xref: /dragonfly/sys/kern/kern_synch.c (revision 07a2f99c)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  */
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/kernel.h>
48 #include <sys/signalvar.h>
49 #include <sys/resourcevar.h>
50 #include <sys/vmmeter.h>
51 #include <sys/sysctl.h>
52 #include <sys/lock.h>
53 #include <sys/uio.h>
54 #ifdef KTRACE
55 #include <sys/ktrace.h>
56 #endif
57 #include <sys/xwait.h>
58 #include <sys/ktr.h>
59 #include <sys/serialize.h>
60 
61 #include <sys/signal2.h>
62 #include <sys/thread2.h>
63 #include <sys/spinlock2.h>
64 #include <sys/mutex2.h>
65 
66 #include <machine/cpu.h>
67 #include <machine/smp.h>
68 
69 TAILQ_HEAD(tslpque, thread);
70 
71 static void sched_setup (void *dummy);
72 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
73 
74 int	hogticks;
75 int	lbolt;
76 void	*lbolt_syncer;
77 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
78 int	ncpus;
79 int	ncpus2, ncpus2_shift, ncpus2_mask;	/* note: mask not cpumask_t */
80 int	ncpus_fit, ncpus_fit_mask;		/* note: mask not cpumask_t */
81 int	safepri;
82 int	tsleep_now_works;
83 int	tsleep_crypto_dump = 0;
84 
85 static struct callout loadav_callout;
86 static struct callout schedcpu_callout;
87 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
88 
89 #define __DEALL(ident)	__DEQUALIFY(void *, ident)
90 
91 #if !defined(KTR_TSLEEP)
92 #define KTR_TSLEEP	KTR_ALL
93 #endif
94 KTR_INFO_MASTER(tsleep);
95 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
96 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
97 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
98 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
99 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", const volatile void *ident);
100 
101 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
102 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
103 
104 struct loadavg averunnable =
105 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
106 /*
107  * Constants for averages over 1, 5, and 15 minutes
108  * when sampling at 5 second intervals.
109  */
110 static fixpt_t cexp[3] = {
111 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
112 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
113 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
114 };
115 
116 static void	endtsleep (void *);
117 static void	loadav (void *arg);
118 static void	schedcpu (void *arg);
119 
120 /*
121  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
122  * Note that 'tick' is in microseconds per tick.
123  */
124 static int
125 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
126 {
127 	int error, new_val;
128 
129 	new_val = sched_quantum * ustick;
130 	error = sysctl_handle_int(oidp, &new_val, 0, req);
131         if (error != 0 || req->newptr == NULL)
132 		return (error);
133 	if (new_val < ustick)
134 		return (EINVAL);
135 	sched_quantum = new_val / ustick;
136 	hogticks = 2 * sched_quantum;
137 	return (0);
138 }
139 
140 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
141 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
142 
143 static int pctcpu_decay = 10;
144 SYSCTL_INT(_kern, OID_AUTO, pctcpu_decay, CTLFLAG_RW, &pctcpu_decay, 0, "");
145 
146 /*
147  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
148  */
149 int     fscale __unused = FSCALE;	/* exported to systat */
150 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
151 
152 /*
153  * Recompute process priorities, once a second.
154  *
155  * Since the userland schedulers are typically event oriented, if the
156  * estcpu calculation at wakeup() time is not sufficient to make a
157  * process runnable relative to other processes in the system we have
158  * a 1-second recalc to help out.
159  *
160  * This code also allows us to store sysclock_t data in the process structure
161  * without fear of an overrun, since sysclock_t are guarenteed to hold
162  * several seconds worth of count.
163  *
164  * WARNING!  callouts can preempt normal threads.  However, they will not
165  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
166  */
167 static int schedcpu_stats(struct proc *p, void *data __unused);
168 static int schedcpu_resource(struct proc *p, void *data __unused);
169 
170 static void
171 schedcpu(void *arg)
172 {
173 	allproc_scan(schedcpu_stats, NULL);
174 	allproc_scan(schedcpu_resource, NULL);
175 	wakeup((caddr_t)&lbolt);
176 	wakeup(lbolt_syncer);
177 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
178 }
179 
180 /*
181  * General process statistics once a second
182  */
183 static int
184 schedcpu_stats(struct proc *p, void *data __unused)
185 {
186 	struct lwp *lp;
187 
188 	/*
189 	 * Threads may not be completely set up if process in SIDL state.
190 	 */
191 	if (p->p_stat == SIDL)
192 		return(0);
193 
194 	PHOLD(p);
195 	if (lwkt_trytoken(&p->p_token) == FALSE) {
196 		PRELE(p);
197 		return(0);
198 	}
199 
200 	p->p_swtime++;
201 	FOREACH_LWP_IN_PROC(lp, p) {
202 		if (lp->lwp_stat == LSSLEEP) {
203 			++lp->lwp_slptime;
204 			if (lp->lwp_slptime == 1)
205 				p->p_usched->uload_update(lp);
206 		}
207 
208 		/*
209 		 * Only recalculate processes that are active or have slept
210 		 * less then 2 seconds.  The schedulers understand this.
211 		 * Otherwise decay by 50% per second.
212 		 */
213 		if (lp->lwp_slptime <= 1) {
214 			p->p_usched->recalculate(lp);
215 		} else {
216 			int decay;
217 
218 			decay = pctcpu_decay;
219 			cpu_ccfence();
220 			if (decay <= 1)
221 				decay = 1;
222 			if (decay > 100)
223 				decay = 100;
224 			lp->lwp_pctcpu = (lp->lwp_pctcpu * (decay - 1)) / decay;
225 		}
226 	}
227 	lwkt_reltoken(&p->p_token);
228 	lwkt_yield();
229 	PRELE(p);
230 	return(0);
231 }
232 
233 /*
234  * Resource checks.  XXX break out since ksignal/killproc can block,
235  * limiting us to one process killed per second.  There is probably
236  * a better way.
237  */
238 static int
239 schedcpu_resource(struct proc *p, void *data __unused)
240 {
241 	u_int64_t ttime;
242 	struct lwp *lp;
243 
244 	if (p->p_stat == SIDL)
245 		return(0);
246 
247 	PHOLD(p);
248 	if (lwkt_trytoken(&p->p_token) == FALSE) {
249 		PRELE(p);
250 		return(0);
251 	}
252 
253 	if (p->p_stat == SZOMB || p->p_limit == NULL) {
254 		lwkt_reltoken(&p->p_token);
255 		PRELE(p);
256 		return(0);
257 	}
258 
259 	ttime = 0;
260 	FOREACH_LWP_IN_PROC(lp, p) {
261 		/*
262 		 * We may have caught an lp in the middle of being
263 		 * created, lwp_thread can be NULL.
264 		 */
265 		if (lp->lwp_thread) {
266 			ttime += lp->lwp_thread->td_sticks;
267 			ttime += lp->lwp_thread->td_uticks;
268 		}
269 	}
270 
271 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
272 	case PLIMIT_TESTCPU_KILL:
273 		killproc(p, "exceeded maximum CPU limit");
274 		break;
275 	case PLIMIT_TESTCPU_XCPU:
276 		if ((p->p_flags & P_XCPU) == 0) {
277 			p->p_flags |= P_XCPU;
278 			ksignal(p, SIGXCPU);
279 		}
280 		break;
281 	default:
282 		break;
283 	}
284 	lwkt_reltoken(&p->p_token);
285 	lwkt_yield();
286 	PRELE(p);
287 	return(0);
288 }
289 
290 /*
291  * This is only used by ps.  Generate a cpu percentage use over
292  * a period of one second.
293  */
294 void
295 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
296 {
297 	fixpt_t acc;
298 	int remticks;
299 
300 	acc = (cpticks << FSHIFT) / ttlticks;
301 	if (ttlticks >= ESTCPUFREQ) {
302 		lp->lwp_pctcpu = acc;
303 	} else {
304 		remticks = ESTCPUFREQ - ttlticks;
305 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
306 				ESTCPUFREQ;
307 	}
308 }
309 
310 /*
311  * tsleep/wakeup hash table parameters.  Try to find the sweet spot for
312  * like addresses being slept on.
313  */
314 #define TABLESIZE	4001
315 #define LOOKUP(x)	(((u_int)(uintptr_t)(x)) % TABLESIZE)
316 
317 static cpumask_t slpque_cpumasks[TABLESIZE];
318 
319 /*
320  * General scheduler initialization.  We force a reschedule 25 times
321  * a second by default.  Note that cpu0 is initialized in early boot and
322  * cannot make any high level calls.
323  *
324  * Each cpu has its own sleep queue.
325  */
326 void
327 sleep_gdinit(globaldata_t gd)
328 {
329 	static struct tslpque slpque_cpu0[TABLESIZE];
330 	int i;
331 
332 	if (gd->gd_cpuid == 0) {
333 		sched_quantum = (hz + 24) / 25;
334 		hogticks = 2 * sched_quantum;
335 
336 		gd->gd_tsleep_hash = slpque_cpu0;
337 	} else {
338 		gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
339 					    M_TSLEEP, M_WAITOK | M_ZERO);
340 	}
341 	for (i = 0; i < TABLESIZE; ++i)
342 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
343 }
344 
345 /*
346  * This is a dandy function that allows us to interlock tsleep/wakeup
347  * operations with unspecified upper level locks, such as lockmgr locks,
348  * simply by holding a critical section.  The sequence is:
349  *
350  *	(acquire upper level lock)
351  *	tsleep_interlock(blah)
352  *	(release upper level lock)
353  *	tsleep(blah, ...)
354  *
355  * Basically this functions queues us on the tsleep queue without actually
356  * descheduling us.  When tsleep() is later called with PINTERLOCK it
357  * assumes the thread was already queued, otherwise it queues it there.
358  *
359  * Thus it is possible to receive the wakeup prior to going to sleep and
360  * the race conditions are covered.
361  */
362 static __inline void
363 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
364 {
365 	thread_t td = gd->gd_curthread;
366 	int id;
367 
368 	crit_enter_quick(td);
369 	if (td->td_flags & TDF_TSLEEPQ) {
370 		id = LOOKUP(td->td_wchan);
371 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
372 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL) {
373 			atomic_clear_cpumask(&slpque_cpumasks[id],
374 					     gd->gd_cpumask);
375 		}
376 	} else {
377 		td->td_flags |= TDF_TSLEEPQ;
378 	}
379 	id = LOOKUP(ident);
380 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
381 	atomic_set_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
382 	td->td_wchan = ident;
383 	td->td_wdomain = flags & PDOMAIN_MASK;
384 	crit_exit_quick(td);
385 }
386 
387 void
388 tsleep_interlock(const volatile void *ident, int flags)
389 {
390 	_tsleep_interlock(mycpu, ident, flags);
391 }
392 
393 /*
394  * Remove thread from sleepq.  Must be called with a critical section held.
395  * The thread must not be migrating.
396  */
397 static __inline void
398 _tsleep_remove(thread_t td)
399 {
400 	globaldata_t gd = mycpu;
401 	int id;
402 
403 	KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
404 	KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
405 	if (td->td_flags & TDF_TSLEEPQ) {
406 		td->td_flags &= ~TDF_TSLEEPQ;
407 		id = LOOKUP(td->td_wchan);
408 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
409 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
410 			atomic_clear_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
411 		td->td_wchan = NULL;
412 		td->td_wdomain = 0;
413 	}
414 }
415 
416 void
417 tsleep_remove(thread_t td)
418 {
419 	_tsleep_remove(td);
420 }
421 
422 /*
423  * General sleep call.  Suspends the current process until a wakeup is
424  * performed on the specified identifier.  The process will then be made
425  * runnable with the specified priority.  Sleeps at most timo/hz seconds
426  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
427  * before and after sleeping, else signals are not checked.  Returns 0 if
428  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
429  * signal needs to be delivered, ERESTART is returned if the current system
430  * call should be restarted if possible, and EINTR is returned if the system
431  * call should be interrupted by the signal (return EINTR).
432  *
433  * Note that if we are a process, we release_curproc() before messing with
434  * the LWKT scheduler.
435  *
436  * During autoconfiguration or after a panic, a sleep will simply
437  * lower the priority briefly to allow interrupts, then return.
438  *
439  * WARNING!  This code can't block (short of switching away), or bad things
440  *           will happen.  No getting tokens, no blocking locks, etc.
441  */
442 int
443 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
444 {
445 	struct thread *td = curthread;
446 	struct lwp *lp = td->td_lwp;
447 	struct proc *p = td->td_proc;		/* may be NULL */
448 	globaldata_t gd;
449 	int sig;
450 	int catch;
451 	int error;
452 	int oldpri;
453 	struct callout thandle;
454 
455 	/*
456 	 * Currently a severe hack.  Make sure any delayed wakeups
457 	 * are flushed before we sleep or we might deadlock on whatever
458 	 * event we are sleeping on.
459 	 */
460 	if (td->td_flags & TDF_DELAYED_WAKEUP)
461 		wakeup_end_delayed();
462 
463 	/*
464 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
465 	 * even in stable.  Just scrap it for now.
466 	 */
467 	if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
468 		/*
469 		 * After a panic, or before we actually have an operational
470 		 * softclock, just give interrupts a chance, then just return;
471 		 *
472 		 * don't run any other procs or panic below,
473 		 * in case this is the idle process and already asleep.
474 		 */
475 		splz();
476 		oldpri = td->td_pri;
477 		lwkt_setpri_self(safepri);
478 		lwkt_switch();
479 		lwkt_setpri_self(oldpri);
480 		return (0);
481 	}
482 	logtsleep2(tsleep_beg, ident);
483 	gd = td->td_gd;
484 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
485 	td->td_wakefromcpu = -1;		/* overwritten by _wakeup */
486 
487 	/*
488 	 * NOTE: all of this occurs on the current cpu, including any
489 	 * callout-based wakeups, so a critical section is a sufficient
490 	 * interlock.
491 	 *
492 	 * The entire sequence through to where we actually sleep must
493 	 * run without breaking the critical section.
494 	 */
495 	catch = flags & PCATCH;
496 	error = 0;
497 	sig = 0;
498 
499 	crit_enter_quick(td);
500 
501 	KASSERT(ident != NULL, ("tsleep: no ident"));
502 	KASSERT(lp == NULL ||
503 		lp->lwp_stat == LSRUN ||	/* Obvious */
504 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
505 		("tsleep %p %s %d",
506 			ident, wmesg, lp->lwp_stat));
507 
508 	/*
509 	 * We interlock the sleep queue if the caller has not already done
510 	 * it for us.  This must be done before we potentially acquire any
511 	 * tokens or we can loose the wakeup.
512 	 */
513 	if ((flags & PINTERLOCKED) == 0) {
514 		_tsleep_interlock(gd, ident, flags);
515 	}
516 
517 	/*
518 	 * Setup for the current process (if this is a process).  We must
519 	 * interlock with lwp_token to avoid remote wakeup races via
520 	 * setrunnable()
521 	 */
522 	if (lp) {
523 		lwkt_gettoken(&lp->lwp_token);
524 		if (catch) {
525 			/*
526 			 * Early termination if PCATCH was set and a
527 			 * signal is pending, interlocked with the
528 			 * critical section.
529 			 *
530 			 * Early termination only occurs when tsleep() is
531 			 * entered while in a normal LSRUN state.
532 			 */
533 			if ((sig = CURSIG(lp)) != 0)
534 				goto resume;
535 
536 			/*
537 			 * Causes ksignal to wake us up if a signal is
538 			 * received (interlocked with p->p_token).
539 			 */
540 			lp->lwp_flags |= LWP_SINTR;
541 		}
542 	} else {
543 		KKASSERT(p == NULL);
544 	}
545 
546 	/*
547 	 * Make sure the current process has been untangled from
548 	 * the userland scheduler and initialize slptime to start
549 	 * counting.
550 	 *
551 	 * NOTE: td->td_wakefromcpu is pre-set by the release function
552 	 *	 for the dfly scheduler, and then adjusted by _wakeup()
553 	 */
554 	if (lp) {
555 		p->p_usched->release_curproc(lp);
556 		lp->lwp_slptime = 0;
557 	}
558 
559 	/*
560 	 * If the interlocked flag is set but our cpu bit in the slpqueue
561 	 * is no longer set, then a wakeup was processed inbetween the
562 	 * tsleep_interlock() (ours or the callers), and here.  This can
563 	 * occur under numerous circumstances including when we release the
564 	 * current process.
565 	 *
566 	 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
567 	 * to process incoming IPIs, thus draining incoming wakeups.
568 	 */
569 	if ((td->td_flags & TDF_TSLEEPQ) == 0) {
570 		logtsleep2(ilockfail, ident);
571 		goto resume;
572 	}
573 
574 	/*
575 	 * scheduling is blocked while in a critical section.  Coincide
576 	 * the descheduled-by-tsleep flag with the descheduling of the
577 	 * lwkt.
578 	 *
579 	 * The timer callout is localized on our cpu and interlocked by
580 	 * our critical section.
581 	 */
582 	lwkt_deschedule_self(td);
583 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
584 	td->td_wmesg = wmesg;
585 
586 	/*
587 	 * Setup the timeout, if any.  The timeout is only operable while
588 	 * the thread is flagged descheduled.
589 	 */
590 	KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
591 	if (timo) {
592 		callout_init_mp(&thandle);
593 		callout_reset(&thandle, timo, endtsleep, td);
594 	}
595 
596 	/*
597 	 * Beddy bye bye.
598 	 */
599 	if (lp) {
600 		/*
601 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
602 		 */
603 		KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
604 
605 		/*
606 		 * tstop() sets LSSTOP, so don't fiddle with that.
607 		 */
608 		if (lp->lwp_stat != LSSTOP)
609 			lp->lwp_stat = LSSLEEP;
610 		lp->lwp_ru.ru_nvcsw++;
611 		p->p_usched->uload_update(lp);
612 		lwkt_switch();
613 
614 		/*
615 		 * And when we are woken up, put us back in LSRUN.  If we
616 		 * slept for over a second, recalculate our estcpu.
617 		 */
618 		lp->lwp_stat = LSRUN;
619 		if (lp->lwp_slptime) {
620 			p->p_usched->uload_update(lp);
621 			p->p_usched->recalculate(lp);
622 		}
623 		lp->lwp_slptime = 0;
624 	} else {
625 		lwkt_switch();
626 	}
627 
628 	/*
629 	 * Make sure we haven't switched cpus while we were asleep.  It's
630 	 * not supposed to happen.  Cleanup our temporary flags.
631 	 */
632 	KKASSERT(gd == td->td_gd);
633 
634 	/*
635 	 * Cleanup the timeout.  If the timeout has already occured thandle
636 	 * has already been stopped, otherwise stop thandle.  If the timeout
637 	 * is running (the callout thread must be blocked trying to get
638 	 * lwp_token) then wait for us to get scheduled.
639 	 */
640 	if (timo) {
641 		while (td->td_flags & TDF_TIMEOUT_RUNNING) {
642 			lwkt_deschedule_self(td);
643 			td->td_wmesg = "tsrace";
644 			lwkt_switch();
645 			kprintf("td %p %s: timeout race\n", td, td->td_comm);
646 		}
647 		if (td->td_flags & TDF_TIMEOUT) {
648 			td->td_flags &= ~TDF_TIMEOUT;
649 			error = EWOULDBLOCK;
650 		} else {
651 			/* does not block when on same cpu */
652 			callout_stop(&thandle);
653 		}
654 	}
655 	td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
656 
657 	/*
658 	 * Make sure we have been removed from the sleepq.  In most
659 	 * cases this will have been done for us already but it is
660 	 * possible for a scheduling IPI to be in-flight from a
661 	 * previous tsleep/tsleep_interlock() or due to a straight-out
662 	 * call to lwkt_schedule() (in the case of an interrupt thread),
663 	 * causing a spurious wakeup.
664 	 */
665 	_tsleep_remove(td);
666 	td->td_wmesg = NULL;
667 
668 	/*
669 	 * Figure out the correct error return.  If interrupted by a
670 	 * signal we want to return EINTR or ERESTART.
671 	 */
672 resume:
673 	if (lp) {
674 		if (catch && error == 0) {
675 			if (sig != 0 || (sig = CURSIG(lp))) {
676 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
677 					error = EINTR;
678 				else
679 					error = ERESTART;
680 			}
681 		}
682 		lp->lwp_flags &= ~LWP_SINTR;
683 		lwkt_reltoken(&lp->lwp_token);
684 	}
685 	logtsleep1(tsleep_end);
686 	crit_exit_quick(td);
687 	return (error);
688 }
689 
690 /*
691  * Interlocked spinlock sleep.  An exclusively held spinlock must
692  * be passed to ssleep().  The function will atomically release the
693  * spinlock and tsleep on the ident, then reacquire the spinlock and
694  * return.
695  *
696  * This routine is fairly important along the critical path, so optimize it
697  * heavily.
698  */
699 int
700 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
701        const char *wmesg, int timo)
702 {
703 	globaldata_t gd = mycpu;
704 	int error;
705 
706 	_tsleep_interlock(gd, ident, flags);
707 	spin_unlock_quick(gd, spin);
708 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
709 	spin_lock_quick(gd, spin);
710 
711 	return (error);
712 }
713 
714 int
715 lksleep(const volatile void *ident, struct lock *lock, int flags,
716 	const char *wmesg, int timo)
717 {
718 	globaldata_t gd = mycpu;
719 	int error;
720 
721 	_tsleep_interlock(gd, ident, flags);
722 	lockmgr(lock, LK_RELEASE);
723 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
724 	lockmgr(lock, LK_EXCLUSIVE);
725 
726 	return (error);
727 }
728 
729 /*
730  * Interlocked mutex sleep.  An exclusively held mutex must be passed
731  * to mtxsleep().  The function will atomically release the mutex
732  * and tsleep on the ident, then reacquire the mutex and return.
733  */
734 int
735 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
736 	 const char *wmesg, int timo)
737 {
738 	globaldata_t gd = mycpu;
739 	int error;
740 
741 	_tsleep_interlock(gd, ident, flags);
742 	mtx_unlock(mtx);
743 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
744 	mtx_lock_ex_quick(mtx, wmesg);
745 
746 	return (error);
747 }
748 
749 /*
750  * Interlocked serializer sleep.  An exclusively held serializer must
751  * be passed to zsleep().  The function will atomically release
752  * the serializer and tsleep on the ident, then reacquire the serializer
753  * and return.
754  */
755 int
756 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
757        const char *wmesg, int timo)
758 {
759 	globaldata_t gd = mycpu;
760 	int ret;
761 
762 	ASSERT_SERIALIZED(slz);
763 
764 	_tsleep_interlock(gd, ident, flags);
765 	lwkt_serialize_exit(slz);
766 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
767 	lwkt_serialize_enter(slz);
768 
769 	return ret;
770 }
771 
772 /*
773  * Directly block on the LWKT thread by descheduling it.  This
774  * is much faster then tsleep(), but the only legal way to wake
775  * us up is to directly schedule the thread.
776  *
777  * Setting TDF_SINTR will cause new signals to directly schedule us.
778  *
779  * This routine must be called while in a critical section.
780  */
781 int
782 lwkt_sleep(const char *wmesg, int flags)
783 {
784 	thread_t td = curthread;
785 	int sig;
786 
787 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
788 		td->td_flags |= TDF_BLOCKED;
789 		td->td_wmesg = wmesg;
790 		lwkt_deschedule_self(td);
791 		lwkt_switch();
792 		td->td_wmesg = NULL;
793 		td->td_flags &= ~TDF_BLOCKED;
794 		return(0);
795 	}
796 	if ((sig = CURSIG(td->td_lwp)) != 0) {
797 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
798 			return(EINTR);
799 		else
800 			return(ERESTART);
801 
802 	}
803 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
804 	td->td_wmesg = wmesg;
805 	lwkt_deschedule_self(td);
806 	lwkt_switch();
807 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
808 	td->td_wmesg = NULL;
809 	return(0);
810 }
811 
812 /*
813  * Implement the timeout for tsleep.
814  *
815  * This type of callout timeout is scheduled on the same cpu the process
816  * is sleeping on.  Also, at the moment, the MP lock is held.
817  */
818 static void
819 endtsleep(void *arg)
820 {
821 	thread_t td = arg;
822 	struct lwp *lp;
823 
824 	/*
825 	 * We are going to have to get the lwp_token, which means we might
826 	 * block.  This can race a tsleep getting woken up by other means
827 	 * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
828 	 * processing to complete (sorry tsleep!).
829 	 *
830 	 * We can safely set td_flags because td MUST be on the same cpu
831 	 * as we are.
832 	 */
833 	KKASSERT(td->td_gd == mycpu);
834 	crit_enter();
835 	td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
836 
837 	/*
838 	 * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
839 	 * from exiting the tsleep on us.  The flag is interlocked by virtue
840 	 * of lp being on the same cpu as we are.
841 	 */
842 	if ((lp = td->td_lwp) != NULL)
843 		lwkt_gettoken(&lp->lwp_token);
844 
845 	KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
846 
847 	if (lp) {
848 		if (lp->lwp_proc->p_stat != SSTOP)
849 			setrunnable(lp);
850 		lwkt_reltoken(&lp->lwp_token);
851 	} else {
852 		_tsleep_remove(td);
853 		lwkt_schedule(td);
854 	}
855 	KKASSERT(td->td_gd == mycpu);
856 	td->td_flags &= ~TDF_TIMEOUT_RUNNING;
857 	crit_exit();
858 }
859 
860 /*
861  * Make all processes sleeping on the specified identifier runnable.
862  * count may be zero or one only.
863  *
864  * The domain encodes the sleep/wakeup domain, flags, plus the originating
865  * cpu.
866  *
867  * This call may run without the MP lock held.  We can only manipulate thread
868  * state on the cpu owning the thread.  We CANNOT manipulate process state
869  * at all.
870  *
871  * _wakeup() can be passed to an IPI so we can't use (const volatile
872  * void *ident).
873  */
874 static void
875 _wakeup(void *ident, int domain)
876 {
877 	struct tslpque *qp;
878 	struct thread *td;
879 	struct thread *ntd;
880 	globaldata_t gd;
881 	cpumask_t mask;
882 	int id;
883 
884 	crit_enter();
885 	logtsleep2(wakeup_beg, ident);
886 	gd = mycpu;
887 	id = LOOKUP(ident);
888 	qp = &gd->gd_tsleep_hash[id];
889 restart:
890 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
891 		ntd = TAILQ_NEXT(td, td_sleepq);
892 		if (td->td_wchan == ident &&
893 		    td->td_wdomain == (domain & PDOMAIN_MASK)
894 		) {
895 			KKASSERT(td->td_gd == gd);
896 			_tsleep_remove(td);
897 			td->td_wakefromcpu = PWAKEUP_DECODE(domain);
898 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
899 				lwkt_schedule(td);
900 				if (domain & PWAKEUP_ONE)
901 					goto done;
902 			}
903 			goto restart;
904 		}
905 	}
906 
907 	/*
908 	 * We finished checking the current cpu but there still may be
909 	 * more work to do.  Either wakeup_one was requested and no matching
910 	 * thread was found, or a normal wakeup was requested and we have
911 	 * to continue checking cpus.
912 	 *
913 	 * It should be noted that this scheme is actually less expensive then
914 	 * the old scheme when waking up multiple threads, since we send
915 	 * only one IPI message per target candidate which may then schedule
916 	 * multiple threads.  Before we could have wound up sending an IPI
917 	 * message for each thread on the target cpu (!= current cpu) that
918 	 * needed to be woken up.
919 	 *
920 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
921 	 * should be ok since we are passing idents in the IPI rather then
922 	 * thread pointers.
923 	 */
924 	if ((domain & PWAKEUP_MYCPU) == 0 &&
925 	    (mask = slpque_cpumasks[id] & gd->gd_other_cpus) != 0) {
926 		lwkt_send_ipiq2_mask(mask, _wakeup, ident,
927 				     domain | PWAKEUP_MYCPU);
928 	}
929 done:
930 	logtsleep1(wakeup_end);
931 	crit_exit();
932 }
933 
934 /*
935  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
936  */
937 void
938 wakeup(const volatile void *ident)
939 {
940     globaldata_t gd = mycpu;
941     thread_t td = gd->gd_curthread;
942 
943     if (td && (td->td_flags & TDF_DELAYED_WAKEUP)) {
944 	if (!atomic_cmpset_ptr(&gd->gd_delayed_wakeup[0], NULL, ident)) {
945 	    if (!atomic_cmpset_ptr(&gd->gd_delayed_wakeup[1], NULL, ident))
946 		_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
947 	}
948 	return;
949     }
950     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
951 }
952 
953 /*
954  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
955  */
956 void
957 wakeup_one(const volatile void *ident)
958 {
959     /* XXX potentially round-robin the first responding cpu */
960     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
961 			    PWAKEUP_ONE);
962 }
963 
964 /*
965  * Wakeup threads tsleep()ing on the specified ident on the current cpu
966  * only.
967  */
968 void
969 wakeup_mycpu(const volatile void *ident)
970 {
971     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
972 			    PWAKEUP_MYCPU);
973 }
974 
975 /*
976  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
977  * only.
978  */
979 void
980 wakeup_mycpu_one(const volatile void *ident)
981 {
982     /* XXX potentially round-robin the first responding cpu */
983     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
984 			    PWAKEUP_MYCPU | PWAKEUP_ONE);
985 }
986 
987 /*
988  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
989  * only.
990  */
991 void
992 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
993 {
994     globaldata_t mygd = mycpu;
995     if (gd == mycpu) {
996 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
997 				PWAKEUP_MYCPU);
998     } else {
999 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1000 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1001 			PWAKEUP_MYCPU);
1002     }
1003 }
1004 
1005 /*
1006  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1007  * only.
1008  */
1009 void
1010 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1011 {
1012     globaldata_t mygd = mycpu;
1013     if (gd == mygd) {
1014 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1015 				PWAKEUP_MYCPU | PWAKEUP_ONE);
1016     } else {
1017 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1018 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1019 			PWAKEUP_MYCPU | PWAKEUP_ONE);
1020     }
1021 }
1022 
1023 /*
1024  * Wakeup all threads waiting on the specified ident that slept using
1025  * the specified domain, on all cpus.
1026  */
1027 void
1028 wakeup_domain(const volatile void *ident, int domain)
1029 {
1030     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1031 }
1032 
1033 /*
1034  * Wakeup one thread waiting on the specified ident that slept using
1035  * the specified  domain, on any cpu.
1036  */
1037 void
1038 wakeup_domain_one(const volatile void *ident, int domain)
1039 {
1040     /* XXX potentially round-robin the first responding cpu */
1041     _wakeup(__DEALL(ident),
1042 	    PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1043 }
1044 
1045 void
1046 wakeup_start_delayed(void)
1047 {
1048     globaldata_t gd = mycpu;
1049 
1050     crit_enter();
1051     gd->gd_curthread->td_flags |= TDF_DELAYED_WAKEUP;
1052     crit_exit();
1053 }
1054 
1055 void
1056 wakeup_end_delayed(void)
1057 {
1058     globaldata_t gd = mycpu;
1059 
1060     if (gd->gd_curthread->td_flags & TDF_DELAYED_WAKEUP) {
1061 	crit_enter();
1062 	gd->gd_curthread->td_flags &= ~TDF_DELAYED_WAKEUP;
1063 	if (gd->gd_delayed_wakeup[0] || gd->gd_delayed_wakeup[1]) {
1064 	    if (gd->gd_delayed_wakeup[0]) {
1065 		    wakeup(gd->gd_delayed_wakeup[0]);
1066 		    gd->gd_delayed_wakeup[0] = NULL;
1067 	    }
1068 	    if (gd->gd_delayed_wakeup[1]) {
1069 		    wakeup(gd->gd_delayed_wakeup[1]);
1070 		    gd->gd_delayed_wakeup[1] = NULL;
1071 	    }
1072 	}
1073 	crit_exit();
1074     }
1075 }
1076 
1077 /*
1078  * setrunnable()
1079  *
1080  * Make a process runnable.  lp->lwp_token must be held on call and this
1081  * function must be called from the cpu owning lp.
1082  *
1083  * This only has an effect if we are in LSSTOP or LSSLEEP.
1084  */
1085 void
1086 setrunnable(struct lwp *lp)
1087 {
1088 	thread_t td = lp->lwp_thread;
1089 
1090 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1091 	KKASSERT(td->td_gd == mycpu);
1092 	crit_enter();
1093 	if (lp->lwp_stat == LSSTOP)
1094 		lp->lwp_stat = LSSLEEP;
1095 	if (lp->lwp_stat == LSSLEEP) {
1096 		_tsleep_remove(td);
1097 		lwkt_schedule(td);
1098 	} else if (td->td_flags & TDF_SINTR) {
1099 		lwkt_schedule(td);
1100 	}
1101 	crit_exit();
1102 }
1103 
1104 /*
1105  * The process is stopped due to some condition, usually because p_stat is
1106  * set to SSTOP, but also possibly due to being traced.
1107  *
1108  * Caller must hold p->p_token
1109  *
1110  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
1111  * because the parent may check the child's status before the child actually
1112  * gets to this routine.
1113  *
1114  * This routine is called with the current lwp only, typically just
1115  * before returning to userland if the process state is detected as
1116  * possibly being in a stopped state.
1117  */
1118 void
1119 tstop(void)
1120 {
1121 	struct lwp *lp = curthread->td_lwp;
1122 	struct proc *p = lp->lwp_proc;
1123 	struct proc *q;
1124 
1125 	lwkt_gettoken(&lp->lwp_token);
1126 	crit_enter();
1127 
1128 	/*
1129 	 * If LWP_MP_WSTOP is set, we were sleeping
1130 	 * while our process was stopped.  At this point
1131 	 * we were already counted as stopped.
1132 	 */
1133 	if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1134 		/*
1135 		 * If we're the last thread to stop, signal
1136 		 * our parent.
1137 		 */
1138 		p->p_nstopped++;
1139 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1140 		wakeup(&p->p_nstopped);
1141 		if (p->p_nstopped == p->p_nthreads) {
1142 			/*
1143 			 * Token required to interlock kern_wait()
1144 			 */
1145 			q = p->p_pptr;
1146 			PHOLD(q);
1147 			lwkt_gettoken(&q->p_token);
1148 			p->p_flags &= ~P_WAITED;
1149 			wakeup(p->p_pptr);
1150 			if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1151 				ksignal(q, SIGCHLD);
1152 			lwkt_reltoken(&q->p_token);
1153 			PRELE(q);
1154 		}
1155 	}
1156 	while (p->p_stat == SSTOP) {
1157 		lp->lwp_stat = LSSTOP;
1158 		tsleep(p, 0, "stop", 0);
1159 	}
1160 	p->p_nstopped--;
1161 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1162 	crit_exit();
1163 	lwkt_reltoken(&lp->lwp_token);
1164 }
1165 
1166 /*
1167  * Compute a tenex style load average of a quantity on
1168  * 1, 5 and 15 minute intervals.
1169  */
1170 static int loadav_count_runnable(struct lwp *p, void *data);
1171 
1172 static void
1173 loadav(void *arg)
1174 {
1175 	struct loadavg *avg;
1176 	int i, nrun;
1177 
1178 	nrun = 0;
1179 	alllwp_scan(loadav_count_runnable, &nrun);
1180 	avg = &averunnable;
1181 	for (i = 0; i < 3; i++) {
1182 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1183 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1184 	}
1185 
1186 	/*
1187 	 * Schedule the next update to occur after 5 seconds, but add a
1188 	 * random variation to avoid synchronisation with processes that
1189 	 * run at regular intervals.
1190 	 */
1191 	callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1192 		      loadav, NULL);
1193 }
1194 
1195 static int
1196 loadav_count_runnable(struct lwp *lp, void *data)
1197 {
1198 	int *nrunp = data;
1199 	thread_t td;
1200 
1201 	switch (lp->lwp_stat) {
1202 	case LSRUN:
1203 		if ((td = lp->lwp_thread) == NULL)
1204 			break;
1205 		if (td->td_flags & TDF_BLOCKED)
1206 			break;
1207 		++*nrunp;
1208 		break;
1209 	default:
1210 		break;
1211 	}
1212 	lwkt_yield();
1213 	return(0);
1214 }
1215 
1216 /* ARGSUSED */
1217 static void
1218 sched_setup(void *dummy)
1219 {
1220 	callout_init_mp(&loadav_callout);
1221 	callout_init_mp(&schedcpu_callout);
1222 
1223 	/* Kick off timeout driven events by calling first time. */
1224 	schedcpu(NULL);
1225 	loadav(NULL);
1226 }
1227 
1228