xref: /dragonfly/sys/kern/kern_slaballoc.c (revision e8c03636)
1 /*
2  * (MPSAFE)
3  *
4  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
5  *
6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
7  *
8  * This code is derived from software contributed to The DragonFly Project
9  * by Matthew Dillon <dillon@backplane.com>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  * Alignment properties:
82  * - All power-of-2 sized allocations are power-of-2 aligned.
83  * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84  *   power-of-2 round up of 'size'.
85  * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86  *   above table 'Chunking' column).
87  *
88  *			API REQUIREMENTS AND SIDE EFFECTS
89  *
90  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91  *    have remained compatible with the following API requirements:
92  *
93  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
94  *    + ability to allocate arbitrarily large chunks of memory
95  */
96 
97 #include "opt_vm.h"
98 
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/kernel.h>
102 #include <sys/slaballoc.h>
103 #include <sys/mbuf.h>
104 #include <sys/vmmeter.h>
105 #include <sys/lock.h>
106 #include <sys/thread.h>
107 #include <sys/globaldata.h>
108 #include <sys/sysctl.h>
109 #include <sys/ktr.h>
110 
111 #include <vm/vm.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_extern.h>
115 #include <vm/vm_object.h>
116 #include <vm/pmap.h>
117 #include <vm/vm_map.h>
118 #include <vm/vm_page.h>
119 #include <vm/vm_pageout.h>
120 
121 #include <machine/cpu.h>
122 
123 #include <sys/thread2.h>
124 
125 #define btokup(z)	(&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
126 
127 #define MEMORY_STRING	"ptr=%p type=%p size=%lu flags=%04x"
128 #define MEMORY_ARGS	void *ptr, void *type, unsigned long size, int flags
129 
130 #if !defined(KTR_MEMORY)
131 #define KTR_MEMORY	KTR_ALL
132 #endif
133 KTR_INFO_MASTER(memory);
134 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
135 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
136 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
137 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
138 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
139 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
140 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
141 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
142 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
143 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
144 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
145 
146 #define logmemory(name, ptr, type, size, flags)				\
147 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
148 #define logmemory_quick(name)						\
149 	KTR_LOG(memory_ ## name)
150 
151 /*
152  * Fixed globals (not per-cpu)
153  */
154 static int ZoneSize;
155 static int ZoneLimit;
156 static int ZonePageCount;
157 static uintptr_t ZoneMask;
158 static int ZoneBigAlloc;		/* in KB */
159 static int ZoneGenAlloc;		/* in KB */
160 struct malloc_type *kmemstatistics;	/* exported to vmstat */
161 static int32_t weirdary[16];
162 
163 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
164 static void kmem_slab_free(void *ptr, vm_size_t bytes);
165 
166 #if defined(INVARIANTS)
167 static void chunk_mark_allocated(SLZone *z, void *chunk);
168 static void chunk_mark_free(SLZone *z, void *chunk);
169 #else
170 #define chunk_mark_allocated(z, chunk)
171 #define chunk_mark_free(z, chunk)
172 #endif
173 
174 /*
175  * Misc constants.  Note that allocations that are exact multiples of
176  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
177  */
178 #define ZONE_RELS_THRESH	32		/* threshold number of zones */
179 
180 /*
181  * The WEIRD_ADDR is used as known text to copy into free objects to
182  * try to create deterministic failure cases if the data is accessed after
183  * free.
184  */
185 #define WEIRD_ADDR      0xdeadc0de
186 #define MAX_COPY        sizeof(weirdary)
187 #define ZERO_LENGTH_PTR	((void *)-8)
188 
189 /*
190  * Misc global malloc buckets
191  */
192 
193 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
194 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
195 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
196 
197 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
198 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
199 
200 /*
201  * Initialize the slab memory allocator.  We have to choose a zone size based
202  * on available physical memory.  We choose a zone side which is approximately
203  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
204  * 128K.  The zone size is limited to the bounds set in slaballoc.h
205  * (typically 32K min, 128K max).
206  */
207 static void kmeminit(void *dummy);
208 
209 char *ZeroPage;
210 
211 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
212 
213 #ifdef INVARIANTS
214 /*
215  * If enabled any memory allocated without M_ZERO is initialized to -1.
216  */
217 static int  use_malloc_pattern;
218 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
219     &use_malloc_pattern, 0,
220     "Initialize memory to -1 if M_ZERO not specified");
221 #endif
222 
223 static int ZoneRelsThresh = ZONE_RELS_THRESH;
224 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
225 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
226 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
227 static long SlabsAllocated;
228 static long SlabsFreed;
229 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD, &SlabsAllocated, 0, "");
230 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD, &SlabsFreed, 0, "");
231 
232 /*
233  * Returns the kernel memory size limit for the purposes of initializing
234  * various subsystem caches.  The smaller of available memory and the KVM
235  * memory space is returned.
236  *
237  * The size in megabytes is returned.
238  */
239 size_t
240 kmem_lim_size(void)
241 {
242     size_t limsize;
243 
244     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
245     if (limsize > KvaSize)
246 	limsize = KvaSize;
247     return (limsize / (1024 * 1024));
248 }
249 
250 static void
251 kmeminit(void *dummy)
252 {
253     size_t limsize;
254     int usesize;
255     int i;
256 
257     limsize = kmem_lim_size();
258     usesize = (int)(limsize * 1024);	/* convert to KB */
259 
260     /*
261      * If the machine has a large KVM space and more than 8G of ram,
262      * double the zone release threshold to reduce SMP invalidations.
263      * If more than 16G of ram, do it again.
264      *
265      * The BIOS eats a little ram so add some slop.  We want 8G worth of
266      * memory sticks to trigger the first adjustment.
267      */
268     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
269 	    if (limsize >= 7 * 1024)
270 		    ZoneRelsThresh *= 2;
271 	    if (limsize >= 15 * 1024)
272 		    ZoneRelsThresh *= 2;
273     }
274 
275     /*
276      * Calculate the zone size.  This typically calculates to
277      * ZALLOC_MAX_ZONE_SIZE
278      */
279     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
280     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
281 	ZoneSize <<= 1;
282     ZoneLimit = ZoneSize / 4;
283     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
284 	ZoneLimit = ZALLOC_ZONE_LIMIT;
285     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
286     ZonePageCount = ZoneSize / PAGE_SIZE;
287 
288     for (i = 0; i < NELEM(weirdary); ++i)
289 	weirdary[i] = WEIRD_ADDR;
290 
291     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
292 
293     if (bootverbose)
294 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
295 }
296 
297 /*
298  * Initialize a malloc type tracking structure.
299  */
300 void
301 malloc_init(void *data)
302 {
303     struct malloc_type *type = data;
304     size_t limsize;
305 
306     if (type->ks_magic != M_MAGIC)
307 	panic("malloc type lacks magic");
308 
309     if (type->ks_limit != 0)
310 	return;
311 
312     if (vmstats.v_page_count == 0)
313 	panic("malloc_init not allowed before vm init");
314 
315     limsize = kmem_lim_size() * (1024 * 1024);
316     type->ks_limit = limsize / 10;
317 
318     type->ks_next = kmemstatistics;
319     kmemstatistics = type;
320 }
321 
322 void
323 malloc_uninit(void *data)
324 {
325     struct malloc_type *type = data;
326     struct malloc_type *t;
327 #ifdef INVARIANTS
328     int i;
329     long ttl;
330 #endif
331 
332     if (type->ks_magic != M_MAGIC)
333 	panic("malloc type lacks magic");
334 
335     if (vmstats.v_page_count == 0)
336 	panic("malloc_uninit not allowed before vm init");
337 
338     if (type->ks_limit == 0)
339 	panic("malloc_uninit on uninitialized type");
340 
341     /* Make sure that all pending kfree()s are finished. */
342     lwkt_synchronize_ipiqs("muninit");
343 
344 #ifdef INVARIANTS
345     /*
346      * memuse is only correct in aggregation.  Due to memory being allocated
347      * on one cpu and freed on another individual array entries may be
348      * negative or positive (canceling each other out).
349      */
350     for (i = ttl = 0; i < ncpus; ++i)
351 	ttl += type->ks_memuse[i];
352     if (ttl) {
353 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
354 	    ttl, type->ks_shortdesc, i);
355     }
356 #endif
357     if (type == kmemstatistics) {
358 	kmemstatistics = type->ks_next;
359     } else {
360 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
361 	    if (t->ks_next == type) {
362 		t->ks_next = type->ks_next;
363 		break;
364 	    }
365 	}
366     }
367     type->ks_next = NULL;
368     type->ks_limit = 0;
369 }
370 
371 /*
372  * Increase the kmalloc pool limit for the specified pool.  No changes
373  * are the made if the pool would shrink.
374  */
375 void
376 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
377 {
378     if (type->ks_limit == 0)
379 	malloc_init(type);
380     if (bytes == 0)
381 	bytes = KvaSize;
382     if (type->ks_limit < bytes)
383 	type->ks_limit = bytes;
384 }
385 
386 /*
387  * Dynamically create a malloc pool.  This function is a NOP if *typep is
388  * already non-NULL.
389  */
390 void
391 kmalloc_create(struct malloc_type **typep, const char *descr)
392 {
393 	struct malloc_type *type;
394 
395 	if (*typep == NULL) {
396 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
397 		type->ks_magic = M_MAGIC;
398 		type->ks_shortdesc = descr;
399 		malloc_init(type);
400 		*typep = type;
401 	}
402 }
403 
404 /*
405  * Destroy a dynamically created malloc pool.  This function is a NOP if
406  * the pool has already been destroyed.
407  */
408 void
409 kmalloc_destroy(struct malloc_type **typep)
410 {
411 	if (*typep != NULL) {
412 		malloc_uninit(*typep);
413 		kfree(*typep, M_TEMP);
414 		*typep = NULL;
415 	}
416 }
417 
418 /*
419  * Calculate the zone index for the allocation request size and set the
420  * allocation request size to that particular zone's chunk size.
421  */
422 static __inline int
423 zoneindex(unsigned long *bytes, unsigned long *align)
424 {
425     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
426     if (n < 128) {
427 	*bytes = n = (n + 7) & ~7;
428 	*align = 8;
429 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
430     }
431     if (n < 256) {
432 	*bytes = n = (n + 15) & ~15;
433 	*align = 16;
434 	return(n / 16 + 7);
435     }
436     if (n < 8192) {
437 	if (n < 512) {
438 	    *bytes = n = (n + 31) & ~31;
439 	    *align = 32;
440 	    return(n / 32 + 15);
441 	}
442 	if (n < 1024) {
443 	    *bytes = n = (n + 63) & ~63;
444 	    *align = 64;
445 	    return(n / 64 + 23);
446 	}
447 	if (n < 2048) {
448 	    *bytes = n = (n + 127) & ~127;
449 	    *align = 128;
450 	    return(n / 128 + 31);
451 	}
452 	if (n < 4096) {
453 	    *bytes = n = (n + 255) & ~255;
454 	    *align = 256;
455 	    return(n / 256 + 39);
456 	}
457 	*bytes = n = (n + 511) & ~511;
458 	*align = 512;
459 	return(n / 512 + 47);
460     }
461 #if ZALLOC_ZONE_LIMIT > 8192
462     if (n < 16384) {
463 	*bytes = n = (n + 1023) & ~1023;
464 	*align = 1024;
465 	return(n / 1024 + 55);
466     }
467 #endif
468 #if ZALLOC_ZONE_LIMIT > 16384
469     if (n < 32768) {
470 	*bytes = n = (n + 2047) & ~2047;
471 	*align = 2048;
472 	return(n / 2048 + 63);
473     }
474 #endif
475     panic("Unexpected byte count %d", n);
476     return(0);
477 }
478 
479 #ifdef SLAB_DEBUG
480 /*
481  * Used to debug memory corruption issues.  Record up to (typically 32)
482  * allocation sources for this zone (for a particular chunk size).
483  */
484 
485 static void
486 slab_record_source(SLZone *z, const char *file, int line)
487 {
488     int i;
489     int b = line & (SLAB_DEBUG_ENTRIES - 1);
490 
491     i = b;
492     do {
493 	if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
494 		return;
495 	if (z->z_Sources[i].file == NULL)
496 		break;
497 	i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
498     } while (i != b);
499     z->z_Sources[i].file = file;
500     z->z_Sources[i].line = line;
501 }
502 
503 #endif
504 
505 static __inline unsigned long
506 powerof2_size(unsigned long size)
507 {
508 	int i;
509 
510 	if (size == 0 || powerof2(size))
511 		return size;
512 
513 	i = flsl(size);
514 	return (1UL << i);
515 }
516 
517 /*
518  * kmalloc()	(SLAB ALLOCATOR)
519  *
520  *	Allocate memory via the slab allocator.  If the request is too large,
521  *	or if it page-aligned beyond a certain size, we fall back to the
522  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
523  *	&SlabMisc if you don't care.
524  *
525  *	M_RNOWAIT	- don't block.
526  *	M_NULLOK	- return NULL instead of blocking.
527  *	M_ZERO		- zero the returned memory.
528  *	M_USE_RESERVE	- allow greater drawdown of the free list
529  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
530  *	M_POWEROF2	- roundup size to the nearest power of 2
531  *
532  * MPSAFE
533  */
534 
535 #ifdef SLAB_DEBUG
536 void *
537 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
538 	      const char *file, int line)
539 #else
540 void *
541 kmalloc(unsigned long size, struct malloc_type *type, int flags)
542 #endif
543 {
544     SLZone *z;
545     SLChunk *chunk;
546     SLChunk *bchunk;
547     SLGlobalData *slgd;
548     struct globaldata *gd;
549     unsigned long align;
550     int zi;
551 #ifdef INVARIANTS
552     int i;
553 #endif
554 
555     logmemory_quick(malloc_beg);
556     gd = mycpu;
557     slgd = &gd->gd_slab;
558 
559     /*
560      * XXX silly to have this in the critical path.
561      */
562     if (type->ks_limit == 0) {
563 	crit_enter();
564 	if (type->ks_limit == 0)
565 	    malloc_init(type);
566 	crit_exit();
567     }
568     ++type->ks_calls;
569 
570     if (flags & M_POWEROF2)
571 	size = powerof2_size(size);
572 
573     /*
574      * Handle the case where the limit is reached.  Panic if we can't return
575      * NULL.  The original malloc code looped, but this tended to
576      * simply deadlock the computer.
577      *
578      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
579      * to determine if a more complete limit check should be done.  The
580      * actual memory use is tracked via ks_memuse[cpu].
581      */
582     while (type->ks_loosememuse >= type->ks_limit) {
583 	int i;
584 	long ttl;
585 
586 	for (i = ttl = 0; i < ncpus; ++i)
587 	    ttl += type->ks_memuse[i];
588 	type->ks_loosememuse = ttl;	/* not MP synchronized */
589 	if ((ssize_t)ttl < 0)		/* deal with occassional race */
590 		ttl = 0;
591 	if (ttl >= type->ks_limit) {
592 	    if (flags & M_NULLOK) {
593 		logmemory(malloc_end, NULL, type, size, flags);
594 		return(NULL);
595 	    }
596 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
597 	}
598     }
599 
600     /*
601      * Handle the degenerate size == 0 case.  Yes, this does happen.
602      * Return a special pointer.  This is to maintain compatibility with
603      * the original malloc implementation.  Certain devices, such as the
604      * adaptec driver, not only allocate 0 bytes, they check for NULL and
605      * also realloc() later on.  Joy.
606      */
607     if (size == 0) {
608 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
609 	return(ZERO_LENGTH_PTR);
610     }
611 
612     /*
613      * Handle hysteresis from prior frees here in malloc().  We cannot
614      * safely manipulate the kernel_map in free() due to free() possibly
615      * being called via an IPI message or from sensitive interrupt code.
616      *
617      * NOTE: ku_pagecnt must be cleared before we free the slab or we
618      *	     might race another cpu allocating the kva and setting
619      *	     ku_pagecnt.
620      */
621     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
622 	crit_enter();
623 	if (slgd->NFreeZones > ZoneRelsThresh) {	/* crit sect race */
624 	    int *kup;
625 
626 	    z = slgd->FreeZones;
627 	    slgd->FreeZones = z->z_Next;
628 	    --slgd->NFreeZones;
629 	    kup = btokup(z);
630 	    *kup = 0;
631 	    kmem_slab_free(z, ZoneSize);	/* may block */
632 	    atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024);
633 	}
634 	crit_exit();
635     }
636 
637     /*
638      * XXX handle oversized frees that were queued from kfree().
639      */
640     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
641 	crit_enter();
642 	if ((z = slgd->FreeOvZones) != NULL) {
643 	    vm_size_t tsize;
644 
645 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
646 	    slgd->FreeOvZones = z->z_Next;
647 	    tsize = z->z_ChunkSize;
648 	    kmem_slab_free(z, tsize);	/* may block */
649 	    atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
650 	}
651 	crit_exit();
652     }
653 
654     /*
655      * Handle large allocations directly.  There should not be very many of
656      * these so performance is not a big issue.
657      *
658      * The backend allocator is pretty nasty on a SMP system.   Use the
659      * slab allocator for one and two page-sized chunks even though we lose
660      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
661      */
662     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
663 	int *kup;
664 
665 	size = round_page(size);
666 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
667 	if (chunk == NULL) {
668 	    logmemory(malloc_end, NULL, type, size, flags);
669 	    return(NULL);
670 	}
671 	atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
672 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
673 	flags |= M_PASSIVE_ZERO;
674 	kup = btokup(chunk);
675 	*kup = size / PAGE_SIZE;
676 	crit_enter();
677 	goto done;
678     }
679 
680     /*
681      * Attempt to allocate out of an existing zone.  First try the free list,
682      * then allocate out of unallocated space.  If we find a good zone move
683      * it to the head of the list so later allocations find it quickly
684      * (we might have thousands of zones in the list).
685      *
686      * Note: zoneindex() will panic of size is too large.
687      */
688     zi = zoneindex(&size, &align);
689     KKASSERT(zi < NZONES);
690     crit_enter();
691 
692     if ((z = slgd->ZoneAry[zi]) != NULL) {
693 	/*
694 	 * Locate a chunk - we have to have at least one.  If this is the
695 	 * last chunk go ahead and do the work to retrieve chunks freed
696 	 * from remote cpus, and if the zone is still empty move it off
697 	 * the ZoneAry.
698 	 */
699 	if (--z->z_NFree <= 0) {
700 	    KKASSERT(z->z_NFree == 0);
701 
702 	    /*
703 	     * WARNING! This code competes with other cpus.  It is ok
704 	     * for us to not drain RChunks here but we might as well, and
705 	     * it is ok if more accumulate after we're done.
706 	     *
707 	     * Set RSignal before pulling rchunks off, indicating that we
708 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
709 	     * read RSignal before putting rchunks on thus interlocking
710 	     * their IPI signaling.
711 	     */
712 	    if (z->z_RChunks == NULL)
713 		atomic_swap_int(&z->z_RSignal, 1);
714 
715 	    while ((bchunk = z->z_RChunks) != NULL) {
716 		cpu_ccfence();
717 		if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
718 		    *z->z_LChunksp = bchunk;
719 		    while (bchunk) {
720 			chunk_mark_free(z, bchunk);
721 			z->z_LChunksp = &bchunk->c_Next;
722 			bchunk = bchunk->c_Next;
723 			++z->z_NFree;
724 		    }
725 		    break;
726 		}
727 	    }
728 	    /*
729 	     * Remove from the zone list if no free chunks remain.
730 	     * Clear RSignal
731 	     */
732 	    if (z->z_NFree == 0) {
733 		slgd->ZoneAry[zi] = z->z_Next;
734 		z->z_Next = NULL;
735 	    } else {
736 		z->z_RSignal = 0;
737 	    }
738 	}
739 
740 	/*
741 	 * Fast path, we have chunks available in z_LChunks.
742 	 */
743 	chunk = z->z_LChunks;
744 	if (chunk) {
745 		chunk_mark_allocated(z, chunk);
746 		z->z_LChunks = chunk->c_Next;
747 		if (z->z_LChunks == NULL)
748 			z->z_LChunksp = &z->z_LChunks;
749 #ifdef SLAB_DEBUG
750 		slab_record_source(z, file, line);
751 #endif
752 		goto done;
753 	}
754 
755 	/*
756 	 * No chunks are available in LChunks, the free chunk MUST be
757 	 * in the never-before-used memory area, controlled by UIndex.
758 	 *
759 	 * The consequences are very serious if our zone got corrupted so
760 	 * we use an explicit panic rather than a KASSERT.
761 	 */
762 	if (z->z_UIndex + 1 != z->z_NMax)
763 	    ++z->z_UIndex;
764 	else
765 	    z->z_UIndex = 0;
766 
767 	if (z->z_UIndex == z->z_UEndIndex)
768 	    panic("slaballoc: corrupted zone");
769 
770 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
771 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
772 	    flags &= ~M_ZERO;
773 	    flags |= M_PASSIVE_ZERO;
774 	}
775 	chunk_mark_allocated(z, chunk);
776 #ifdef SLAB_DEBUG
777 	slab_record_source(z, file, line);
778 #endif
779 	goto done;
780     }
781 
782     /*
783      * If all zones are exhausted we need to allocate a new zone for this
784      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
785      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
786      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
787      * we do not pre-zero it because we do not want to mess up the L1 cache.
788      *
789      * At least one subsystem, the tty code (see CROUND) expects power-of-2
790      * allocations to be power-of-2 aligned.  We maintain compatibility by
791      * adjusting the base offset below.
792      */
793     {
794 	int off;
795 	int *kup;
796 
797 	if ((z = slgd->FreeZones) != NULL) {
798 	    slgd->FreeZones = z->z_Next;
799 	    --slgd->NFreeZones;
800 	    bzero(z, sizeof(SLZone));
801 	    z->z_Flags |= SLZF_UNOTZEROD;
802 	} else {
803 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
804 	    if (z == NULL)
805 		goto fail;
806 	    atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024);
807 	}
808 
809 	/*
810 	 * How big is the base structure?
811 	 */
812 #if defined(INVARIANTS)
813 	/*
814 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
815 	 * complicated so don't make an exact calculation.
816 	 */
817 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
818 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
819 #else
820 	off = sizeof(SLZone);
821 #endif
822 
823 	/*
824 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
825 	 * Otherwise properly align the data according to the chunk size.
826 	 */
827 	if (powerof2(size))
828 	    align = size;
829 	off = (off + align - 1) & ~(align - 1);
830 
831 	z->z_Magic = ZALLOC_SLAB_MAGIC;
832 	z->z_ZoneIndex = zi;
833 	z->z_NMax = (ZoneSize - off) / size;
834 	z->z_NFree = z->z_NMax - 1;
835 	z->z_BasePtr = (char *)z + off;
836 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
837 	z->z_ChunkSize = size;
838 	z->z_CpuGd = gd;
839 	z->z_Cpu = gd->gd_cpuid;
840 	z->z_LChunksp = &z->z_LChunks;
841 #ifdef SLAB_DEBUG
842 	bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
843 	bzero(z->z_Sources, sizeof(z->z_Sources));
844 #endif
845 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
846 	z->z_Next = slgd->ZoneAry[zi];
847 	slgd->ZoneAry[zi] = z;
848 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
849 	    flags &= ~M_ZERO;	/* already zero'd */
850 	    flags |= M_PASSIVE_ZERO;
851 	}
852 	kup = btokup(z);
853 	*kup = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
854 	chunk_mark_allocated(z, chunk);
855 #ifdef SLAB_DEBUG
856 	slab_record_source(z, file, line);
857 #endif
858 
859 	/*
860 	 * Slide the base index for initial allocations out of the next
861 	 * zone we create so we do not over-weight the lower part of the
862 	 * cpu memory caches.
863 	 */
864 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
865 				& (ZALLOC_MAX_ZONE_SIZE - 1);
866     }
867 
868 done:
869     ++type->ks_inuse[gd->gd_cpuid];
870     type->ks_memuse[gd->gd_cpuid] += size;
871     type->ks_loosememuse += size;	/* not MP synchronized */
872     crit_exit();
873 
874     if (flags & M_ZERO)
875 	bzero(chunk, size);
876 #ifdef INVARIANTS
877     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
878 	if (use_malloc_pattern) {
879 	    for (i = 0; i < size; i += sizeof(int)) {
880 		*(int *)((char *)chunk + i) = -1;
881 	    }
882 	}
883 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
884     }
885 #endif
886     logmemory(malloc_end, chunk, type, size, flags);
887     return(chunk);
888 fail:
889     crit_exit();
890     logmemory(malloc_end, NULL, type, size, flags);
891     return(NULL);
892 }
893 
894 /*
895  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
896  *
897  * Generally speaking this routine is not called very often and we do
898  * not attempt to optimize it beyond reusing the same pointer if the
899  * new size fits within the chunking of the old pointer's zone.
900  */
901 #ifdef SLAB_DEBUG
902 void *
903 krealloc_debug(void *ptr, unsigned long size,
904 	       struct malloc_type *type, int flags,
905 	       const char *file, int line)
906 #else
907 void *
908 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
909 #endif
910 {
911     unsigned long osize;
912     unsigned long align;
913     SLZone *z;
914     void *nptr;
915     int *kup;
916 
917     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
918 
919     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
920 	return(kmalloc_debug(size, type, flags, file, line));
921     if (size == 0) {
922 	kfree(ptr, type);
923 	return(NULL);
924     }
925 
926     /*
927      * Handle oversized allocations.  XXX we really should require that a
928      * size be passed to free() instead of this nonsense.
929      */
930     kup = btokup(ptr);
931     if (*kup > 0) {
932 	osize = *kup << PAGE_SHIFT;
933 	if (osize == round_page(size))
934 	    return(ptr);
935 	if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
936 	    return(NULL);
937 	bcopy(ptr, nptr, min(size, osize));
938 	kfree(ptr, type);
939 	return(nptr);
940     }
941 
942     /*
943      * Get the original allocation's zone.  If the new request winds up
944      * using the same chunk size we do not have to do anything.
945      */
946     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
947     kup = btokup(z);
948     KKASSERT(*kup < 0);
949     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
950 
951     /*
952      * Allocate memory for the new request size.  Note that zoneindex has
953      * already adjusted the request size to the appropriate chunk size, which
954      * should optimize our bcopy().  Then copy and return the new pointer.
955      *
956      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
957      * necessary align the result.
958      *
959      * We can only zoneindex (to align size to the chunk size) if the new
960      * size is not too large.
961      */
962     if (size < ZoneLimit) {
963 	zoneindex(&size, &align);
964 	if (z->z_ChunkSize == size)
965 	    return(ptr);
966     }
967     if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
968 	return(NULL);
969     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
970     kfree(ptr, type);
971     return(nptr);
972 }
973 
974 /*
975  * Return the kmalloc limit for this type, in bytes.
976  */
977 long
978 kmalloc_limit(struct malloc_type *type)
979 {
980     if (type->ks_limit == 0) {
981 	crit_enter();
982 	if (type->ks_limit == 0)
983 	    malloc_init(type);
984 	crit_exit();
985     }
986     return(type->ks_limit);
987 }
988 
989 /*
990  * Allocate a copy of the specified string.
991  *
992  * (MP SAFE) (MAY BLOCK)
993  */
994 #ifdef SLAB_DEBUG
995 char *
996 kstrdup_debug(const char *str, struct malloc_type *type,
997 	      const char *file, int line)
998 #else
999 char *
1000 kstrdup(const char *str, struct malloc_type *type)
1001 #endif
1002 {
1003     int zlen;	/* length inclusive of terminating NUL */
1004     char *nstr;
1005 
1006     if (str == NULL)
1007 	return(NULL);
1008     zlen = strlen(str) + 1;
1009     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1010     bcopy(str, nstr, zlen);
1011     return(nstr);
1012 }
1013 
1014 /*
1015  * Notify our cpu that a remote cpu has freed some chunks in a zone that
1016  * we own.  RCount will be bumped so the memory should be good, but validate
1017  * that it really is.
1018  */
1019 static
1020 void
1021 kfree_remote(void *ptr)
1022 {
1023     SLGlobalData *slgd;
1024     SLChunk *bchunk;
1025     SLZone *z;
1026     int nfree;
1027     int *kup;
1028 
1029     slgd = &mycpu->gd_slab;
1030     z = ptr;
1031     kup = btokup(z);
1032     KKASSERT(*kup == -((int)mycpuid + 1));
1033     KKASSERT(z->z_RCount > 0);
1034     atomic_subtract_int(&z->z_RCount, 1);
1035 
1036     logmemory(free_rem_beg, z, NULL, 0L, 0);
1037     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1038     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
1039     nfree = z->z_NFree;
1040 
1041     /*
1042      * Indicate that we will no longer be off of the ZoneAry by
1043      * clearing RSignal.
1044      */
1045     if (z->z_RChunks)
1046 	z->z_RSignal = 0;
1047 
1048     /*
1049      * Atomically extract the bchunks list and then process it back
1050      * into the lchunks list.  We want to append our bchunks to the
1051      * lchunks list and not prepend since we likely do not have
1052      * cache mastership of the related data (not that it helps since
1053      * we are using c_Next).
1054      */
1055     while ((bchunk = z->z_RChunks) != NULL) {
1056 	cpu_ccfence();
1057 	if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
1058 	    *z->z_LChunksp = bchunk;
1059 	    while (bchunk) {
1060 		    chunk_mark_free(z, bchunk);
1061 		    z->z_LChunksp = &bchunk->c_Next;
1062 		    bchunk = bchunk->c_Next;
1063 		    ++z->z_NFree;
1064 	    }
1065 	    break;
1066 	}
1067     }
1068     if (z->z_NFree && nfree == 0) {
1069 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1070 	slgd->ZoneAry[z->z_ZoneIndex] = z;
1071     }
1072 
1073     /*
1074      * If the zone becomes totally free, and there are other zones we
1075      * can allocate from, move this zone to the FreeZones list.  Since
1076      * this code can be called from an IPI callback, do *NOT* try to mess
1077      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1078      *
1079      * Do not move the zone if there is an IPI inflight, otherwise MP
1080      * races can result in our free_remote code accessing a destroyed
1081      * zone.
1082      */
1083     if (z->z_NFree == z->z_NMax &&
1084 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1085 	z->z_RCount == 0
1086     ) {
1087 	SLZone **pz;
1088 	int *kup;
1089 
1090 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex];
1091 	     z != *pz;
1092 	     pz = &(*pz)->z_Next) {
1093 	    ;
1094 	}
1095 	*pz = z->z_Next;
1096 	z->z_Magic = -1;
1097 	z->z_Next = slgd->FreeZones;
1098 	slgd->FreeZones = z;
1099 	++slgd->NFreeZones;
1100 	kup = btokup(z);
1101 	*kup = 0;
1102     }
1103     logmemory(free_rem_end, z, bchunk, 0L, 0);
1104 }
1105 
1106 /*
1107  * free (SLAB ALLOCATOR)
1108  *
1109  * Free a memory block previously allocated by malloc.  Note that we do not
1110  * attempt to update ks_loosememuse as MP races could prevent us from
1111  * checking memory limits in malloc.
1112  *
1113  * MPSAFE
1114  */
1115 void
1116 kfree(void *ptr, struct malloc_type *type)
1117 {
1118     SLZone *z;
1119     SLChunk *chunk;
1120     SLGlobalData *slgd;
1121     struct globaldata *gd;
1122     int *kup;
1123     unsigned long size;
1124     SLChunk *bchunk;
1125     int rsignal;
1126 
1127     logmemory_quick(free_beg);
1128     gd = mycpu;
1129     slgd = &gd->gd_slab;
1130 
1131     if (ptr == NULL)
1132 	panic("trying to free NULL pointer");
1133 
1134     /*
1135      * Handle special 0-byte allocations
1136      */
1137     if (ptr == ZERO_LENGTH_PTR) {
1138 	logmemory(free_zero, ptr, type, -1UL, 0);
1139 	logmemory_quick(free_end);
1140 	return;
1141     }
1142 
1143     /*
1144      * Panic on bad malloc type
1145      */
1146     if (type->ks_magic != M_MAGIC)
1147 	panic("free: malloc type lacks magic");
1148 
1149     /*
1150      * Handle oversized allocations.  XXX we really should require that a
1151      * size be passed to free() instead of this nonsense.
1152      *
1153      * This code is never called via an ipi.
1154      */
1155     kup = btokup(ptr);
1156     if (*kup > 0) {
1157 	size = *kup << PAGE_SHIFT;
1158 	*kup = 0;
1159 #ifdef INVARIANTS
1160 	KKASSERT(sizeof(weirdary) <= size);
1161 	bcopy(weirdary, ptr, sizeof(weirdary));
1162 #endif
1163 	/*
1164 	 * NOTE: For oversized allocations we do not record the
1165 	 *	     originating cpu.  It gets freed on the cpu calling
1166 	 *	     kfree().  The statistics are in aggregate.
1167 	 *
1168 	 * note: XXX we have still inherited the interrupts-can't-block
1169 	 * assumption.  An interrupt thread does not bump
1170 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1171 	 * primarily until we can fix softupdate's assumptions about free().
1172 	 */
1173 	crit_enter();
1174 	--type->ks_inuse[gd->gd_cpuid];
1175 	type->ks_memuse[gd->gd_cpuid] -= size;
1176 	if (mycpu->gd_intr_nesting_level ||
1177 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1178 	{
1179 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1180 	    z = (SLZone *)ptr;
1181 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1182 	    z->z_Next = slgd->FreeOvZones;
1183 	    z->z_ChunkSize = size;
1184 	    slgd->FreeOvZones = z;
1185 	    crit_exit();
1186 	} else {
1187 	    crit_exit();
1188 	    logmemory(free_ovsz, ptr, type, size, 0);
1189 	    kmem_slab_free(ptr, size);	/* may block */
1190 	    atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1191 	}
1192 	logmemory_quick(free_end);
1193 	return;
1194     }
1195 
1196     /*
1197      * Zone case.  Figure out the zone based on the fact that it is
1198      * ZoneSize aligned.
1199      */
1200     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1201     kup = btokup(z);
1202     KKASSERT(*kup < 0);
1203     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1204 
1205     /*
1206      * If we do not own the zone then use atomic ops to free to the
1207      * remote cpu linked list and notify the target zone using a
1208      * passive message.
1209      *
1210      * The target zone cannot be deallocated while we own a chunk of it,
1211      * so the zone header's storage is stable until the very moment
1212      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1213      *
1214      * (no critical section needed)
1215      */
1216     if (z->z_CpuGd != gd) {
1217 	/*
1218 	 * Making these adjustments now allow us to avoid passing (type)
1219 	 * to the remote cpu.  Note that ks_inuse/ks_memuse is being
1220 	 * adjusted on OUR cpu, not the zone cpu, but it should all still
1221 	 * sum up properly and cancel out.
1222 	 */
1223 	crit_enter();
1224 	--type->ks_inuse[gd->gd_cpuid];
1225 	type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize;
1226 	crit_exit();
1227 
1228 	/*
1229 	 * WARNING! This code competes with other cpus.  Once we
1230 	 *	    successfully link the chunk to RChunks the remote
1231 	 *	    cpu can rip z's storage out from under us.
1232 	 *
1233 	 *	    Bumping RCount prevents z's storage from getting
1234 	 *	    ripped out.
1235 	 */
1236 	rsignal = z->z_RSignal;
1237 	cpu_lfence();
1238 	if (rsignal)
1239 		atomic_add_int(&z->z_RCount, 1);
1240 
1241 	chunk = ptr;
1242 	for (;;) {
1243 	    bchunk = z->z_RChunks;
1244 	    cpu_ccfence();
1245 	    chunk->c_Next = bchunk;
1246 	    cpu_sfence();
1247 
1248 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1249 		break;
1250 	}
1251 
1252 	/*
1253 	 * We have to signal the remote cpu if our actions will cause
1254 	 * the remote zone to be placed back on ZoneAry so it can
1255 	 * move the zone back on.
1256 	 *
1257 	 * We only need to deal with NULL->non-NULL RChunk transitions
1258 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1259 	 * before adding our chunk to RChunks.  This should result in
1260 	 * virtually no IPI traffic.
1261 	 *
1262 	 * We can use a passive IPI to reduce overhead even further.
1263 	 */
1264 	if (bchunk == NULL && rsignal) {
1265 		logmemory(free_request, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1266 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1267 	    /* z can get ripped out from under us from this point on */
1268 	} else if (rsignal) {
1269 	    atomic_subtract_int(&z->z_RCount, 1);
1270 	    /* z can get ripped out from under us from this point on */
1271 	}
1272 	logmemory_quick(free_end);
1273 	return;
1274     }
1275 
1276     /*
1277      * kfree locally
1278      */
1279     logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1280 
1281     crit_enter();
1282     chunk = ptr;
1283     chunk_mark_free(z, chunk);
1284 
1285     /*
1286      * Put weird data into the memory to detect modifications after freeing,
1287      * illegal pointer use after freeing (we should fault on the odd address),
1288      * and so forth.  XXX needs more work, see the old malloc code.
1289      */
1290 #ifdef INVARIANTS
1291     if (z->z_ChunkSize < sizeof(weirdary))
1292 	bcopy(weirdary, chunk, z->z_ChunkSize);
1293     else
1294 	bcopy(weirdary, chunk, sizeof(weirdary));
1295 #endif
1296 
1297     /*
1298      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1299      * to the front of the linked list so it is more likely to be
1300      * reallocated, since it is already in our L1 cache.
1301      */
1302 #ifdef INVARIANTS
1303     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1304 	panic("BADFREE %p", chunk);
1305 #endif
1306     chunk->c_Next = z->z_LChunks;
1307     z->z_LChunks = chunk;
1308     if (chunk->c_Next == NULL)
1309 	    z->z_LChunksp = &chunk->c_Next;
1310 
1311 #ifdef INVARIANTS
1312     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1313 	panic("BADFREE2");
1314 #endif
1315 
1316     /*
1317      * Bump the number of free chunks.  If it becomes non-zero the zone
1318      * must be added back onto the appropriate list.
1319      */
1320     if (z->z_NFree++ == 0) {
1321 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1322 	slgd->ZoneAry[z->z_ZoneIndex] = z;
1323     }
1324 
1325     --type->ks_inuse[z->z_Cpu];
1326     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1327 
1328     /*
1329      * If the zone becomes totally free, and there are other zones we
1330      * can allocate from, move this zone to the FreeZones list.  Since
1331      * this code can be called from an IPI callback, do *NOT* try to mess
1332      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1333      */
1334     if (z->z_NFree == z->z_NMax &&
1335 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1336 	z->z_RCount == 0
1337     ) {
1338 	SLZone **pz;
1339 	int *kup;
1340 
1341 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
1342 	    ;
1343 	*pz = z->z_Next;
1344 	z->z_Magic = -1;
1345 	z->z_Next = slgd->FreeZones;
1346 	slgd->FreeZones = z;
1347 	++slgd->NFreeZones;
1348 	kup = btokup(z);
1349 	*kup = 0;
1350     }
1351     logmemory_quick(free_end);
1352     crit_exit();
1353 }
1354 
1355 #if defined(INVARIANTS)
1356 
1357 /*
1358  * Helper routines for sanity checks
1359  */
1360 static
1361 void
1362 chunk_mark_allocated(SLZone *z, void *chunk)
1363 {
1364     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1365     __uint32_t *bitptr;
1366 
1367     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1368     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1369 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1370     bitptr = &z->z_Bitmap[bitdex >> 5];
1371     bitdex &= 31;
1372     KASSERT((*bitptr & (1 << bitdex)) == 0,
1373 	    ("memory chunk %p is already allocated!", chunk));
1374     *bitptr |= 1 << bitdex;
1375 }
1376 
1377 static
1378 void
1379 chunk_mark_free(SLZone *z, void *chunk)
1380 {
1381     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1382     __uint32_t *bitptr;
1383 
1384     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1385     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1386 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1387     bitptr = &z->z_Bitmap[bitdex >> 5];
1388     bitdex &= 31;
1389     KASSERT((*bitptr & (1 << bitdex)) != 0,
1390 	    ("memory chunk %p is already free!", chunk));
1391     *bitptr &= ~(1 << bitdex);
1392 }
1393 
1394 #endif
1395 
1396 /*
1397  * kmem_slab_alloc()
1398  *
1399  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1400  *	specified alignment.  M_* flags are expected in the flags field.
1401  *
1402  *	Alignment must be a multiple of PAGE_SIZE.
1403  *
1404  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1405  *	but when we move zalloc() over to use this function as its backend
1406  *	we will have to switch to kreserve/krelease and call reserve(0)
1407  *	after the new space is made available.
1408  *
1409  *	Interrupt code which has preempted other code is not allowed to
1410  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1411  *	non-preemptively or blocks and then runs non-preemptively, then
1412  *	it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
1413  */
1414 static void *
1415 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1416 {
1417     vm_size_t i;
1418     vm_offset_t addr;
1419     int count, vmflags, base_vmflags;
1420     vm_page_t mbase = NULL;
1421     vm_page_t m;
1422     thread_t td;
1423 
1424     size = round_page(size);
1425     addr = vm_map_min(&kernel_map);
1426 
1427     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1428     crit_enter();
1429     vm_map_lock(&kernel_map);
1430     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1431 	vm_map_unlock(&kernel_map);
1432 	if ((flags & M_NULLOK) == 0)
1433 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1434 	vm_map_entry_release(count);
1435 	crit_exit();
1436 	return(NULL);
1437     }
1438 
1439     /*
1440      * kernel_object maps 1:1 to kernel_map.
1441      */
1442     vm_object_hold(&kernel_object);
1443     vm_object_reference_locked(&kernel_object);
1444     vm_map_insert(&kernel_map, &count,
1445 		    &kernel_object, addr, addr, addr + size,
1446 		    VM_MAPTYPE_NORMAL,
1447 		    VM_PROT_ALL, VM_PROT_ALL,
1448 		    0);
1449     vm_object_drop(&kernel_object);
1450     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1451     vm_map_unlock(&kernel_map);
1452 
1453     td = curthread;
1454 
1455     base_vmflags = 0;
1456     if (flags & M_ZERO)
1457         base_vmflags |= VM_ALLOC_ZERO;
1458     if (flags & M_USE_RESERVE)
1459 	base_vmflags |= VM_ALLOC_SYSTEM;
1460     if (flags & M_USE_INTERRUPT_RESERVE)
1461         base_vmflags |= VM_ALLOC_INTERRUPT;
1462     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1463 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1464 	      flags, ((int **)&size)[-1]);
1465     }
1466 
1467     /*
1468      * Allocate the pages.  Do not mess with the PG_ZERO flag or map
1469      * them yet.  VM_ALLOC_NORMAL can only be set if we are not preempting.
1470      *
1471      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1472      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1473      * implied in this case), though I'm not sure if we really need to
1474      * do that.
1475      */
1476     vmflags = base_vmflags;
1477     if (flags & M_WAITOK) {
1478 	if (td->td_preempted)
1479 	    vmflags |= VM_ALLOC_SYSTEM;
1480 	else
1481 	    vmflags |= VM_ALLOC_NORMAL;
1482     }
1483 
1484     vm_object_hold(&kernel_object);
1485     for (i = 0; i < size; i += PAGE_SIZE) {
1486 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1487 	if (i == 0)
1488 		mbase = m;
1489 
1490 	/*
1491 	 * If the allocation failed we either return NULL or we retry.
1492 	 *
1493 	 * If M_WAITOK is specified we wait for more memory and retry.
1494 	 * If M_WAITOK is specified from a preemption we yield instead of
1495 	 * wait.  Livelock will not occur because the interrupt thread
1496 	 * will not be preempting anyone the second time around after the
1497 	 * yield.
1498 	 */
1499 	if (m == NULL) {
1500 	    if (flags & M_WAITOK) {
1501 		if (td->td_preempted) {
1502 		    lwkt_switch();
1503 		} else {
1504 		    vm_wait(0);
1505 		}
1506 		i -= PAGE_SIZE;	/* retry */
1507 		continue;
1508 	    }
1509 	    break;
1510 	}
1511     }
1512 
1513     /*
1514      * Check and deal with an allocation failure
1515      */
1516     if (i != size) {
1517 	while (i != 0) {
1518 	    i -= PAGE_SIZE;
1519 	    m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1520 	    /* page should already be busy */
1521 	    vm_page_free(m);
1522 	}
1523 	vm_map_lock(&kernel_map);
1524 	vm_map_delete(&kernel_map, addr, addr + size, &count);
1525 	vm_map_unlock(&kernel_map);
1526 	vm_object_drop(&kernel_object);
1527 
1528 	vm_map_entry_release(count);
1529 	crit_exit();
1530 	return(NULL);
1531     }
1532 
1533     /*
1534      * Success!
1535      *
1536      * NOTE: The VM pages are still busied.  mbase points to the first one
1537      *	     but we have to iterate via vm_page_next()
1538      */
1539     vm_object_drop(&kernel_object);
1540     crit_exit();
1541 
1542     /*
1543      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1544      */
1545     m = mbase;
1546     i = 0;
1547 
1548     while (i < size) {
1549 	/*
1550 	 * page should already be busy
1551 	 */
1552 	m->valid = VM_PAGE_BITS_ALL;
1553 	vm_page_wire(m);
1554 	pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL | VM_PROT_NOSYNC,
1555 		   1, NULL);
1556 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1557 	    bzero((char *)addr + i, PAGE_SIZE);
1558 	vm_page_flag_clear(m, PG_ZERO);
1559 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1560 	vm_page_flag_set(m, PG_REFERENCED);
1561 	vm_page_wakeup(m);
1562 
1563 	i += PAGE_SIZE;
1564 	vm_object_hold(&kernel_object);
1565 	m = vm_page_next(m);
1566 	vm_object_drop(&kernel_object);
1567     }
1568     smp_invltlb();
1569     vm_map_entry_release(count);
1570     atomic_add_long(&SlabsAllocated, 1);
1571     return((void *)addr);
1572 }
1573 
1574 /*
1575  * kmem_slab_free()
1576  */
1577 static void
1578 kmem_slab_free(void *ptr, vm_size_t size)
1579 {
1580     crit_enter();
1581     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1582     atomic_add_long(&SlabsFreed, 1);
1583     crit_exit();
1584 }
1585 
1586 void *
1587 kmalloc_cachealign(unsigned long size_alloc, struct malloc_type *type,
1588     int flags)
1589 {
1590 #if (__VM_CACHELINE_SIZE == 32)
1591 #define CAN_CACHEALIGN(sz)	((sz) >= 256)
1592 #elif (__VM_CACHELINE_SIZE == 64)
1593 #define CAN_CACHEALIGN(sz)	((sz) >= 512)
1594 #elif (__VM_CACHELINE_SIZE == 128)
1595 #define CAN_CACHEALIGN(sz)	((sz) >= 1024)
1596 #else
1597 #error "unsupported cacheline size"
1598 #endif
1599 
1600 	void *ret;
1601 
1602 	if (size_alloc < __VM_CACHELINE_SIZE)
1603 		size_alloc = __VM_CACHELINE_SIZE;
1604 	else if (!CAN_CACHEALIGN(size_alloc))
1605 		flags |= M_POWEROF2;
1606 
1607 	ret = kmalloc(size_alloc, type, flags);
1608 	KASSERT(((uintptr_t)ret & (__VM_CACHELINE_SIZE - 1)) == 0,
1609 	    ("%p(%lu) not cacheline %d aligned",
1610 	     ret, size_alloc, __VM_CACHELINE_SIZE));
1611 	return ret;
1612 
1613 #undef CAN_CACHEALIGN
1614 }
1615