1668     *bitptr |= 1 << bitdex;
1669 }
1670 
1671 static void
1672 chunk_mark_free(SLZone *z, void *chunk)
1673 {
1674     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1675     uint32_t *bitptr;
1676 
1677     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1678     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1679 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1680     bitptr = &z->z_Bitmap[bitdex >> 5];
1681     bitdex &= 31;
1682     KASSERT((*bitptr & (1 << bitdex)) != 0,
1683 	    ("memory chunk %p is already free!", chunk));
1684     *bitptr &= ~(1 << bitdex);
1685 }
1686 
1687 #endif
1688 
1689 /*
1690  * kmem_slab_alloc()
1691  *
1692  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1693  *	specified alignment.  M_* flags are expected in the flags field.
1694  *
1695  *	Alignment must be a multiple of PAGE_SIZE.
1696  *
1697  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1698  *	but when we move zalloc() over to use this function as its backend
1699  *	we will have to switch to kreserve/krelease and call reserve(0)
1700  *	after the new space is made available.
1701  *
1702  *	Interrupt code which has preempted other code is not allowed to
1703  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1704  *	non-preemptively or blocks and then runs non-preemptively, then
1705  *	it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
1706  */
1707 void *
1708 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1709 {
1710     vm_size_t i;
1711     vm_offset_t addr;
1712     int count, vmflags, base_vmflags;
1713     vm_page_t mbase = NULL;
1714     vm_page_t m;
1715     thread_t td;
1716 
1717     size = round_page(size);
1718     addr = vm_map_min(kernel_map);
1719 
1720     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1721     crit_enter();
1722     vm_map_lock(kernel_map);
1723     if (vm_map_findspace(kernel_map, addr, size, align, 0, &addr)) {
1724 	vm_map_unlock(kernel_map);
1725 	if ((flags & M_NULLOK) == 0)
1726 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1727 	vm_map_entry_release(count);
1728 	crit_exit();
1729 	return(NULL);
1730     }
1731 
1732     /*
1733      * kernel_object maps 1:1 to kernel_map.
1734      */
1735     vm_object_hold(kernel_object);
1736     vm_object_reference_locked(kernel_object);
1737     vm_map_insert(kernel_map, &count,
1738 		  kernel_object, NULL,
1739 		  addr, NULL,
1740 		  addr, addr + size,
1741 		  VM_MAPTYPE_NORMAL,
1742 		  VM_SUBSYS_KMALLOC,
1743 		  VM_PROT_ALL, VM_PROT_ALL, 0);
1744     vm_object_drop(kernel_object);
1745     vm_map_set_wired_quick(kernel_map, addr, size, &count);
1746     vm_map_unlock(kernel_map);
1747 
1748     td = curthread;
1749 
1750     base_vmflags = 0;
1751     if (flags & M_ZERO)
1752         base_vmflags |= VM_ALLOC_ZERO;
1753     if (flags & M_USE_RESERVE)
1754 	base_vmflags |= VM_ALLOC_SYSTEM;
1755     if (flags & M_USE_INTERRUPT_RESERVE)
1756         base_vmflags |= VM_ALLOC_INTERRUPT;
1757     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1758 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1759 	      flags, ((int **)&size)[-1]);
1760     }
1761 
1762     /*
1763      * Allocate the pages.  Do not map them yet.  VM_ALLOC_NORMAL can only
1764      * be set if we are not preempting.
1765      *
1766      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1767      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1768      * implied in this case), though I'm not sure if we really need to
1769      * do that.
1770      */
1771     vmflags = base_vmflags;
1772     if (flags & M_WAITOK) {
1773 	if (td->td_preempted)
1774 	    vmflags |= VM_ALLOC_SYSTEM;
1775 	else
1776 	    vmflags |= VM_ALLOC_NORMAL;
1777     }
1778 
1779     vm_object_hold(kernel_object);
1780     for (i = 0; i < size; i += PAGE_SIZE) {
1781 	m = vm_page_alloc(kernel_object, OFF_TO_IDX(addr + i), vmflags);
1782 	if (i == 0)
1783 		mbase = m;
1784 
1785 	/*
1786 	 * If the allocation failed we either return NULL or we retry.
1787 	 *
1788 	 * If M_WAITOK is specified we wait for more memory and retry.
1789 	 * If M_WAITOK is specified from a preemption we yield instead of
1790 	 * wait.  Livelock will not occur because the interrupt thread
1791 	 * will not be preempting anyone the second time around after the
1792 	 * yield.
1793 	 */
1794 	if (m == NULL) {
1795 	    if (flags & M_WAITOK) {
1796 		if (td->td_preempted) {
1797 		    lwkt_switch();
1798 		} else {
1799 		    vm_wait(0);
1800 		}
1801 		i -= PAGE_SIZE;	/* retry */
1802 		continue;
1803 	    }
1804 	    break;
1805 	}
1806     }
1807 
1808     /*
1809      * Check and deal with an allocation failure
1810      */
1811     if (i != size) {
1812 	while (i != 0) {
1813 	    i -= PAGE_SIZE;
1814 	    m = vm_page_lookup(kernel_object, OFF_TO_IDX(addr + i));
1815 	    /* page should already be busy */
1816 	    vm_page_free(m);
1817 	}
1818 	vm_map_lock(kernel_map);
1819 	vm_map_delete(kernel_map, addr, addr + size, &count);
1820 	vm_map_unlock(kernel_map);
1821 	vm_object_drop(kernel_object);
1822 
1823 	vm_map_entry_release(count);
1824 	crit_exit();
1825 	return(NULL);
1826     }
1827 
1828     /*
1829      * Success!
1830      *
1831      * NOTE: The VM pages are still busied.  mbase points to the first one
1832      *	     but we have to iterate via vm_page_next()
1833      */
1834     vm_object_drop(kernel_object);
1835     crit_exit();
1836 
1837     /*
1838      * Enter the pages into the pmap and deal with M_ZERO.
1839      */
1840     m = mbase;
1841     i = 0;
1842 
1843     while (i < size) {
1844 	/*
1845 	 * page should already be busy
1846 	 */
1847 	m->valid = VM_PAGE_BITS_ALL;
1848 	vm_page_wire(m);
1849 	pmap_enter(kernel_pmap, addr + i, m,
1850 		   VM_PROT_ALL | VM_PROT_NOSYNC, 1, NULL);
1851 	if (flags & M_ZERO)
1852 		pagezero((char *)addr + i);
1853 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1854 	vm_page_flag_set(m, PG_REFERENCED);
1855 	vm_page_wakeup(m);
1856 
1857 	i += PAGE_SIZE;
1858 	vm_object_hold(kernel_object);
1859 	m = vm_page_next(m);
1860 	vm_object_drop(kernel_object);
1861     }
1862     smp_invltlb();
1863     vm_map_entry_release(count);
1864     return((void *)addr);
1865 }
1866 
1867 /*
1868  * kmem_slab_free()
1869  */
1870 void
1871 kmem_slab_free(void *ptr, vm_size_t size)
1872 {
1873     crit_enter();
1874     vm_map_remove(kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1875     crit_exit();
1876 }
1877