xref: /dragonfly/sys/kern/kern_synch.c (revision 10cbe914)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.91 2008/09/09 04:06:13 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <sys/sysctl.h>
53 #include <sys/lock.h>
54 #include <sys/uio.h>
55 #ifdef KTRACE
56 #include <sys/ktrace.h>
57 #endif
58 #include <sys/xwait.h>
59 #include <sys/ktr.h>
60 #include <sys/serialize.h>
61 
62 #include <sys/signal2.h>
63 #include <sys/thread2.h>
64 #include <sys/spinlock2.h>
65 #include <sys/mutex2.h>
66 #include <sys/mplock2.h>
67 
68 #include <machine/cpu.h>
69 #include <machine/smp.h>
70 
71 TAILQ_HEAD(tslpque, thread);
72 
73 static void sched_setup (void *dummy);
74 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
75 
76 int	hogticks;
77 int	lbolt;
78 int	lbolt_syncer;
79 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
80 int	ncpus;
81 int	ncpus2, ncpus2_shift, ncpus2_mask;	/* note: mask not cpumask_t */
82 int	ncpus_fit, ncpus_fit_mask;		/* note: mask not cpumask_t */
83 int	safepri;
84 int	tsleep_now_works;
85 int	tsleep_crypto_dump = 0;
86 
87 static struct callout loadav_callout;
88 static struct callout schedcpu_callout;
89 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
90 
91 #define __DEALL(ident)	__DEQUALIFY(void *, ident)
92 
93 #if !defined(KTR_TSLEEP)
94 #define KTR_TSLEEP	KTR_ALL
95 #endif
96 KTR_INFO_MASTER(tsleep);
97 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", sizeof(void *));
98 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit", 0);
99 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", sizeof(void *));
100 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit", 0);
101 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", sizeof(void *));
102 
103 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
104 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
105 
106 struct loadavg averunnable =
107 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
108 /*
109  * Constants for averages over 1, 5, and 15 minutes
110  * when sampling at 5 second intervals.
111  */
112 static fixpt_t cexp[3] = {
113 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
114 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
115 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
116 };
117 
118 static void	endtsleep (void *);
119 static void	loadav (void *arg);
120 static void	schedcpu (void *arg);
121 #ifdef SMP
122 static void	tsleep_wakeup(struct thread *td);
123 #endif
124 
125 /*
126  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
127  * Note that 'tick' is in microseconds per tick.
128  */
129 static int
130 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
131 {
132 	int error, new_val;
133 
134 	new_val = sched_quantum * ustick;
135 	error = sysctl_handle_int(oidp, &new_val, 0, req);
136         if (error != 0 || req->newptr == NULL)
137 		return (error);
138 	if (new_val < ustick)
139 		return (EINVAL);
140 	sched_quantum = new_val / ustick;
141 	hogticks = 2 * sched_quantum;
142 	return (0);
143 }
144 
145 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
146 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
147 
148 /*
149  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
150  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
151  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
152  *
153  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
154  *     1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
155  *
156  * If you don't want to bother with the faster/more-accurate formula, you
157  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
158  * (more general) method of calculating the %age of CPU used by a process.
159  *
160  * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
161  */
162 #define CCPU_SHIFT	11
163 
164 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
165 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
166 
167 /*
168  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
169  */
170 int     fscale __unused = FSCALE;	/* exported to systat */
171 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
172 
173 /*
174  * Recompute process priorities, once a second.
175  *
176  * Since the userland schedulers are typically event oriented, if the
177  * estcpu calculation at wakeup() time is not sufficient to make a
178  * process runnable relative to other processes in the system we have
179  * a 1-second recalc to help out.
180  *
181  * This code also allows us to store sysclock_t data in the process structure
182  * without fear of an overrun, since sysclock_t are guarenteed to hold
183  * several seconds worth of count.
184  *
185  * WARNING!  callouts can preempt normal threads.  However, they will not
186  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
187  */
188 static int schedcpu_stats(struct proc *p, void *data __unused);
189 static int schedcpu_resource(struct proc *p, void *data __unused);
190 
191 static void
192 schedcpu(void *arg)
193 {
194 	allproc_scan(schedcpu_stats, NULL);
195 	allproc_scan(schedcpu_resource, NULL);
196 	wakeup((caddr_t)&lbolt);
197 	wakeup((caddr_t)&lbolt_syncer);
198 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
199 }
200 
201 /*
202  * General process statistics once a second
203  */
204 static int
205 schedcpu_stats(struct proc *p, void *data __unused)
206 {
207 	struct lwp *lp;
208 
209 	crit_enter();
210 	p->p_swtime++;
211 	FOREACH_LWP_IN_PROC(lp, p) {
212 		if (lp->lwp_stat == LSSLEEP)
213 			lp->lwp_slptime++;
214 
215 		/*
216 		 * Only recalculate processes that are active or have slept
217 		 * less then 2 seconds.  The schedulers understand this.
218 		 */
219 		if (lp->lwp_slptime <= 1) {
220 			p->p_usched->recalculate(lp);
221 		} else {
222 			lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
223 		}
224 	}
225 	crit_exit();
226 	return(0);
227 }
228 
229 /*
230  * Resource checks.  XXX break out since ksignal/killproc can block,
231  * limiting us to one process killed per second.  There is probably
232  * a better way.
233  */
234 static int
235 schedcpu_resource(struct proc *p, void *data __unused)
236 {
237 	u_int64_t ttime;
238 	struct lwp *lp;
239 
240 	crit_enter();
241 	if (p->p_stat == SIDL ||
242 	    p->p_stat == SZOMB ||
243 	    p->p_limit == NULL
244 	) {
245 		crit_exit();
246 		return(0);
247 	}
248 
249 	ttime = 0;
250 	FOREACH_LWP_IN_PROC(lp, p) {
251 		/*
252 		 * We may have caught an lp in the middle of being
253 		 * created, lwp_thread can be NULL.
254 		 */
255 		if (lp->lwp_thread) {
256 			ttime += lp->lwp_thread->td_sticks;
257 			ttime += lp->lwp_thread->td_uticks;
258 		}
259 	}
260 
261 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
262 	case PLIMIT_TESTCPU_KILL:
263 		killproc(p, "exceeded maximum CPU limit");
264 		break;
265 	case PLIMIT_TESTCPU_XCPU:
266 		if ((p->p_flag & P_XCPU) == 0) {
267 			p->p_flag |= P_XCPU;
268 			ksignal(p, SIGXCPU);
269 		}
270 		break;
271 	default:
272 		break;
273 	}
274 	crit_exit();
275 	return(0);
276 }
277 
278 /*
279  * This is only used by ps.  Generate a cpu percentage use over
280  * a period of one second.
281  *
282  * MPSAFE
283  */
284 void
285 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
286 {
287 	fixpt_t acc;
288 	int remticks;
289 
290 	acc = (cpticks << FSHIFT) / ttlticks;
291 	if (ttlticks >= ESTCPUFREQ) {
292 		lp->lwp_pctcpu = acc;
293 	} else {
294 		remticks = ESTCPUFREQ - ttlticks;
295 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
296 				ESTCPUFREQ;
297 	}
298 }
299 
300 /*
301  * tsleep/wakeup hash table parameters.  Try to find the sweet spot for
302  * like addresses being slept on.
303  */
304 #define TABLESIZE	1024
305 #define LOOKUP(x)	(((intptr_t)(x) >> 6) & (TABLESIZE - 1))
306 
307 static cpumask_t slpque_cpumasks[TABLESIZE];
308 
309 /*
310  * General scheduler initialization.  We force a reschedule 25 times
311  * a second by default.  Note that cpu0 is initialized in early boot and
312  * cannot make any high level calls.
313  *
314  * Each cpu has its own sleep queue.
315  */
316 void
317 sleep_gdinit(globaldata_t gd)
318 {
319 	static struct tslpque slpque_cpu0[TABLESIZE];
320 	int i;
321 
322 	if (gd->gd_cpuid == 0) {
323 		sched_quantum = (hz + 24) / 25;
324 		hogticks = 2 * sched_quantum;
325 
326 		gd->gd_tsleep_hash = slpque_cpu0;
327 	} else {
328 		gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
329 					    M_TSLEEP, M_WAITOK | M_ZERO);
330 	}
331 	for (i = 0; i < TABLESIZE; ++i)
332 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
333 }
334 
335 /*
336  * This is a dandy function that allows us to interlock tsleep/wakeup
337  * operations with unspecified upper level locks, such as lockmgr locks,
338  * simply by holding a critical section.  The sequence is:
339  *
340  *	(acquire upper level lock)
341  *	tsleep_interlock(blah)
342  *	(release upper level lock)
343  *	tsleep(blah, ...)
344  *
345  * Basically this functions queues us on the tsleep queue without actually
346  * descheduling us.  When tsleep() is later called with PINTERLOCK it
347  * assumes the thread was already queued, otherwise it queues it there.
348  *
349  * Thus it is possible to receive the wakeup prior to going to sleep and
350  * the race conditions are covered.
351  */
352 static __inline void
353 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
354 {
355 	thread_t td = gd->gd_curthread;
356 	int id;
357 
358 	crit_enter_quick(td);
359 	if (td->td_flags & TDF_TSLEEPQ) {
360 		id = LOOKUP(td->td_wchan);
361 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
362 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
363 			atomic_clear_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
364 	} else {
365 		td->td_flags |= TDF_TSLEEPQ;
366 	}
367 	id = LOOKUP(ident);
368 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
369 	atomic_set_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
370 	td->td_wchan = ident;
371 	td->td_wdomain = flags & PDOMAIN_MASK;
372 	crit_exit_quick(td);
373 }
374 
375 void
376 tsleep_interlock(const volatile void *ident, int flags)
377 {
378 	_tsleep_interlock(mycpu, ident, flags);
379 }
380 
381 /*
382  * Remove thread from sleepq.  Must be called with a critical section held.
383  */
384 static __inline void
385 _tsleep_remove(thread_t td)
386 {
387 	globaldata_t gd = mycpu;
388 	int id;
389 
390 	KKASSERT(td->td_gd == gd);
391 	if (td->td_flags & TDF_TSLEEPQ) {
392 		td->td_flags &= ~TDF_TSLEEPQ;
393 		id = LOOKUP(td->td_wchan);
394 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
395 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
396 			atomic_clear_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
397 		td->td_wchan = NULL;
398 		td->td_wdomain = 0;
399 	}
400 }
401 
402 void
403 tsleep_remove(thread_t td)
404 {
405 	_tsleep_remove(td);
406 }
407 
408 /*
409  * This function removes a thread from the tsleep queue and schedules
410  * it.  This function may act asynchronously.  The target thread may be
411  * sleeping on a different cpu.
412  *
413  * This function mus be called while in a critical section but if the
414  * target thread is sleeping on a different cpu we cannot safely probe
415  * td_flags.
416  */
417 static __inline
418 void
419 _tsleep_wakeup(struct thread *td)
420 {
421 #ifdef SMP
422 	globaldata_t gd = mycpu;
423 
424 	if (td->td_gd != gd) {
425 		lwkt_send_ipiq(td->td_gd, (ipifunc1_t)tsleep_wakeup, td);
426 		return;
427 	}
428 #endif
429 	_tsleep_remove(td);
430 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
431 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
432 		lwkt_schedule(td);
433 	}
434 }
435 
436 #ifdef SMP
437 static
438 void
439 tsleep_wakeup(struct thread *td)
440 {
441 	_tsleep_wakeup(td);
442 }
443 #endif
444 
445 
446 /*
447  * General sleep call.  Suspends the current process until a wakeup is
448  * performed on the specified identifier.  The process will then be made
449  * runnable with the specified priority.  Sleeps at most timo/hz seconds
450  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
451  * before and after sleeping, else signals are not checked.  Returns 0 if
452  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
453  * signal needs to be delivered, ERESTART is returned if the current system
454  * call should be restarted if possible, and EINTR is returned if the system
455  * call should be interrupted by the signal (return EINTR).
456  *
457  * Note that if we are a process, we release_curproc() before messing with
458  * the LWKT scheduler.
459  *
460  * During autoconfiguration or after a panic, a sleep will simply
461  * lower the priority briefly to allow interrupts, then return.
462  */
463 int
464 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
465 {
466 	struct thread *td = curthread;
467 	struct lwp *lp = td->td_lwp;
468 	struct proc *p = td->td_proc;		/* may be NULL */
469 	globaldata_t gd;
470 	int sig;
471 	int catch;
472 	int id;
473 	int error;
474 	int oldpri;
475 	struct callout thandle;
476 
477 	/*
478 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
479 	 * even in stable.  Just scrap it for now.
480 	 */
481 	if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
482 		/*
483 		 * After a panic, or before we actually have an operational
484 		 * softclock, just give interrupts a chance, then just return;
485 		 *
486 		 * don't run any other procs or panic below,
487 		 * in case this is the idle process and already asleep.
488 		 */
489 		splz();
490 		oldpri = td->td_pri;
491 		lwkt_setpri_self(safepri);
492 		lwkt_switch();
493 		lwkt_setpri_self(oldpri);
494 		return (0);
495 	}
496 	logtsleep2(tsleep_beg, ident);
497 	gd = td->td_gd;
498 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
499 
500 	/*
501 	 * NOTE: all of this occurs on the current cpu, including any
502 	 * callout-based wakeups, so a critical section is a sufficient
503 	 * interlock.
504 	 *
505 	 * The entire sequence through to where we actually sleep must
506 	 * run without breaking the critical section.
507 	 */
508 	catch = flags & PCATCH;
509 	error = 0;
510 	sig = 0;
511 
512 	crit_enter_quick(td);
513 
514 	KASSERT(ident != NULL, ("tsleep: no ident"));
515 	KASSERT(lp == NULL ||
516 		lp->lwp_stat == LSRUN ||	/* Obvious */
517 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
518 		("tsleep %p %s %d",
519 			ident, wmesg, lp->lwp_stat));
520 
521 	/*
522 	 * Setup for the current process (if this is a process).
523 	 */
524 	if (lp) {
525 		if (catch) {
526 			/*
527 			 * Early termination if PCATCH was set and a
528 			 * signal is pending, interlocked with the
529 			 * critical section.
530 			 *
531 			 * Early termination only occurs when tsleep() is
532 			 * entered while in a normal LSRUN state.
533 			 */
534 			if ((sig = CURSIG(lp)) != 0)
535 				goto resume;
536 
537 			/*
538 			 * Early termination if PCATCH was set and a
539 			 * mailbox signal was possibly delivered prior to
540 			 * the system call even being made, in order to
541 			 * allow the user to interlock without having to
542 			 * make additional system calls.
543 			 */
544 			if (p->p_flag & P_MAILBOX)
545 				goto resume;
546 
547 			/*
548 			 * Causes ksignal to wake us up when.
549 			 */
550 			lp->lwp_flag |= LWP_SINTR;
551 		}
552 	}
553 
554 	/*
555 	 * We interlock the sleep queue if the caller has not already done
556 	 * it for us.
557 	 */
558 	if ((flags & PINTERLOCKED) == 0) {
559 		id = LOOKUP(ident);
560 		_tsleep_interlock(gd, ident, flags);
561 	}
562 
563 	/*
564 	 *
565 	 * If no interlock was set we do an integrated interlock here.
566 	 * Make sure the current process has been untangled from
567 	 * the userland scheduler and initialize slptime to start
568 	 * counting.  We must interlock the sleep queue before doing
569 	 * this to avoid wakeup/process-ipi races which can occur under
570 	 * heavy loads.
571 	 */
572 	if (lp) {
573 		p->p_usched->release_curproc(lp);
574 		lp->lwp_slptime = 0;
575 	}
576 
577 	/*
578 	 * If the interlocked flag is set but our cpu bit in the slpqueue
579 	 * is no longer set, then a wakeup was processed inbetween the
580 	 * tsleep_interlock() (ours or the callers), and here.  This can
581 	 * occur under numerous circumstances including when we release the
582 	 * current process.
583 	 *
584 	 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
585 	 * to process incoming IPIs, thus draining incoming wakeups.
586 	 */
587 	if ((td->td_flags & TDF_TSLEEPQ) == 0) {
588 		logtsleep2(ilockfail, ident);
589 		goto resume;
590 	}
591 
592 	/*
593 	 * scheduling is blocked while in a critical section.  Coincide
594 	 * the descheduled-by-tsleep flag with the descheduling of the
595 	 * lwkt.
596 	 */
597 	lwkt_deschedule_self(td);
598 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
599 	td->td_wmesg = wmesg;
600 
601 	/*
602 	 * Setup the timeout, if any
603 	 */
604 	if (timo) {
605 		callout_init(&thandle);
606 		callout_reset(&thandle, timo, endtsleep, td);
607 	}
608 
609 	/*
610 	 * Beddy bye bye.
611 	 */
612 	if (lp) {
613 		/*
614 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
615 		 */
616 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
617 		/*
618 		 * tstop() sets LSSTOP, so don't fiddle with that.
619 		 */
620 		if (lp->lwp_stat != LSSTOP)
621 			lp->lwp_stat = LSSLEEP;
622 		lp->lwp_ru.ru_nvcsw++;
623 		lwkt_switch();
624 
625 		/*
626 		 * And when we are woken up, put us back in LSRUN.  If we
627 		 * slept for over a second, recalculate our estcpu.
628 		 */
629 		lp->lwp_stat = LSRUN;
630 		if (lp->lwp_slptime)
631 			p->p_usched->recalculate(lp);
632 		lp->lwp_slptime = 0;
633 	} else {
634 		lwkt_switch();
635 	}
636 
637 	/*
638 	 * Make sure we haven't switched cpus while we were asleep.  It's
639 	 * not supposed to happen.  Cleanup our temporary flags.
640 	 */
641 	KKASSERT(gd == td->td_gd);
642 
643 	/*
644 	 * Cleanup the timeout.
645 	 */
646 	if (timo) {
647 		if (td->td_flags & TDF_TIMEOUT) {
648 			td->td_flags &= ~TDF_TIMEOUT;
649 			error = EWOULDBLOCK;
650 		} else {
651 			callout_stop(&thandle);
652 		}
653 	}
654 
655 	/*
656 	 * Make sure we have been removed from the sleepq.  This should
657 	 * have been done for us already.
658 	 *
659 	 * However, it is possible for a scheduling IPI to be in flight
660 	 * from a previous tsleep/tsleep_interlock or due to a straight-out
661 	 * call to lwkt_schedule() (in the case of an interrupt thread).
662 	 * So don't complain if DESCHEDULED is still set.
663 	 */
664 	_tsleep_remove(td);
665 	td->td_wmesg = NULL;
666 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
667 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
668 	}
669 
670 	/*
671 	 * Figure out the correct error return.  If interrupted by a
672 	 * signal we want to return EINTR or ERESTART.
673 	 *
674 	 * If P_MAILBOX is set no automatic system call restart occurs
675 	 * and we return EINTR.  P_MAILBOX is meant to be used as an
676 	 * interlock, the user must poll it prior to any system call
677 	 * that it wishes to interlock a mailbox signal against since
678 	 * the flag is cleared on *any* system call that sleeps.
679 	 */
680 resume:
681 	if (p) {
682 		if (catch && error == 0) {
683 			if ((p->p_flag & P_MAILBOX) && sig == 0) {
684 				error = EINTR;
685 			} else if (sig != 0 || (sig = CURSIG(lp))) {
686 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
687 					error = EINTR;
688 				else
689 					error = ERESTART;
690 			}
691 		}
692 		lp->lwp_flag &= ~(LWP_BREAKTSLEEP | LWP_SINTR);
693 		p->p_flag &= ~P_MAILBOX;
694 	}
695 	logtsleep1(tsleep_end);
696 	crit_exit_quick(td);
697 	return (error);
698 }
699 
700 /*
701  * Interlocked spinlock sleep.  An exclusively held spinlock must
702  * be passed to ssleep().  The function will atomically release the
703  * spinlock and tsleep on the ident, then reacquire the spinlock and
704  * return.
705  *
706  * This routine is fairly important along the critical path, so optimize it
707  * heavily.
708  */
709 int
710 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
711        const char *wmesg, int timo)
712 {
713 	globaldata_t gd = mycpu;
714 	int error;
715 
716 	_tsleep_interlock(gd, ident, flags);
717 	spin_unlock_quick(gd, spin);
718 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
719 	spin_lock_quick(gd, spin);
720 
721 	return (error);
722 }
723 
724 int
725 lksleep(const volatile void *ident, struct lock *lock, int flags,
726 	const char *wmesg, int timo)
727 {
728 	globaldata_t gd = mycpu;
729 	int error;
730 
731 	_tsleep_interlock(gd, ident, flags);
732 	lockmgr(lock, LK_RELEASE);
733 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
734 	lockmgr(lock, LK_EXCLUSIVE);
735 
736 	return (error);
737 }
738 
739 /*
740  * Interlocked mutex sleep.  An exclusively held mutex must be passed
741  * to mtxsleep().  The function will atomically release the mutex
742  * and tsleep on the ident, then reacquire the mutex and return.
743  */
744 int
745 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
746 	 const char *wmesg, int timo)
747 {
748 	globaldata_t gd = mycpu;
749 	int error;
750 
751 	_tsleep_interlock(gd, ident, flags);
752 	mtx_unlock(mtx);
753 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
754 	mtx_lock_ex_quick(mtx, wmesg);
755 
756 	return (error);
757 }
758 
759 /*
760  * Interlocked serializer sleep.  An exclusively held serializer must
761  * be passed to zsleep().  The function will atomically release
762  * the serializer and tsleep on the ident, then reacquire the serializer
763  * and return.
764  */
765 int
766 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
767        const char *wmesg, int timo)
768 {
769 	globaldata_t gd = mycpu;
770 	int ret;
771 
772 	ASSERT_SERIALIZED(slz);
773 
774 	_tsleep_interlock(gd, ident, flags);
775 	lwkt_serialize_exit(slz);
776 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
777 	lwkt_serialize_enter(slz);
778 
779 	return ret;
780 }
781 
782 /*
783  * Directly block on the LWKT thread by descheduling it.  This
784  * is much faster then tsleep(), but the only legal way to wake
785  * us up is to directly schedule the thread.
786  *
787  * Setting TDF_SINTR will cause new signals to directly schedule us.
788  *
789  * This routine must be called while in a critical section.
790  */
791 int
792 lwkt_sleep(const char *wmesg, int flags)
793 {
794 	thread_t td = curthread;
795 	int sig;
796 
797 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
798 		td->td_flags |= TDF_BLOCKED;
799 		td->td_wmesg = wmesg;
800 		lwkt_deschedule_self(td);
801 		lwkt_switch();
802 		td->td_wmesg = NULL;
803 		td->td_flags &= ~TDF_BLOCKED;
804 		return(0);
805 	}
806 	if ((sig = CURSIG(td->td_lwp)) != 0) {
807 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
808 			return(EINTR);
809 		else
810 			return(ERESTART);
811 
812 	}
813 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
814 	td->td_wmesg = wmesg;
815 	lwkt_deschedule_self(td);
816 	lwkt_switch();
817 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
818 	td->td_wmesg = NULL;
819 	return(0);
820 }
821 
822 /*
823  * Implement the timeout for tsleep.
824  *
825  * We set LWP_BREAKTSLEEP to indicate that an event has occured, but
826  * we only call setrunnable if the process is not stopped.
827  *
828  * This type of callout timeout is scheduled on the same cpu the process
829  * is sleeping on.  Also, at the moment, the MP lock is held.
830  */
831 static void
832 endtsleep(void *arg)
833 {
834 	thread_t td = arg;
835 	struct lwp *lp;
836 
837 	crit_enter();
838 	lwkt_gettoken(&proc_token);
839 
840 	/*
841 	 * cpu interlock.  Thread flags are only manipulated on
842 	 * the cpu owning the thread.  proc flags are only manipulated
843 	 * by the older of the MP lock.  We have both.
844 	 */
845 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
846 		td->td_flags |= TDF_TIMEOUT;
847 
848 		if ((lp = td->td_lwp) != NULL) {
849 			lp->lwp_flag |= LWP_BREAKTSLEEP;
850 			if (lp->lwp_proc->p_stat != SSTOP)
851 				setrunnable(lp);
852 		} else {
853 			_tsleep_wakeup(td);
854 		}
855 	}
856 	lwkt_reltoken(&proc_token);
857 	crit_exit();
858 }
859 
860 /*
861  * Make all processes sleeping on the specified identifier runnable.
862  * count may be zero or one only.
863  *
864  * The domain encodes the sleep/wakeup domain AND the first cpu to check
865  * (which is always the current cpu).  As we iterate across cpus
866  *
867  * This call may run without the MP lock held.  We can only manipulate thread
868  * state on the cpu owning the thread.  We CANNOT manipulate process state
869  * at all.
870  *
871  * _wakeup() can be passed to an IPI so we can't use (const volatile
872  * void *ident).
873  */
874 static void
875 _wakeup(void *ident, int domain)
876 {
877 	struct tslpque *qp;
878 	struct thread *td;
879 	struct thread *ntd;
880 	globaldata_t gd;
881 #ifdef SMP
882 	cpumask_t mask;
883 #endif
884 	int id;
885 
886 	crit_enter();
887 	logtsleep2(wakeup_beg, ident);
888 	gd = mycpu;
889 	id = LOOKUP(ident);
890 	qp = &gd->gd_tsleep_hash[id];
891 restart:
892 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
893 		ntd = TAILQ_NEXT(td, td_sleepq);
894 		if (td->td_wchan == ident &&
895 		    td->td_wdomain == (domain & PDOMAIN_MASK)
896 		) {
897 			KKASSERT(td->td_gd == gd);
898 			_tsleep_remove(td);
899 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
900 				td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
901 				lwkt_schedule(td);
902 				if (domain & PWAKEUP_ONE)
903 					goto done;
904 			}
905 			goto restart;
906 		}
907 	}
908 
909 #ifdef SMP
910 	/*
911 	 * We finished checking the current cpu but there still may be
912 	 * more work to do.  Either wakeup_one was requested and no matching
913 	 * thread was found, or a normal wakeup was requested and we have
914 	 * to continue checking cpus.
915 	 *
916 	 * It should be noted that this scheme is actually less expensive then
917 	 * the old scheme when waking up multiple threads, since we send
918 	 * only one IPI message per target candidate which may then schedule
919 	 * multiple threads.  Before we could have wound up sending an IPI
920 	 * message for each thread on the target cpu (!= current cpu) that
921 	 * needed to be woken up.
922 	 *
923 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
924 	 * should be ok since we are passing idents in the IPI rather then
925 	 * thread pointers.
926 	 */
927 	if ((domain & PWAKEUP_MYCPU) == 0 &&
928 	    (mask = slpque_cpumasks[id] & gd->gd_other_cpus) != 0) {
929 		lwkt_send_ipiq2_mask(mask, _wakeup, ident,
930 				     domain | PWAKEUP_MYCPU);
931 	}
932 #endif
933 done:
934 	logtsleep1(wakeup_end);
935 	crit_exit();
936 }
937 
938 /*
939  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
940  */
941 void
942 wakeup(const volatile void *ident)
943 {
944     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
945 }
946 
947 /*
948  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
949  */
950 void
951 wakeup_one(const volatile void *ident)
952 {
953     /* XXX potentially round-robin the first responding cpu */
954     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
955 }
956 
957 /*
958  * Wakeup threads tsleep()ing on the specified ident on the current cpu
959  * only.
960  */
961 void
962 wakeup_mycpu(const volatile void *ident)
963 {
964     _wakeup(__DEALL(ident), PWAKEUP_MYCPU);
965 }
966 
967 /*
968  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
969  * only.
970  */
971 void
972 wakeup_mycpu_one(const volatile void *ident)
973 {
974     /* XXX potentially round-robin the first responding cpu */
975     _wakeup(__DEALL(ident), PWAKEUP_MYCPU|PWAKEUP_ONE);
976 }
977 
978 /*
979  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
980  * only.
981  */
982 void
983 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
984 {
985 #ifdef SMP
986     if (gd == mycpu) {
987 	_wakeup(__DEALL(ident), PWAKEUP_MYCPU);
988     } else {
989 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident), PWAKEUP_MYCPU);
990     }
991 #else
992     _wakeup(__DEALL(ident), PWAKEUP_MYCPU);
993 #endif
994 }
995 
996 /*
997  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
998  * only.
999  */
1000 void
1001 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1002 {
1003 #ifdef SMP
1004     if (gd == mycpu) {
1005 	_wakeup(__DEALL(ident), PWAKEUP_MYCPU | PWAKEUP_ONE);
1006     } else {
1007 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1008 			PWAKEUP_MYCPU | PWAKEUP_ONE);
1009     }
1010 #else
1011     _wakeup(__DEALL(ident), PWAKEUP_MYCPU | PWAKEUP_ONE);
1012 #endif
1013 }
1014 
1015 /*
1016  * Wakeup all threads waiting on the specified ident that slept using
1017  * the specified domain, on all cpus.
1018  */
1019 void
1020 wakeup_domain(const volatile void *ident, int domain)
1021 {
1022     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1023 }
1024 
1025 /*
1026  * Wakeup one thread waiting on the specified ident that slept using
1027  * the specified  domain, on any cpu.
1028  */
1029 void
1030 wakeup_domain_one(const volatile void *ident, int domain)
1031 {
1032     /* XXX potentially round-robin the first responding cpu */
1033     _wakeup(__DEALL(ident),
1034 	    PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1035 }
1036 
1037 /*
1038  * setrunnable()
1039  *
1040  * Make a process runnable.  The proc_token must be held on call.  This only
1041  * has an effect if we are in SSLEEP.  We only break out of the
1042  * tsleep if LWP_BREAKTSLEEP is set, otherwise we just fix-up the state.
1043  *
1044  * NOTE: With the MP lock held we can only safely manipulate the process
1045  * structure.  We cannot safely manipulate the thread structure.
1046  */
1047 void
1048 setrunnable(struct lwp *lp)
1049 {
1050 	ASSERT_LWKT_TOKEN_HELD(&proc_token);
1051 	crit_enter();
1052 	if (lp->lwp_stat == LSSTOP)
1053 		lp->lwp_stat = LSSLEEP;
1054 	if (lp->lwp_stat == LSSLEEP && (lp->lwp_flag & LWP_BREAKTSLEEP))
1055 		_tsleep_wakeup(lp->lwp_thread);
1056 	crit_exit();
1057 }
1058 
1059 /*
1060  * The process is stopped due to some condition, usually because p_stat is
1061  * set to SSTOP, but also possibly due to being traced.
1062  *
1063  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
1064  * because the parent may check the child's status before the child actually
1065  * gets to this routine.
1066  *
1067  * This routine is called with the current lwp only, typically just
1068  * before returning to userland.
1069  *
1070  * Setting LWP_BREAKTSLEEP before entering the tsleep will cause a passive
1071  * SIGCONT to break out of the tsleep.
1072  */
1073 void
1074 tstop(void)
1075 {
1076 	struct lwp *lp = curthread->td_lwp;
1077 	struct proc *p = lp->lwp_proc;
1078 
1079 	crit_enter();
1080 	/*
1081 	 * If LWP_WSTOP is set, we were sleeping
1082 	 * while our process was stopped.  At this point
1083 	 * we were already counted as stopped.
1084 	 */
1085 	if ((lp->lwp_flag & LWP_WSTOP) == 0) {
1086 		/*
1087 		 * If we're the last thread to stop, signal
1088 		 * our parent.
1089 		 */
1090 		p->p_nstopped++;
1091 		lp->lwp_flag |= LWP_WSTOP;
1092 		wakeup(&p->p_nstopped);
1093 		if (p->p_nstopped == p->p_nthreads) {
1094 			p->p_flag &= ~P_WAITED;
1095 			wakeup(p->p_pptr);
1096 			if ((p->p_pptr->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1097 				ksignal(p->p_pptr, SIGCHLD);
1098 		}
1099 	}
1100 	while (p->p_stat == SSTOP) {
1101 		lp->lwp_flag |= LWP_BREAKTSLEEP;
1102 		lp->lwp_stat = LSSTOP;
1103 		tsleep(p, 0, "stop", 0);
1104 	}
1105 	p->p_nstopped--;
1106 	lp->lwp_flag &= ~LWP_WSTOP;
1107 	crit_exit();
1108 }
1109 
1110 /*
1111  * Compute a tenex style load average of a quantity on
1112  * 1, 5 and 15 minute intervals.
1113  */
1114 static int loadav_count_runnable(struct lwp *p, void *data);
1115 
1116 static void
1117 loadav(void *arg)
1118 {
1119 	struct loadavg *avg;
1120 	int i, nrun;
1121 
1122 	nrun = 0;
1123 	alllwp_scan(loadav_count_runnable, &nrun);
1124 	avg = &averunnable;
1125 	for (i = 0; i < 3; i++) {
1126 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1127 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1128 	}
1129 
1130 	/*
1131 	 * Schedule the next update to occur after 5 seconds, but add a
1132 	 * random variation to avoid synchronisation with processes that
1133 	 * run at regular intervals.
1134 	 */
1135 	callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1136 		      loadav, NULL);
1137 }
1138 
1139 static int
1140 loadav_count_runnable(struct lwp *lp, void *data)
1141 {
1142 	int *nrunp = data;
1143 	thread_t td;
1144 
1145 	switch (lp->lwp_stat) {
1146 	case LSRUN:
1147 		if ((td = lp->lwp_thread) == NULL)
1148 			break;
1149 		if (td->td_flags & TDF_BLOCKED)
1150 			break;
1151 		++*nrunp;
1152 		break;
1153 	default:
1154 		break;
1155 	}
1156 	return(0);
1157 }
1158 
1159 /* ARGSUSED */
1160 static void
1161 sched_setup(void *dummy)
1162 {
1163 	callout_init(&loadav_callout);
1164 	callout_init(&schedcpu_callout);
1165 
1166 	/* Kick off timeout driven events by calling first time. */
1167 	schedcpu(NULL);
1168 	loadav(NULL);
1169 }
1170 
1171