xref: /dragonfly/sys/kern/kern_synch.c (revision 23265324)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.77 2007/02/19 01:14:23 corecode Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <sys/sysctl.h>
53 #include <sys/lock.h>
54 #ifdef KTRACE
55 #include <sys/uio.h>
56 #include <sys/ktrace.h>
57 #endif
58 #include <sys/xwait.h>
59 #include <sys/ktr.h>
60 
61 #include <sys/thread2.h>
62 #include <sys/spinlock2.h>
63 
64 #include <machine/cpu.h>
65 #include <machine/smp.h>
66 
67 TAILQ_HEAD(tslpque, thread);
68 
69 static void sched_setup (void *dummy);
70 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
71 
72 int	hogticks;
73 int	lbolt;
74 int	lbolt_syncer;
75 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
76 int	ncpus;
77 int	ncpus2, ncpus2_shift, ncpus2_mask;
78 int	safepri;
79 
80 static struct callout loadav_callout;
81 static struct callout schedcpu_callout;
82 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
83 
84 #if !defined(KTR_TSLEEP)
85 #define KTR_TSLEEP	KTR_ALL
86 #endif
87 KTR_INFO_MASTER(tsleep);
88 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter", 0);
89 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 0, "tsleep exit", 0);
90 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 0, "wakeup enter", 0);
91 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 0, "wakeup exit", 0);
92 #define logtsleep(name)	KTR_LOG(tsleep_ ## name)
93 
94 struct loadavg averunnable =
95 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
96 /*
97  * Constants for averages over 1, 5, and 15 minutes
98  * when sampling at 5 second intervals.
99  */
100 static fixpt_t cexp[3] = {
101 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
102 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
103 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
104 };
105 
106 static void	endtsleep (void *);
107 static void	unsleep_and_wakeup_thread(struct thread *td);
108 static void	loadav (void *arg);
109 static void	schedcpu (void *arg);
110 
111 /*
112  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
113  * Note that 'tick' is in microseconds per tick.
114  */
115 static int
116 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
117 {
118 	int error, new_val;
119 
120 	new_val = sched_quantum * tick;
121 	error = sysctl_handle_int(oidp, &new_val, 0, req);
122         if (error != 0 || req->newptr == NULL)
123 		return (error);
124 	if (new_val < tick)
125 		return (EINVAL);
126 	sched_quantum = new_val / tick;
127 	hogticks = 2 * sched_quantum;
128 	return (0);
129 }
130 
131 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
132 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
133 
134 /*
135  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
136  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
137  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
138  *
139  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
140  *     1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
141  *
142  * If you don't want to bother with the faster/more-accurate formula, you
143  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
144  * (more general) method of calculating the %age of CPU used by a process.
145  *
146  * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
147  */
148 #define CCPU_SHIFT	11
149 
150 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
151 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
152 
153 /*
154  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
155  */
156 int     fscale __unused = FSCALE;	/* exported to systat */
157 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
158 
159 /*
160  * Recompute process priorities, once a second.
161  *
162  * Since the userland schedulers are typically event oriented, if the
163  * estcpu calculation at wakeup() time is not sufficient to make a
164  * process runnable relative to other processes in the system we have
165  * a 1-second recalc to help out.
166  *
167  * This code also allows us to store sysclock_t data in the process structure
168  * without fear of an overrun, since sysclock_t are guarenteed to hold
169  * several seconds worth of count.
170  *
171  * WARNING!  callouts can preempt normal threads.  However, they will not
172  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
173  */
174 static int schedcpu_stats(struct proc *p, void *data __unused);
175 static int schedcpu_resource(struct proc *p, void *data __unused);
176 
177 static void
178 schedcpu(void *arg)
179 {
180 	allproc_scan(schedcpu_stats, NULL);
181 	allproc_scan(schedcpu_resource, NULL);
182 	wakeup((caddr_t)&lbolt);
183 	wakeup((caddr_t)&lbolt_syncer);
184 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
185 }
186 
187 /*
188  * General process statistics once a second
189  */
190 static int
191 schedcpu_stats(struct proc *p, void *data __unused)
192 {
193 	struct lwp *lp;
194 
195 	crit_enter();
196 	p->p_swtime++;
197 	FOREACH_LWP_IN_PROC(lp, p) {
198 		if (lp->lwp_stat == LSSLEEP)
199 			lp->lwp_slptime++;
200 
201 		/*
202 		 * Only recalculate processes that are active or have slept
203 		 * less then 2 seconds.  The schedulers understand this.
204 		 */
205 		if (lp->lwp_slptime <= 1) {
206 			p->p_usched->recalculate(lp);
207 		} else {
208 			lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
209 		}
210 	}
211 	crit_exit();
212 	return(0);
213 }
214 
215 /*
216  * Resource checks.  XXX break out since ksignal/killproc can block,
217  * limiting us to one process killed per second.  There is probably
218  * a better way.
219  */
220 static int
221 schedcpu_resource(struct proc *p, void *data __unused)
222 {
223 	u_int64_t ttime;
224 	struct lwp *lp;
225 
226 	crit_enter();
227 	if (p->p_stat == SIDL ||
228 	    p->p_stat == SZOMB ||
229 	    p->p_limit == NULL
230 	) {
231 		crit_exit();
232 		return(0);
233 	}
234 
235 	ttime = 0;
236 	FOREACH_LWP_IN_PROC(lp, p) {
237 		ttime += lp->lwp_thread->td_sticks;
238 		ttime += lp->lwp_thread->td_uticks;
239 	}
240 
241 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
242 	case PLIMIT_TESTCPU_KILL:
243 		killproc(p, "exceeded maximum CPU limit");
244 		break;
245 	case PLIMIT_TESTCPU_XCPU:
246 		if ((p->p_flag & P_XCPU) == 0) {
247 			p->p_flag |= P_XCPU;
248 			ksignal(p, SIGXCPU);
249 		}
250 		break;
251 	default:
252 		break;
253 	}
254 	crit_exit();
255 	return(0);
256 }
257 
258 /*
259  * This is only used by ps.  Generate a cpu percentage use over
260  * a period of one second.
261  *
262  * MPSAFE
263  */
264 void
265 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
266 {
267 	fixpt_t acc;
268 	int remticks;
269 
270 	acc = (cpticks << FSHIFT) / ttlticks;
271 	if (ttlticks >= ESTCPUFREQ) {
272 		lp->lwp_pctcpu = acc;
273 	} else {
274 		remticks = ESTCPUFREQ - ttlticks;
275 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
276 				ESTCPUFREQ;
277 	}
278 }
279 
280 /*
281  * We're only looking at 7 bits of the address; everything is
282  * aligned to 4, lots of things are aligned to greater powers
283  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
284  */
285 #define TABLESIZE	128
286 #define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
287 
288 static cpumask_t slpque_cpumasks[TABLESIZE];
289 
290 /*
291  * General scheduler initialization.  We force a reschedule 25 times
292  * a second by default.  Note that cpu0 is initialized in early boot and
293  * cannot make any high level calls.
294  *
295  * Each cpu has its own sleep queue.
296  */
297 void
298 sleep_gdinit(globaldata_t gd)
299 {
300 	static struct tslpque slpque_cpu0[TABLESIZE];
301 	int i;
302 
303 	if (gd->gd_cpuid == 0) {
304 		sched_quantum = (hz + 24) / 25;
305 		hogticks = 2 * sched_quantum;
306 
307 		gd->gd_tsleep_hash = slpque_cpu0;
308 	} else {
309 		gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
310 					    M_TSLEEP, M_WAITOK | M_ZERO);
311 	}
312 	for (i = 0; i < TABLESIZE; ++i)
313 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
314 }
315 
316 /*
317  * General sleep call.  Suspends the current process until a wakeup is
318  * performed on the specified identifier.  The process will then be made
319  * runnable with the specified priority.  Sleeps at most timo/hz seconds
320  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
321  * before and after sleeping, else signals are not checked.  Returns 0 if
322  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
323  * signal needs to be delivered, ERESTART is returned if the current system
324  * call should be restarted if possible, and EINTR is returned if the system
325  * call should be interrupted by the signal (return EINTR).
326  *
327  * Note that if we are a process, we release_curproc() before messing with
328  * the LWKT scheduler.
329  *
330  * During autoconfiguration or after a panic, a sleep will simply
331  * lower the priority briefly to allow interrupts, then return.
332  */
333 int
334 tsleep(void *ident, int flags, const char *wmesg, int timo)
335 {
336 	struct thread *td = curthread;
337 	struct lwp *lp = td->td_lwp;
338 	struct proc *p = td->td_proc;		/* may be NULL */
339 	globaldata_t gd;
340 	int sig;
341 	int catch;
342 	int id;
343 	int error;
344 	int oldpri;
345 	struct callout thandle;
346 
347 	/*
348 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
349 	 * even in stable.  Just scrap it for now.
350 	 */
351 	if (cold || panicstr) {
352 		/*
353 		 * After a panic, or during autoconfiguration,
354 		 * just give interrupts a chance, then just return;
355 		 * don't run any other procs or panic below,
356 		 * in case this is the idle process and already asleep.
357 		 */
358 		splz();
359 		oldpri = td->td_pri & TDPRI_MASK;
360 		lwkt_setpri_self(safepri);
361 		lwkt_switch();
362 		lwkt_setpri_self(oldpri);
363 		return (0);
364 	}
365 	logtsleep(tsleep_beg);
366 	gd = td->td_gd;
367 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
368 
369 	/*
370 	 * NOTE: all of this occurs on the current cpu, including any
371 	 * callout-based wakeups, so a critical section is a sufficient
372 	 * interlock.
373 	 *
374 	 * The entire sequence through to where we actually sleep must
375 	 * run without breaking the critical section.
376 	 */
377 	id = LOOKUP(ident);
378 	catch = flags & PCATCH;
379 	error = 0;
380 	sig = 0;
381 
382 	crit_enter_quick(td);
383 
384 	KASSERT(ident != NULL, ("tsleep: no ident"));
385 	KASSERT(lp == NULL || lp->lwp_stat == LSRUN, ("tsleep %p %s %d",
386 		ident, wmesg, lp->lwp_stat));
387 
388 	/*
389 	 * Setup for the current process (if this is a process).
390 	 */
391 	if (lp) {
392 		if (catch) {
393 			/*
394 			 * Early termination if PCATCH was set and a
395 			 * signal is pending, interlocked with the
396 			 * critical section.
397 			 *
398 			 * Early termination only occurs when tsleep() is
399 			 * entered while in a normal LSRUN state.
400 			 */
401 			if ((sig = CURSIG(lp)) != 0)
402 				goto resume;
403 
404 			/*
405 			 * Early termination if PCATCH was set and a
406 			 * mailbox signal was possibly delivered prior to
407 			 * the system call even being made, in order to
408 			 * allow the user to interlock without having to
409 			 * make additional system calls.
410 			 */
411 			if (p->p_flag & P_MAILBOX)
412 				goto resume;
413 
414 			/*
415 			 * Causes ksignal to wake us up when.
416 			 */
417 			lp->lwp_flag |= LWP_SINTR;
418 		}
419 
420 		/*
421 		 * Make sure the current process has been untangled from
422 		 * the userland scheduler and initialize slptime to start
423 		 * counting.
424 		 */
425 		if (flags & PNORESCHED)
426 			td->td_flags |= TDF_NORESCHED;
427 		p->p_usched->release_curproc(lp);
428 		lp->lwp_slptime = 0;
429 	}
430 
431 	/*
432 	 * Move our thread to the correct queue and setup our wchan, etc.
433 	 */
434 	lwkt_deschedule_self(td);
435 	td->td_flags |= TDF_TSLEEPQ;
436 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_threadq);
437 	atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
438 
439 	td->td_wchan = ident;
440 	td->td_wmesg = wmesg;
441 	td->td_wdomain = flags & PDOMAIN_MASK;
442 
443 	/*
444 	 * Setup the timeout, if any
445 	 */
446 	if (timo) {
447 		callout_init(&thandle);
448 		callout_reset(&thandle, timo, endtsleep, td);
449 	}
450 
451 	/*
452 	 * Beddy bye bye.
453 	 */
454 	if (lp) {
455 		/*
456 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
457 		 */
458 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
459 		lp->lwp_stat = LSSLEEP;
460 		lp->lwp_ru.ru_nvcsw++;
461 		lwkt_switch();
462 
463 		/*
464 		 * And when we are woken up, put us back in LSRUN.  If we
465 		 * slept for over a second, recalculate our estcpu.
466 		 */
467 		lp->lwp_stat = LSRUN;
468 		if (lp->lwp_slptime)
469 			p->p_usched->recalculate(lp);
470 		lp->lwp_slptime = 0;
471 	} else {
472 		lwkt_switch();
473 	}
474 
475 	/*
476 	 * Make sure we haven't switched cpus while we were asleep.  It's
477 	 * not supposed to happen.  Cleanup our temporary flags.
478 	 */
479 	KKASSERT(gd == td->td_gd);
480 	td->td_flags &= ~TDF_NORESCHED;
481 
482 	/*
483 	 * Cleanup the timeout.
484 	 */
485 	if (timo) {
486 		if (td->td_flags & TDF_TIMEOUT) {
487 			td->td_flags &= ~TDF_TIMEOUT;
488 			if (sig == 0)
489 				error = EWOULDBLOCK;
490 		} else {
491 			callout_stop(&thandle);
492 		}
493 	}
494 
495 	/*
496 	 * Since td_threadq is used both for our run queue AND for the
497 	 * tsleep hash queue, we can't still be on it at this point because
498 	 * we've gotten cpu back.
499 	 */
500 	KASSERT((td->td_flags & TDF_TSLEEPQ) == 0, ("tsleep: impossible thread flags %08x", td->td_flags));
501 	td->td_wchan = NULL;
502 	td->td_wmesg = NULL;
503 	td->td_wdomain = 0;
504 
505 	/*
506 	 * Figure out the correct error return.  If interrupted by a
507 	 * signal we want to return EINTR or ERESTART.
508 	 *
509 	 * If P_MAILBOX is set no automatic system call restart occurs
510 	 * and we return EINTR.  P_MAILBOX is meant to be used as an
511 	 * interlock, the user must poll it prior to any system call
512 	 * that it wishes to interlock a mailbox signal against since
513 	 * the flag is cleared on *any* system call that sleeps.
514 	 */
515 resume:
516 	if (p) {
517 		if (catch && error == 0) {
518 			if ((p->p_flag & P_MAILBOX) && sig == 0) {
519 				error = EINTR;
520 			} else if (sig != 0 || (sig = CURSIG(lp))) {
521 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
522 					error = EINTR;
523 				else
524 					error = ERESTART;
525 			}
526 		}
527 		lp->lwp_flag &= ~(LWP_BREAKTSLEEP | LWP_SINTR);
528 		p->p_flag &= ~P_MAILBOX;
529 	}
530 	logtsleep(tsleep_end);
531 	crit_exit_quick(td);
532 	return (error);
533 }
534 
535 /*
536  * This is a dandy function that allows us to interlock tsleep/wakeup
537  * operations with unspecified upper level locks, such as lockmgr locks,
538  * simply by holding a critical section.  The sequence is:
539  *
540  *	(enter critical section)
541  *	(acquire upper level lock)
542  *	tsleep_interlock(blah)
543  *	(release upper level lock)
544  *	tsleep(blah, ...)
545  *	(exit critical section)
546  *
547  * Basically this function sets our cpumask for the ident which informs
548  * other cpus that our cpu 'might' be waiting (or about to wait on) the
549  * hash index related to the ident.  The critical section prevents another
550  * cpu's wakeup() from being processed on our cpu until we are actually
551  * able to enter the tsleep().  Thus, no race occurs between our attempt
552  * to release a resource and sleep, and another cpu's attempt to acquire
553  * a resource and call wakeup.
554  *
555  * There isn't much of a point to this function unless you call it while
556  * holding a critical section.
557  */
558 static __inline void
559 _tsleep_interlock(globaldata_t gd, void *ident)
560 {
561 	int id = LOOKUP(ident);
562 
563 	atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
564 }
565 
566 void
567 tsleep_interlock(void *ident)
568 {
569 	_tsleep_interlock(mycpu, ident);
570 }
571 
572 /*
573  * Interlocked spinlock sleep.  An exclusively held spinlock must
574  * be passed to msleep().  The function will atomically release the
575  * spinlock and tsleep on the ident, then reacquire the spinlock and
576  * return.
577  *
578  * This routine is fairly important along the critical path, so optimize it
579  * heavily.
580  */
581 int
582 msleep(void *ident, struct spinlock *spin, int flags,
583        const char *wmesg, int timo)
584 {
585 	globaldata_t gd = mycpu;
586 	int error;
587 
588 	crit_enter_gd(gd);
589 	_tsleep_interlock(gd, ident);
590 	spin_unlock_wr_quick(gd, spin);
591 	error = tsleep(ident, flags, wmesg, timo);
592 	spin_lock_wr_quick(gd, spin);
593 	crit_exit_gd(gd);
594 
595 	return (error);
596 }
597 
598 /*
599  * Implement the timeout for tsleep.
600  *
601  * We set LWP_BREAKTSLEEP to indicate that an event has occured, but
602  * we only call setrunnable if the process is not stopped.
603  *
604  * This type of callout timeout is scheduled on the same cpu the process
605  * is sleeping on.  Also, at the moment, the MP lock is held.
606  */
607 static void
608 endtsleep(void *arg)
609 {
610 	thread_t td = arg;
611 	struct lwp *lp;
612 
613 	ASSERT_MP_LOCK_HELD(curthread);
614 	crit_enter();
615 
616 	/*
617 	 * cpu interlock.  Thread flags are only manipulated on
618 	 * the cpu owning the thread.  proc flags are only manipulated
619 	 * by the older of the MP lock.  We have both.
620 	 */
621 	if (td->td_flags & TDF_TSLEEPQ) {
622 		td->td_flags |= TDF_TIMEOUT;
623 
624 		if ((lp = td->td_lwp) != NULL) {
625 			lp->lwp_flag |= LWP_BREAKTSLEEP;
626 			if (lp->lwp_proc->p_stat != SSTOP)
627 				setrunnable(lp);
628 		} else {
629 			unsleep_and_wakeup_thread(td);
630 		}
631 	}
632 	crit_exit();
633 }
634 
635 /*
636  * Unsleep and wakeup a thread.  This function runs without the MP lock
637  * which means that it can only manipulate thread state on the owning cpu,
638  * and cannot touch the process state at all.
639  */
640 static
641 void
642 unsleep_and_wakeup_thread(struct thread *td)
643 {
644 	globaldata_t gd = mycpu;
645 	int id;
646 
647 #ifdef SMP
648 	if (td->td_gd != gd) {
649 		lwkt_send_ipiq(td->td_gd, (ipifunc1_t)unsleep_and_wakeup_thread, td);
650 		return;
651 	}
652 #endif
653 	crit_enter();
654 	if (td->td_flags & TDF_TSLEEPQ) {
655 		td->td_flags &= ~TDF_TSLEEPQ;
656 		id = LOOKUP(td->td_wchan);
657 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_threadq);
658 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
659 			atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
660 		lwkt_schedule(td);
661 	}
662 	crit_exit();
663 }
664 
665 /*
666  * Make all processes sleeping on the specified identifier runnable.
667  * count may be zero or one only.
668  *
669  * The domain encodes the sleep/wakeup domain AND the first cpu to check
670  * (which is always the current cpu).  As we iterate across cpus
671  *
672  * This call may run without the MP lock held.  We can only manipulate thread
673  * state on the cpu owning the thread.  We CANNOT manipulate process state
674  * at all.
675  */
676 static void
677 _wakeup(void *ident, int domain)
678 {
679 	struct tslpque *qp;
680 	struct thread *td;
681 	struct thread *ntd;
682 	globaldata_t gd;
683 #ifdef SMP
684 	cpumask_t mask;
685 	cpumask_t tmask;
686 	int startcpu;
687 	int nextcpu;
688 #endif
689 	int id;
690 
691 	crit_enter();
692 	logtsleep(wakeup_beg);
693 	gd = mycpu;
694 	id = LOOKUP(ident);
695 	qp = &gd->gd_tsleep_hash[id];
696 restart:
697 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
698 		ntd = TAILQ_NEXT(td, td_threadq);
699 		if (td->td_wchan == ident &&
700 		    td->td_wdomain == (domain & PDOMAIN_MASK)
701 		) {
702 			KKASSERT(td->td_flags & TDF_TSLEEPQ);
703 			td->td_flags &= ~TDF_TSLEEPQ;
704 			TAILQ_REMOVE(qp, td, td_threadq);
705 			if (TAILQ_FIRST(qp) == NULL) {
706 				atomic_clear_int(&slpque_cpumasks[id],
707 						 gd->gd_cpumask);
708 			}
709 			lwkt_schedule(td);
710 			if (domain & PWAKEUP_ONE)
711 				goto done;
712 			goto restart;
713 		}
714 	}
715 
716 #ifdef SMP
717 	/*
718 	 * We finished checking the current cpu but there still may be
719 	 * more work to do.  Either wakeup_one was requested and no matching
720 	 * thread was found, or a normal wakeup was requested and we have
721 	 * to continue checking cpus.
722 	 *
723 	 * The cpu that started the wakeup sequence is encoded in the domain.
724 	 * We use this information to determine which cpus still need to be
725 	 * checked, locate a candidate cpu, and chain the wakeup
726 	 * asynchronously with an IPI message.
727 	 *
728 	 * It should be noted that this scheme is actually less expensive then
729 	 * the old scheme when waking up multiple threads, since we send
730 	 * only one IPI message per target candidate which may then schedule
731 	 * multiple threads.  Before we could have wound up sending an IPI
732 	 * message for each thread on the target cpu (!= current cpu) that
733 	 * needed to be woken up.
734 	 *
735 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
736 	 * should be ok since we are passing idents in the IPI rather then
737 	 * thread pointers.
738 	 */
739 	if ((domain & PWAKEUP_MYCPU) == 0 &&
740 	    (mask = slpque_cpumasks[id]) != 0
741 	) {
742 		/*
743 		 * Look for a cpu that might have work to do.  Mask out cpus
744 		 * which have already been processed.
745 		 *
746 		 * 31xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0
747 		 *        ^        ^           ^
748 		 *      start   currentcpu    start
749 		 *      case2                 case1
750 		 *        *        *           *
751 		 * 11111111111111110000000000000111	case1
752 		 * 00000000111111110000000000000000	case2
753 		 *
754 		 * case1:  We started at start_case1 and processed through
755 		 *  	   to the current cpu.  We have to check any bits
756 		 *	   after the current cpu, then check bits before
757 		 *         the starting cpu.
758 		 *
759 		 * case2:  We have already checked all the bits from
760 		 *         start_case2 to the end, and from 0 to the current
761 		 *         cpu.  We just have the bits from the current cpu
762 		 *         to start_case2 left to check.
763 		 */
764 		startcpu = PWAKEUP_DECODE(domain);
765 		if (gd->gd_cpuid >= startcpu) {
766 			/*
767 			 * CASE1
768 			 */
769 			tmask = mask & ~((gd->gd_cpumask << 1) - 1);
770 			if (mask & tmask) {
771 				nextcpu = bsfl(mask & tmask);
772 				lwkt_send_ipiq2(globaldata_find(nextcpu),
773 						_wakeup, ident, domain);
774 			} else {
775 				tmask = (1 << startcpu) - 1;
776 				if (mask & tmask) {
777 					nextcpu = bsfl(mask & tmask);
778 					lwkt_send_ipiq2(
779 						    globaldata_find(nextcpu),
780 						    _wakeup, ident, domain);
781 				}
782 			}
783 		} else {
784 			/*
785 			 * CASE2
786 			 */
787 			tmask = ~((gd->gd_cpumask << 1) - 1) &
788 				 ((1 << startcpu) - 1);
789 			if (mask & tmask) {
790 				nextcpu = bsfl(mask & tmask);
791 				lwkt_send_ipiq2(globaldata_find(nextcpu),
792 						_wakeup, ident, domain);
793 			}
794 		}
795 	}
796 #endif
797 done:
798 	logtsleep(wakeup_end);
799 	crit_exit();
800 }
801 
802 /*
803  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
804  */
805 void
806 wakeup(void *ident)
807 {
808     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
809 }
810 
811 /*
812  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
813  */
814 void
815 wakeup_one(void *ident)
816 {
817     /* XXX potentially round-robin the first responding cpu */
818     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
819 }
820 
821 /*
822  * Wakeup threads tsleep()ing on the specified ident on the current cpu
823  * only.
824  */
825 void
826 wakeup_mycpu(void *ident)
827 {
828     _wakeup(ident, PWAKEUP_MYCPU);
829 }
830 
831 /*
832  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
833  * only.
834  */
835 void
836 wakeup_mycpu_one(void *ident)
837 {
838     /* XXX potentially round-robin the first responding cpu */
839     _wakeup(ident, PWAKEUP_MYCPU|PWAKEUP_ONE);
840 }
841 
842 /*
843  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
844  * only.
845  */
846 void
847 wakeup_oncpu(globaldata_t gd, void *ident)
848 {
849 #ifdef SMP
850     if (gd == mycpu) {
851 	_wakeup(ident, PWAKEUP_MYCPU);
852     } else {
853 	lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU);
854     }
855 #else
856     _wakeup(ident, PWAKEUP_MYCPU);
857 #endif
858 }
859 
860 /*
861  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
862  * only.
863  */
864 void
865 wakeup_oncpu_one(globaldata_t gd, void *ident)
866 {
867 #ifdef SMP
868     if (gd == mycpu) {
869 	_wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
870     } else {
871 	lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
872     }
873 #else
874     _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
875 #endif
876 }
877 
878 /*
879  * Wakeup all threads waiting on the specified ident that slept using
880  * the specified domain, on all cpus.
881  */
882 void
883 wakeup_domain(void *ident, int domain)
884 {
885     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
886 }
887 
888 /*
889  * Wakeup one thread waiting on the specified ident that slept using
890  * the specified  domain, on any cpu.
891  */
892 void
893 wakeup_domain_one(void *ident, int domain)
894 {
895     /* XXX potentially round-robin the first responding cpu */
896     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
897 }
898 
899 /*
900  * setrunnable()
901  *
902  * Make a process runnable.  The MP lock must be held on call.  This only
903  * has an effect if we are in SSLEEP.  We only break out of the
904  * tsleep if LWP_BREAKTSLEEP is set, otherwise we just fix-up the state.
905  *
906  * NOTE: With the MP lock held we can only safely manipulate the process
907  * structure.  We cannot safely manipulate the thread structure.
908  */
909 void
910 setrunnable(struct lwp *lp)
911 {
912 	enum lwpstat stat;
913 
914 	crit_enter();
915 	ASSERT_MP_LOCK_HELD(curthread);
916 	stat = lp->lwp_stat;
917 	lp->lwp_stat = LSRUN;
918 	if (stat == LSSLEEP && (lp->lwp_flag & LWP_BREAKTSLEEP))
919 		unsleep_and_wakeup_thread(lp->lwp_thread);
920 	crit_exit();
921 }
922 
923 /*
924  * The process is stopped due to some condition, usually because p_stat is
925  * set to SSTOP, but also possibly due to being traced.
926  *
927  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
928  * because the parent may check the child's status before the child actually
929  * gets to this routine.
930  *
931  * This routine is called with the current lwp only, typically just
932  * before returning to userland.
933  *
934  * Setting LWP_BREAKTSLEEP before entering the tsleep will cause a passive
935  * SIGCONT to break out of the tsleep.
936  */
937 void
938 tstop(void)
939 {
940 	struct lwp *lp = curthread->td_lwp;
941 
942 	lp->lwp_flag |= LWP_BREAKTSLEEP;
943 	tsleep(lp->lwp_proc, 0, "stop", 0);
944 }
945 
946 /*
947  * Yield / synchronous reschedule.  This is a bit tricky because the trap
948  * code might have set a lazy release on the switch function.   Setting
949  * P_PASSIVE_ACQ will ensure that the lazy release executes when we call
950  * switch, and that we are given a greater chance of affinity with our
951  * current cpu.
952  *
953  * We call lwkt_setpri_self() to rotate our thread to the end of the lwkt
954  * run queue.  lwkt_switch() will also execute any assigned passive release
955  * (which usually calls release_curproc()), allowing a same/higher priority
956  * process to be designated as the current process.
957  *
958  * While it is possible for a lower priority process to be designated,
959  * it's call to lwkt_maybe_switch() in acquire_curproc() will likely
960  * round-robin back to us and we will be able to re-acquire the current
961  * process designation.
962  */
963 void
964 uio_yield(void)
965 {
966 	struct thread *td = curthread;
967 	struct proc *p = td->td_proc;
968 
969 	lwkt_setpri_self(td->td_pri & TDPRI_MASK);
970 	if (p) {
971 		p->p_flag |= P_PASSIVE_ACQ;
972 		lwkt_switch();
973 		p->p_flag &= ~P_PASSIVE_ACQ;
974 	} else {
975 		lwkt_switch();
976 	}
977 }
978 
979 /*
980  * Compute a tenex style load average of a quantity on
981  * 1, 5 and 15 minute intervals.
982  */
983 static int loadav_count_runnable(struct lwp *p, void *data);
984 
985 static void
986 loadav(void *arg)
987 {
988 	struct loadavg *avg;
989 	int i, nrun;
990 
991 	nrun = 0;
992 	alllwp_scan(loadav_count_runnable, &nrun);
993 	avg = &averunnable;
994 	for (i = 0; i < 3; i++) {
995 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
996 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
997 	}
998 
999 	/*
1000 	 * Schedule the next update to occur after 5 seconds, but add a
1001 	 * random variation to avoid synchronisation with processes that
1002 	 * run at regular intervals.
1003 	 */
1004 	callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1005 		      loadav, NULL);
1006 }
1007 
1008 static int
1009 loadav_count_runnable(struct lwp *lp, void *data)
1010 {
1011 	int *nrunp = data;
1012 	thread_t td;
1013 
1014 	switch (lp->lwp_stat) {
1015 	case LSRUN:
1016 		if ((td = lp->lwp_thread) == NULL)
1017 			break;
1018 		if (td->td_flags & TDF_BLOCKED)
1019 			break;
1020 		++*nrunp;
1021 		break;
1022 	default:
1023 		break;
1024 	}
1025 	return(0);
1026 }
1027 
1028 /* ARGSUSED */
1029 static void
1030 sched_setup(void *dummy)
1031 {
1032 	callout_init(&loadav_callout);
1033 	callout_init(&schedcpu_callout);
1034 
1035 	/* Kick off timeout driven events by calling first time. */
1036 	schedcpu(NULL);
1037 	loadav(NULL);
1038 }
1039 
1040