xref: /dragonfly/sys/kern/kern_synch.c (revision 2e3ed54d)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.54 2005/11/19 17:19:47 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <sys/sysctl.h>
53 #include <sys/thread2.h>
54 #include <sys/lock.h>
55 #ifdef KTRACE
56 #include <sys/uio.h>
57 #include <sys/ktrace.h>
58 #endif
59 #include <sys/xwait.h>
60 
61 #include <machine/cpu.h>
62 #include <machine/ipl.h>
63 #include <machine/smp.h>
64 
65 TAILQ_HEAD(tslpque, thread);
66 
67 static void sched_setup (void *dummy);
68 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
69 
70 int	hogticks;
71 int	lbolt;
72 int	lbolt_syncer;
73 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
74 int	ncpus;
75 int	ncpus2, ncpus2_shift, ncpus2_mask;
76 int	safepri;
77 
78 static struct callout loadav_callout;
79 static struct callout schedcpu_callout;
80 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
81 
82 struct loadavg averunnable =
83 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
84 /*
85  * Constants for averages over 1, 5, and 15 minutes
86  * when sampling at 5 second intervals.
87  */
88 static fixpt_t cexp[3] = {
89 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
90 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
91 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
92 };
93 
94 static void	endtsleep (void *);
95 static void	unsleep_and_wakeup_thread(struct thread *td);
96 static void	loadav (void *arg);
97 static void	schedcpu (void *arg);
98 
99 /*
100  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
101  * Note that 'tick' is in microseconds per tick.
102  */
103 static int
104 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
105 {
106 	int error, new_val;
107 
108 	new_val = sched_quantum * tick;
109 	error = sysctl_handle_int(oidp, &new_val, 0, req);
110         if (error != 0 || req->newptr == NULL)
111 		return (error);
112 	if (new_val < tick)
113 		return (EINVAL);
114 	sched_quantum = new_val / tick;
115 	hogticks = 2 * sched_quantum;
116 	return (0);
117 }
118 
119 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
120 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
121 
122 /*
123  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
124  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
125  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
126  *
127  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
128  *     1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
129  *
130  * If you don't want to bother with the faster/more-accurate formula, you
131  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
132  * (more general) method of calculating the %age of CPU used by a process.
133  *
134  * decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
135  */
136 #define CCPU_SHIFT	11
137 
138 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
139 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
140 
141 /*
142  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
143  */
144 static int     fscale __unused = FSCALE;
145 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
146 
147 /*
148  * Recompute process priorities, once a second.
149  *
150  * Since the userland schedulers are typically event oriented, if the
151  * estcpu calculation at wakeup() time is not sufficient to make a
152  * process runnable relative to other processes in the system we have
153  * a 1-second recalc to help out.
154  *
155  * This code also allows us to store sysclock_t data in the process structure
156  * without fear of an overrun, since sysclock_t are guarenteed to hold
157  * several seconds worth of count.
158  */
159 /* ARGSUSED */
160 static void
161 schedcpu(void *arg)
162 {
163 	struct rlimit *rlim;
164 	struct proc *p;
165 	u_int64_t ttime;
166 
167 	/*
168 	 * General process statistics once a second
169 	 */
170 	FOREACH_PROC_IN_SYSTEM(p) {
171 		crit_enter();
172 		p->p_swtime++;
173 		if (p->p_stat == SSLEEP)
174 			p->p_slptime++;
175 
176 		/*
177 		 * Only recalculate processes that are active or have slept
178 		 * less then 2 seconds.  The schedulers understand this.
179 		 */
180 		if (p->p_slptime <= 1) {
181 			p->p_usched->recalculate(&p->p_lwp);
182 		} else {
183 			p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
184 		}
185 		crit_exit();
186 	}
187 
188 	/*
189 	 * Resource checks.  XXX break out since psignal/killproc can block,
190 	 * limiting us to one process killed per second.  There is probably
191 	 * a better way.
192 	 */
193 	FOREACH_PROC_IN_SYSTEM(p) {
194 		crit_enter();
195 		if (p->p_stat == SZOMB ||
196 		    p->p_limit == NULL ||
197 		    p->p_thread == NULL
198 		) {
199 			crit_exit();
200 			continue;
201 		}
202 		ttime = p->p_thread->td_sticks + p->p_thread->td_uticks;
203 		if (p->p_limit->p_cpulimit != RLIM_INFINITY &&
204 		    ttime > p->p_limit->p_cpulimit
205 		) {
206 			rlim = &p->p_rlimit[RLIMIT_CPU];
207 			if (ttime / (rlim_t)1000000 >= rlim->rlim_max) {
208 				killproc(p, "exceeded maximum CPU limit");
209 			} else {
210 				psignal(p, SIGXCPU);
211 				if (rlim->rlim_cur < rlim->rlim_max) {
212 					/* XXX: we should make a private copy */
213 					rlim->rlim_cur += 5;
214 				}
215 			}
216 			crit_exit();
217 			break;
218 		}
219 		crit_exit();
220 	}
221 
222 	wakeup((caddr_t)&lbolt);
223 	wakeup((caddr_t)&lbolt_syncer);
224 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
225 }
226 
227 /*
228  * This is only used by ps.  Generate a cpu percentage use over
229  * a period of one second.
230  */
231 void
232 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
233 {
234 	fixpt_t acc;
235 	int remticks;
236 
237 	acc = (cpticks << FSHIFT) / ttlticks;
238 	if (ttlticks >= ESTCPUFREQ) {
239 		lp->lwp_pctcpu = acc;
240 	} else {
241 		remticks = ESTCPUFREQ - ttlticks;
242 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
243 				ESTCPUFREQ;
244 	}
245 }
246 
247 /*
248  * We're only looking at 7 bits of the address; everything is
249  * aligned to 4, lots of things are aligned to greater powers
250  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
251  */
252 #define TABLESIZE	128
253 #define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
254 
255 static cpumask_t slpque_cpumasks[TABLESIZE];
256 
257 /*
258  * General scheduler initialization.  We force a reschedule 25 times
259  * a second by default.  Note that cpu0 is initialized in early boot and
260  * cannot make any high level calls.
261  *
262  * Each cpu has its own sleep queue.
263  */
264 void
265 sleep_gdinit(globaldata_t gd)
266 {
267 	static struct tslpque slpque_cpu0[TABLESIZE];
268 	int i;
269 
270 	if (gd->gd_cpuid == 0) {
271 		sched_quantum = (hz + 24) / 25;
272 		hogticks = 2 * sched_quantum;
273 
274 		gd->gd_tsleep_hash = slpque_cpu0;
275 	} else {
276 		gd->gd_tsleep_hash = malloc(sizeof(slpque_cpu0),
277 					    M_TSLEEP, M_WAITOK | M_ZERO);
278 	}
279 	for (i = 0; i < TABLESIZE; ++i)
280 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
281 }
282 
283 /*
284  * General sleep call.  Suspends the current process until a wakeup is
285  * performed on the specified identifier.  The process will then be made
286  * runnable with the specified priority.  Sleeps at most timo/hz seconds
287  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
288  * before and after sleeping, else signals are not checked.  Returns 0 if
289  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
290  * signal needs to be delivered, ERESTART is returned if the current system
291  * call should be restarted if possible, and EINTR is returned if the system
292  * call should be interrupted by the signal (return EINTR).
293  *
294  * Note that if we are a process, we release_curproc() before messing with
295  * the LWKT scheduler.
296  *
297  * During autoconfiguration or after a panic, a sleep will simply
298  * lower the priority briefly to allow interrupts, then return.
299  */
300 int
301 tsleep(void *ident, int flags, const char *wmesg, int timo)
302 {
303 	struct thread *td = curthread;
304 	struct proc *p = td->td_proc;		/* may be NULL */
305 	globaldata_t gd;
306 	int sig;
307 	int catch;
308 	int id;
309 	int error;
310 	int oldpri;
311 	struct callout thandle;
312 
313 	/*
314 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
315 	 * even in stable.  Just scrap it for now.
316 	 */
317 	if (cold || panicstr) {
318 		/*
319 		 * After a panic, or during autoconfiguration,
320 		 * just give interrupts a chance, then just return;
321 		 * don't run any other procs or panic below,
322 		 * in case this is the idle process and already asleep.
323 		 */
324 		splz();
325 		oldpri = td->td_pri & TDPRI_MASK;
326 		lwkt_setpri_self(safepri);
327 		lwkt_switch();
328 		lwkt_setpri_self(oldpri);
329 		return (0);
330 	}
331 	gd = td->td_gd;
332 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
333 
334 	/*
335 	 * NOTE: all of this occurs on the current cpu, including any
336 	 * callout-based wakeups, so a critical section is a sufficient
337 	 * interlock.
338 	 *
339 	 * The entire sequence through to where we actually sleep must
340 	 * run without breaking the critical section.
341 	 */
342 	id = LOOKUP(ident);
343 	catch = flags & PCATCH;
344 	error = 0;
345 	sig = 0;
346 
347 	crit_enter_quick(td);
348 
349 	KASSERT(ident != NULL, ("tsleep: no ident"));
350 	KASSERT(p == NULL || p->p_stat == SRUN, ("tsleep %p %s %d",
351 		ident, wmesg, p->p_stat));
352 
353 	/*
354 	 * Setup for the current process (if this is a process).
355 	 */
356 	if (p) {
357 		if (catch) {
358 			/*
359 			 * Early termination if PCATCH was set and a
360 			 * signal is pending, interlocked with the
361 			 * critical section.
362 			 *
363 			 * Early termination only occurs when tsleep() is
364 			 * entered while in a normal SRUN state.
365 			 */
366 			if ((sig = CURSIG(p)) != 0)
367 				goto resume;
368 
369 			/*
370 			 * Causes psignal to wake us up when.
371 			 */
372 			p->p_flag |= P_SINTR;
373 		}
374 
375 		/*
376 		 * Make sure the current process has been untangled from
377 		 * the userland scheduler and initialize slptime to start
378 		 * counting.
379 		 */
380 		if (flags & PNORESCHED)
381 			td->td_flags |= TDF_NORESCHED;
382 		p->p_usched->release_curproc(&p->p_lwp);
383 		p->p_slptime = 0;
384 	}
385 
386 	/*
387 	 * Move our thread to the correct queue and setup our wchan, etc.
388 	 */
389 	lwkt_deschedule_self(td);
390 	td->td_flags |= TDF_TSLEEPQ;
391 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_threadq);
392 	atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
393 
394 	td->td_wchan = ident;
395 	td->td_wmesg = wmesg;
396 	td->td_wdomain = flags & PDOMAIN_MASK;
397 
398 	/*
399 	 * Setup the timeout, if any
400 	 */
401 	if (timo) {
402 		callout_init(&thandle);
403 		callout_reset(&thandle, timo, endtsleep, td);
404 	}
405 
406 	/*
407 	 * Beddy bye bye.
408 	 */
409 	if (p) {
410 		/*
411 		 * Ok, we are sleeping.  Remove us from the userland runq
412 		 * and place us in the SSLEEP state.
413 		 */
414 		if (p->p_flag & P_ONRUNQ)
415 			p->p_usched->remrunqueue(&p->p_lwp);
416 		p->p_stat = SSLEEP;
417 		p->p_stats->p_ru.ru_nvcsw++;
418 		lwkt_switch();
419 		p->p_stat = SRUN;
420 	} else {
421 		lwkt_switch();
422 	}
423 
424 	/*
425 	 * Make sure we haven't switched cpus while we were asleep.  It's
426 	 * not supposed to happen.  Cleanup our temporary flags.
427 	 */
428 	KKASSERT(gd == td->td_gd);
429 	td->td_flags &= ~TDF_NORESCHED;
430 
431 	/*
432 	 * Cleanup the timeout.
433 	 */
434 	if (timo) {
435 		if (td->td_flags & TDF_TIMEOUT) {
436 			td->td_flags &= ~TDF_TIMEOUT;
437 			if (sig == 0)
438 				error = EWOULDBLOCK;
439 		} else {
440 			callout_stop(&thandle);
441 		}
442 	}
443 
444 	/*
445 	 * Since td_threadq is used both for our run queue AND for the
446 	 * tsleep hash queue, we can't still be on it at this point because
447 	 * we've gotten cpu back.
448 	 */
449 	KKASSERT((td->td_flags & TDF_TSLEEPQ) == 0);
450 	td->td_wchan = NULL;
451 	td->td_wmesg = NULL;
452 	td->td_wdomain = 0;
453 
454 	/*
455 	 * Figure out the correct error return
456 	 */
457 resume:
458 	if (p) {
459 		p->p_flag &= ~(P_BREAKTSLEEP | P_SINTR);
460 		if (catch && error == 0 && (sig != 0 || (sig = CURSIG(p)))) {
461 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
462 				error = EINTR;
463 			else
464 				error = ERESTART;
465 		}
466 	}
467 	crit_exit_quick(td);
468 	return (error);
469 }
470 
471 /*
472  * This is a dandy function that allows us to interlock tsleep/wakeup
473  * operations with unspecified upper level locks, such as lockmgr locks,
474  * simply by holding a critical section.  The sequence is:
475  *
476  *	(enter critical section)
477  *	(acquire upper level lock)
478  *	tsleep_interlock(blah)
479  *	(release upper level lock)
480  *	tsleep(blah, ...)
481  *	(exit critical section)
482  *
483  * Basically this function sets our cpumask for the ident which informs
484  * other cpus that our cpu 'might' be waiting (or about to wait on) the
485  * hash index related to the ident.  The critical section prevents another
486  * cpu's wakeup() from being processed on our cpu until we are actually
487  * able to enter the tsleep().  Thus, no race occurs between our attempt
488  * to release a resource and sleep, and another cpu's attempt to acquire
489  * a resource and call wakeup.
490  *
491  * There isn't much of a point to this function unless you call it while
492  * holding a critical section.
493  */
494 void
495 tsleep_interlock(void *ident)
496 {
497 	int id = LOOKUP(ident);
498 
499 	atomic_set_int(&slpque_cpumasks[id], mycpu->gd_cpumask);
500 }
501 
502 /*
503  * Implement the timeout for tsleep.
504  *
505  * We set P_BREAKTSLEEP to indicate that an event has occured, but
506  * we only call setrunnable if the process is not stopped.
507  *
508  * This type of callout timeout is scheduled on the same cpu the process
509  * is sleeping on.  Also, at the moment, the MP lock is held.
510  */
511 static void
512 endtsleep(void *arg)
513 {
514 	thread_t td = arg;
515 	struct proc *p;
516 
517 	ASSERT_MP_LOCK_HELD(curthread);
518 	crit_enter();
519 
520 	/*
521 	 * cpu interlock.  Thread flags are only manipulated on
522 	 * the cpu owning the thread.  proc flags are only manipulated
523 	 * by the older of the MP lock.  We have both.
524 	 */
525 	if (td->td_flags & TDF_TSLEEPQ) {
526 		td->td_flags |= TDF_TIMEOUT;
527 
528 		if ((p = td->td_proc) != NULL) {
529 			p->p_flag |= P_BREAKTSLEEP;
530 			if ((p->p_flag & P_STOPPED) == 0)
531 				setrunnable(p);
532 		} else {
533 			unsleep_and_wakeup_thread(td);
534 		}
535 	}
536 	crit_exit();
537 }
538 
539 /*
540  * Unsleep and wakeup a thread.  This function runs without the MP lock
541  * which means that it can only manipulate thread state on the owning cpu,
542  * and cannot touch the process state at all.
543  */
544 static
545 void
546 unsleep_and_wakeup_thread(struct thread *td)
547 {
548 	globaldata_t gd = mycpu;
549 	int id;
550 
551 #ifdef SMP
552 	if (td->td_gd != gd) {
553 		lwkt_send_ipiq(td->td_gd, (ipifunc1_t)unsleep_and_wakeup_thread, td);
554 		return;
555 	}
556 #endif
557 	crit_enter();
558 	if (td->td_flags & TDF_TSLEEPQ) {
559 		td->td_flags &= ~TDF_TSLEEPQ;
560 		id = LOOKUP(td->td_wchan);
561 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_threadq);
562 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
563 			atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
564 		lwkt_schedule(td);
565 	}
566 	crit_exit();
567 }
568 
569 /*
570  * Make all processes sleeping on the specified identifier runnable.
571  * count may be zero or one only.
572  *
573  * The domain encodes the sleep/wakeup domain AND the first cpu to check
574  * (which is always the current cpu).  As we iterate across cpus
575  *
576  * This call may run without the MP lock held.  We can only manipulate thread
577  * state on the cpu owning the thread.  We CANNOT manipulate process state
578  * at all.
579  */
580 static void
581 _wakeup(void *ident, int domain)
582 {
583 	struct tslpque *qp;
584 	struct thread *td;
585 	struct thread *ntd;
586 	globaldata_t gd;
587 #ifdef SMP
588 	cpumask_t mask;
589 	cpumask_t tmask;
590 	int startcpu;
591 	int nextcpu;
592 #endif
593 	int id;
594 
595 	crit_enter();
596 	gd = mycpu;
597 	id = LOOKUP(ident);
598 	qp = &gd->gd_tsleep_hash[id];
599 restart:
600 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
601 		ntd = TAILQ_NEXT(td, td_threadq);
602 		if (td->td_wchan == ident &&
603 		    td->td_wdomain == (domain & PDOMAIN_MASK)
604 		) {
605 			KKASSERT(td->td_flags & TDF_TSLEEPQ);
606 			td->td_flags &= ~TDF_TSLEEPQ;
607 			TAILQ_REMOVE(qp, td, td_threadq);
608 			if (TAILQ_FIRST(qp) == NULL) {
609 				atomic_clear_int(&slpque_cpumasks[id],
610 						 gd->gd_cpumask);
611 			}
612 			lwkt_schedule(td);
613 			if (domain & PWAKEUP_ONE)
614 				goto done;
615 			goto restart;
616 		}
617 	}
618 
619 #ifdef SMP
620 	/*
621 	 * We finished checking the current cpu but there still may be
622 	 * more work to do.  Either wakeup_one was requested and no matching
623 	 * thread was found, or a normal wakeup was requested and we have
624 	 * to continue checking cpus.
625 	 *
626 	 * The cpu that started the wakeup sequence is encoded in the domain.
627 	 * We use this information to determine which cpus still need to be
628 	 * checked, locate a candidate cpu, and chain the wakeup
629 	 * asynchronously with an IPI message.
630 	 *
631 	 * It should be noted that this scheme is actually less expensive then
632 	 * the old scheme when waking up multiple threads, since we send
633 	 * only one IPI message per target candidate which may then schedule
634 	 * multiple threads.  Before we could have wound up sending an IPI
635 	 * message for each thread on the target cpu (!= current cpu) that
636 	 * needed to be woken up.
637 	 *
638 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
639 	 * should be ok since we are passing idents in the IPI rather then
640 	 * thread pointers.
641 	 */
642 	if ((mask = slpque_cpumasks[id]) != 0) {
643 		/*
644 		 * Look for a cpu that might have work to do.  Mask out cpus
645 		 * which have already been processed.
646 		 *
647 		 * 31xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0
648 		 *        ^        ^           ^
649 		 *      start   currentcpu    start
650 		 *      case2                 case1
651 		 *        *        *           *
652 		 * 11111111111111110000000000000111	case1
653 		 * 00000000111111110000000000000000	case2
654 		 *
655 		 * case1:  We started at start_case1 and processed through
656 		 *  	   to the current cpu.  We have to check any bits
657 		 *	   after the current cpu, then check bits before
658 		 *         the starting cpu.
659 		 *
660 		 * case2:  We have already checked all the bits from
661 		 *         start_case2 to the end, and from 0 to the current
662 		 *         cpu.  We just have the bits from the current cpu
663 		 *         to start_case2 left to check.
664 		 */
665 		startcpu = PWAKEUP_DECODE(domain);
666 		if (gd->gd_cpuid >= startcpu) {
667 			/*
668 			 * CASE1
669 			 */
670 			tmask = mask & ~((gd->gd_cpumask << 1) - 1);
671 			if (mask & tmask) {
672 				nextcpu = bsfl(mask & tmask);
673 				lwkt_send_ipiq2(globaldata_find(nextcpu),
674 						_wakeup, ident, domain);
675 			} else {
676 				tmask = (1 << startcpu) - 1;
677 				if (mask & tmask) {
678 					nextcpu = bsfl(mask & tmask);
679 					lwkt_send_ipiq2(
680 						    globaldata_find(nextcpu),
681 						    _wakeup, ident, domain);
682 				}
683 			}
684 		} else {
685 			/*
686 			 * CASE2
687 			 */
688 			tmask = ~((gd->gd_cpumask << 1) - 1) &
689 				 ((1 << startcpu) - 1);
690 			if (mask & tmask) {
691 				nextcpu = bsfl(mask & tmask);
692 				lwkt_send_ipiq2(globaldata_find(nextcpu),
693 						_wakeup, ident, domain);
694 			}
695 		}
696 	}
697 #endif
698 done:
699 	crit_exit();
700 }
701 
702 void
703 wakeup(void *ident)
704 {
705     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
706 }
707 
708 void
709 wakeup_one(void *ident)
710 {
711     /* XXX potentially round-robin the first responding cpu */
712     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
713 }
714 
715 void
716 wakeup_domain(void *ident, int domain)
717 {
718     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
719 }
720 
721 void
722 wakeup_domain_one(void *ident, int domain)
723 {
724     /* XXX potentially round-robin the first responding cpu */
725     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
726 }
727 
728 /*
729  * setrunnable()
730  *
731  * Make a process runnable.  The MP lock must be held on call.  This only
732  * has an effect if we are in SSLEEP.  We only break out of the
733  * tsleep if P_BREAKTSLEEP is set, otherwise we just fix-up the state.
734  *
735  * NOTE: With the MP lock held we can only safely manipulate the process
736  * structure.  We cannot safely manipulate the thread structure.
737  */
738 void
739 setrunnable(struct proc *p)
740 {
741 	crit_enter();
742 	ASSERT_MP_LOCK_HELD(curthread);
743 	p->p_flag &= ~P_STOPPED;
744 	if (p->p_stat == SSLEEP && (p->p_flag & P_BREAKTSLEEP)) {
745 		unsleep_and_wakeup_thread(p->p_thread);
746 	}
747 	crit_exit();
748 }
749 
750 /*
751  * The process is stopped due to some condition, usually because P_STOPPED
752  * is set but also possibly due to being traced.
753  *
754  * NOTE!  If the caller sets P_STOPPED, the caller must also clear P_WAITED
755  * because the parent may check the child's status before the child actually
756  * gets to this routine.
757  *
758  * This routine is called with the current process only, typically just
759  * before returning to userland.
760  *
761  * Setting P_BREAKTSLEEP before entering the tsleep will cause a passive
762  * SIGCONT to break out of the tsleep.
763  */
764 void
765 tstop(struct proc *p)
766 {
767 	wakeup((caddr_t)p->p_pptr);
768 	p->p_flag |= P_BREAKTSLEEP;
769 	tsleep(p, 0, "stop", 0);
770 }
771 
772 /*
773  * Yield / synchronous reschedule.  This is a bit tricky because the trap
774  * code might have set a lazy release on the switch function.   Setting
775  * P_PASSIVE_ACQ will ensure that the lazy release executes when we call
776  * switch, and that we are given a greater chance of affinity with our
777  * current cpu.
778  *
779  * We call lwkt_setpri_self() to rotate our thread to the end of the lwkt
780  * run queue.  lwkt_switch() will also execute any assigned passive release
781  * (which usually calls release_curproc()), allowing a same/higher priority
782  * process to be designated as the current process.
783  *
784  * While it is possible for a lower priority process to be designated,
785  * it's call to lwkt_maybe_switch() in acquire_curproc() will likely
786  * round-robin back to us and we will be able to re-acquire the current
787  * process designation.
788  */
789 void
790 uio_yield(void)
791 {
792 	struct thread *td = curthread;
793 	struct proc *p = td->td_proc;
794 
795 	lwkt_setpri_self(td->td_pri & TDPRI_MASK);
796 	if (p) {
797 		p->p_flag |= P_PASSIVE_ACQ;
798 		lwkt_switch();
799 		p->p_flag &= ~P_PASSIVE_ACQ;
800 	} else {
801 		lwkt_switch();
802 	}
803 }
804 
805 /*
806  * Compute a tenex style load average of a quantity on
807  * 1, 5 and 15 minute intervals.
808  */
809 static void
810 loadav(void *arg)
811 {
812 	int i, nrun;
813 	struct loadavg *avg;
814 	struct proc *p;
815 	thread_t td;
816 
817 	avg = &averunnable;
818 	nrun = 0;
819 	FOREACH_PROC_IN_SYSTEM(p) {
820 		switch (p->p_stat) {
821 		case SRUN:
822 			if ((td = p->p_thread) == NULL)
823 				break;
824 			if (td->td_flags & TDF_BLOCKED)
825 				break;
826 			/* fall through */
827 		case SIDL:
828 			nrun++;
829 			break;
830 		default:
831 			break;
832 		}
833 	}
834 	for (i = 0; i < 3; i++)
835 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
836 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
837 
838 	/*
839 	 * Schedule the next update to occur after 5 seconds, but add a
840 	 * random variation to avoid synchronisation with processes that
841 	 * run at regular intervals.
842 	 */
843 	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
844 	    loadav, NULL);
845 }
846 
847 /* ARGSUSED */
848 static void
849 sched_setup(void *dummy)
850 {
851 	callout_init(&loadav_callout);
852 	callout_init(&schedcpu_callout);
853 
854 	/* Kick off timeout driven events by calling first time. */
855 	schedcpu(NULL);
856 	loadav(NULL);
857 }
858 
859