xref: /dragonfly/sys/kern/kern_synch.c (revision 3f5e28f4)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.84 2007/05/01 00:05:18 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/signal2.h>
51 #include <sys/resourcevar.h>
52 #include <sys/vmmeter.h>
53 #include <sys/sysctl.h>
54 #include <sys/lock.h>
55 #ifdef KTRACE
56 #include <sys/uio.h>
57 #include <sys/ktrace.h>
58 #endif
59 #include <sys/xwait.h>
60 #include <sys/ktr.h>
61 
62 #include <sys/thread2.h>
63 #include <sys/spinlock2.h>
64 
65 #include <machine/cpu.h>
66 #include <machine/smp.h>
67 
68 TAILQ_HEAD(tslpque, thread);
69 
70 static void sched_setup (void *dummy);
71 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
72 
73 int	hogticks;
74 int	lbolt;
75 int	lbolt_syncer;
76 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
77 int	ncpus;
78 int	ncpus2, ncpus2_shift, ncpus2_mask;
79 int	ncpus_fit, ncpus_fit_mask;
80 int	safepri;
81 int	tsleep_now_works;
82 
83 static struct callout loadav_callout;
84 static struct callout schedcpu_callout;
85 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
86 
87 #if !defined(KTR_TSLEEP)
88 #define KTR_TSLEEP	KTR_ALL
89 #endif
90 KTR_INFO_MASTER(tsleep);
91 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter", 0);
92 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 0, "tsleep exit", 0);
93 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 0, "wakeup enter", 0);
94 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 0, "wakeup exit", 0);
95 #define logtsleep(name)	KTR_LOG(tsleep_ ## name)
96 
97 struct loadavg averunnable =
98 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
99 /*
100  * Constants for averages over 1, 5, and 15 minutes
101  * when sampling at 5 second intervals.
102  */
103 static fixpt_t cexp[3] = {
104 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
105 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
106 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
107 };
108 
109 static void	endtsleep (void *);
110 static void	unsleep_and_wakeup_thread(struct thread *td);
111 static void	loadav (void *arg);
112 static void	schedcpu (void *arg);
113 
114 /*
115  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
116  * Note that 'tick' is in microseconds per tick.
117  */
118 static int
119 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
120 {
121 	int error, new_val;
122 
123 	new_val = sched_quantum * tick;
124 	error = sysctl_handle_int(oidp, &new_val, 0, req);
125         if (error != 0 || req->newptr == NULL)
126 		return (error);
127 	if (new_val < tick)
128 		return (EINVAL);
129 	sched_quantum = new_val / tick;
130 	hogticks = 2 * sched_quantum;
131 	return (0);
132 }
133 
134 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
135 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
136 
137 /*
138  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
139  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
140  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
141  *
142  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
143  *     1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
144  *
145  * If you don't want to bother with the faster/more-accurate formula, you
146  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
147  * (more general) method of calculating the %age of CPU used by a process.
148  *
149  * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
150  */
151 #define CCPU_SHIFT	11
152 
153 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
154 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
155 
156 /*
157  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
158  */
159 int     fscale __unused = FSCALE;	/* exported to systat */
160 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
161 
162 /*
163  * Recompute process priorities, once a second.
164  *
165  * Since the userland schedulers are typically event oriented, if the
166  * estcpu calculation at wakeup() time is not sufficient to make a
167  * process runnable relative to other processes in the system we have
168  * a 1-second recalc to help out.
169  *
170  * This code also allows us to store sysclock_t data in the process structure
171  * without fear of an overrun, since sysclock_t are guarenteed to hold
172  * several seconds worth of count.
173  *
174  * WARNING!  callouts can preempt normal threads.  However, they will not
175  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
176  */
177 static int schedcpu_stats(struct proc *p, void *data __unused);
178 static int schedcpu_resource(struct proc *p, void *data __unused);
179 
180 static void
181 schedcpu(void *arg)
182 {
183 	allproc_scan(schedcpu_stats, NULL);
184 	allproc_scan(schedcpu_resource, NULL);
185 	wakeup((caddr_t)&lbolt);
186 	wakeup((caddr_t)&lbolt_syncer);
187 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
188 }
189 
190 /*
191  * General process statistics once a second
192  */
193 static int
194 schedcpu_stats(struct proc *p, void *data __unused)
195 {
196 	struct lwp *lp;
197 
198 	crit_enter();
199 	p->p_swtime++;
200 	FOREACH_LWP_IN_PROC(lp, p) {
201 		if (lp->lwp_stat == LSSLEEP)
202 			lp->lwp_slptime++;
203 
204 		/*
205 		 * Only recalculate processes that are active or have slept
206 		 * less then 2 seconds.  The schedulers understand this.
207 		 */
208 		if (lp->lwp_slptime <= 1) {
209 			p->p_usched->recalculate(lp);
210 		} else {
211 			lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
212 		}
213 	}
214 	crit_exit();
215 	return(0);
216 }
217 
218 /*
219  * Resource checks.  XXX break out since ksignal/killproc can block,
220  * limiting us to one process killed per second.  There is probably
221  * a better way.
222  */
223 static int
224 schedcpu_resource(struct proc *p, void *data __unused)
225 {
226 	u_int64_t ttime;
227 	struct lwp *lp;
228 
229 	crit_enter();
230 	if (p->p_stat == SIDL ||
231 	    p->p_stat == SZOMB ||
232 	    p->p_limit == NULL
233 	) {
234 		crit_exit();
235 		return(0);
236 	}
237 
238 	ttime = 0;
239 	FOREACH_LWP_IN_PROC(lp, p) {
240 		ttime += lp->lwp_thread->td_sticks;
241 		ttime += lp->lwp_thread->td_uticks;
242 	}
243 
244 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
245 	case PLIMIT_TESTCPU_KILL:
246 		killproc(p, "exceeded maximum CPU limit");
247 		break;
248 	case PLIMIT_TESTCPU_XCPU:
249 		if ((p->p_flag & P_XCPU) == 0) {
250 			p->p_flag |= P_XCPU;
251 			ksignal(p, SIGXCPU);
252 		}
253 		break;
254 	default:
255 		break;
256 	}
257 	crit_exit();
258 	return(0);
259 }
260 
261 /*
262  * This is only used by ps.  Generate a cpu percentage use over
263  * a period of one second.
264  *
265  * MPSAFE
266  */
267 void
268 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
269 {
270 	fixpt_t acc;
271 	int remticks;
272 
273 	acc = (cpticks << FSHIFT) / ttlticks;
274 	if (ttlticks >= ESTCPUFREQ) {
275 		lp->lwp_pctcpu = acc;
276 	} else {
277 		remticks = ESTCPUFREQ - ttlticks;
278 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
279 				ESTCPUFREQ;
280 	}
281 }
282 
283 /*
284  * We're only looking at 7 bits of the address; everything is
285  * aligned to 4, lots of things are aligned to greater powers
286  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
287  */
288 #define TABLESIZE	128
289 #define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
290 
291 static cpumask_t slpque_cpumasks[TABLESIZE];
292 
293 /*
294  * General scheduler initialization.  We force a reschedule 25 times
295  * a second by default.  Note that cpu0 is initialized in early boot and
296  * cannot make any high level calls.
297  *
298  * Each cpu has its own sleep queue.
299  */
300 void
301 sleep_gdinit(globaldata_t gd)
302 {
303 	static struct tslpque slpque_cpu0[TABLESIZE];
304 	int i;
305 
306 	if (gd->gd_cpuid == 0) {
307 		sched_quantum = (hz + 24) / 25;
308 		hogticks = 2 * sched_quantum;
309 
310 		gd->gd_tsleep_hash = slpque_cpu0;
311 	} else {
312 		gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
313 					    M_TSLEEP, M_WAITOK | M_ZERO);
314 	}
315 	for (i = 0; i < TABLESIZE; ++i)
316 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
317 }
318 
319 /*
320  * General sleep call.  Suspends the current process until a wakeup is
321  * performed on the specified identifier.  The process will then be made
322  * runnable with the specified priority.  Sleeps at most timo/hz seconds
323  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
324  * before and after sleeping, else signals are not checked.  Returns 0 if
325  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
326  * signal needs to be delivered, ERESTART is returned if the current system
327  * call should be restarted if possible, and EINTR is returned if the system
328  * call should be interrupted by the signal (return EINTR).
329  *
330  * Note that if we are a process, we release_curproc() before messing with
331  * the LWKT scheduler.
332  *
333  * During autoconfiguration or after a panic, a sleep will simply
334  * lower the priority briefly to allow interrupts, then return.
335  */
336 int
337 tsleep(void *ident, int flags, const char *wmesg, int timo)
338 {
339 	struct thread *td = curthread;
340 	struct lwp *lp = td->td_lwp;
341 	struct proc *p = td->td_proc;		/* may be NULL */
342 	globaldata_t gd;
343 	int sig;
344 	int catch;
345 	int id;
346 	int error;
347 	int oldpri;
348 	struct callout thandle;
349 
350 	/*
351 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
352 	 * even in stable.  Just scrap it for now.
353 	 */
354 	if (tsleep_now_works == 0 || panicstr) {
355 		/*
356 		 * After a panic, or before we actually have an operational
357 		 * softclock, just give interrupts a chance, then just return;
358 		 *
359 		 * don't run any other procs or panic below,
360 		 * in case this is the idle process and already asleep.
361 		 */
362 		splz();
363 		oldpri = td->td_pri & TDPRI_MASK;
364 		lwkt_setpri_self(safepri);
365 		lwkt_switch();
366 		lwkt_setpri_self(oldpri);
367 		return (0);
368 	}
369 	logtsleep(tsleep_beg);
370 	gd = td->td_gd;
371 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
372 
373 	/*
374 	 * NOTE: all of this occurs on the current cpu, including any
375 	 * callout-based wakeups, so a critical section is a sufficient
376 	 * interlock.
377 	 *
378 	 * The entire sequence through to where we actually sleep must
379 	 * run without breaking the critical section.
380 	 */
381 	id = LOOKUP(ident);
382 	catch = flags & PCATCH;
383 	error = 0;
384 	sig = 0;
385 
386 	crit_enter_quick(td);
387 
388 	KASSERT(ident != NULL, ("tsleep: no ident"));
389 	KASSERT(lp == NULL ||
390 		lp->lwp_stat == LSRUN ||	/* Obvious */
391 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
392 		("tsleep %p %s %d",
393 			ident, wmesg, lp->lwp_stat));
394 
395 	/*
396 	 * Setup for the current process (if this is a process).
397 	 */
398 	if (lp) {
399 		if (catch) {
400 			/*
401 			 * Early termination if PCATCH was set and a
402 			 * signal is pending, interlocked with the
403 			 * critical section.
404 			 *
405 			 * Early termination only occurs when tsleep() is
406 			 * entered while in a normal LSRUN state.
407 			 */
408 			if ((sig = CURSIG(lp)) != 0)
409 				goto resume;
410 
411 			/*
412 			 * Early termination if PCATCH was set and a
413 			 * mailbox signal was possibly delivered prior to
414 			 * the system call even being made, in order to
415 			 * allow the user to interlock without having to
416 			 * make additional system calls.
417 			 */
418 			if (p->p_flag & P_MAILBOX)
419 				goto resume;
420 
421 			/*
422 			 * Causes ksignal to wake us up when.
423 			 */
424 			lp->lwp_flag |= LWP_SINTR;
425 		}
426 
427 		/*
428 		 * Make sure the current process has been untangled from
429 		 * the userland scheduler and initialize slptime to start
430 		 * counting.
431 		 */
432 		if (flags & PNORESCHED)
433 			td->td_flags |= TDF_NORESCHED;
434 		p->p_usched->release_curproc(lp);
435 		lp->lwp_slptime = 0;
436 	}
437 
438 	/*
439 	 * Move our thread to the correct queue and setup our wchan, etc.
440 	 */
441 	lwkt_deschedule_self(td);
442 	td->td_flags |= TDF_TSLEEPQ;
443 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_threadq);
444 	atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
445 
446 	td->td_wchan = ident;
447 	td->td_wmesg = wmesg;
448 	td->td_wdomain = flags & PDOMAIN_MASK;
449 
450 	/*
451 	 * Setup the timeout, if any
452 	 */
453 	if (timo) {
454 		callout_init(&thandle);
455 		callout_reset(&thandle, timo, endtsleep, td);
456 	}
457 
458 	/*
459 	 * Beddy bye bye.
460 	 */
461 	if (lp) {
462 		/*
463 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
464 		 */
465 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
466 		/*
467 		 * tstop() sets LSSTOP, so don't fiddle with that.
468 		 */
469 		if (lp->lwp_stat != LSSTOP)
470 			lp->lwp_stat = LSSLEEP;
471 		lp->lwp_ru.ru_nvcsw++;
472 		lwkt_switch();
473 
474 		/*
475 		 * And when we are woken up, put us back in LSRUN.  If we
476 		 * slept for over a second, recalculate our estcpu.
477 		 */
478 		lp->lwp_stat = LSRUN;
479 		if (lp->lwp_slptime)
480 			p->p_usched->recalculate(lp);
481 		lp->lwp_slptime = 0;
482 	} else {
483 		lwkt_switch();
484 	}
485 
486 	/*
487 	 * Make sure we haven't switched cpus while we were asleep.  It's
488 	 * not supposed to happen.  Cleanup our temporary flags.
489 	 */
490 	KKASSERT(gd == td->td_gd);
491 	td->td_flags &= ~TDF_NORESCHED;
492 
493 	/*
494 	 * Cleanup the timeout.
495 	 */
496 	if (timo) {
497 		if (td->td_flags & TDF_TIMEOUT) {
498 			td->td_flags &= ~TDF_TIMEOUT;
499 			error = EWOULDBLOCK;
500 		} else {
501 			callout_stop(&thandle);
502 		}
503 	}
504 
505 	/*
506 	 * Since td_threadq is used both for our run queue AND for the
507 	 * tsleep hash queue, we can't still be on it at this point because
508 	 * we've gotten cpu back.
509 	 */
510 	KASSERT((td->td_flags & TDF_TSLEEPQ) == 0, ("tsleep: impossible thread flags %08x", td->td_flags));
511 	td->td_wchan = NULL;
512 	td->td_wmesg = NULL;
513 	td->td_wdomain = 0;
514 
515 	/*
516 	 * Figure out the correct error return.  If interrupted by a
517 	 * signal we want to return EINTR or ERESTART.
518 	 *
519 	 * If P_MAILBOX is set no automatic system call restart occurs
520 	 * and we return EINTR.  P_MAILBOX is meant to be used as an
521 	 * interlock, the user must poll it prior to any system call
522 	 * that it wishes to interlock a mailbox signal against since
523 	 * the flag is cleared on *any* system call that sleeps.
524 	 */
525 resume:
526 	if (p) {
527 		if (catch && error == 0) {
528 			if ((p->p_flag & P_MAILBOX) && sig == 0) {
529 				error = EINTR;
530 			} else if (sig != 0 || (sig = CURSIG(lp))) {
531 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
532 					error = EINTR;
533 				else
534 					error = ERESTART;
535 			}
536 		}
537 		lp->lwp_flag &= ~(LWP_BREAKTSLEEP | LWP_SINTR);
538 		p->p_flag &= ~P_MAILBOX;
539 	}
540 	logtsleep(tsleep_end);
541 	crit_exit_quick(td);
542 	return (error);
543 }
544 
545 /*
546  * This is a dandy function that allows us to interlock tsleep/wakeup
547  * operations with unspecified upper level locks, such as lockmgr locks,
548  * simply by holding a critical section.  The sequence is:
549  *
550  *	(enter critical section)
551  *	(acquire upper level lock)
552  *	tsleep_interlock(blah)
553  *	(release upper level lock)
554  *	tsleep(blah, ...)
555  *	(exit critical section)
556  *
557  * Basically this function sets our cpumask for the ident which informs
558  * other cpus that our cpu 'might' be waiting (or about to wait on) the
559  * hash index related to the ident.  The critical section prevents another
560  * cpu's wakeup() from being processed on our cpu until we are actually
561  * able to enter the tsleep().  Thus, no race occurs between our attempt
562  * to release a resource and sleep, and another cpu's attempt to acquire
563  * a resource and call wakeup.
564  *
565  * There isn't much of a point to this function unless you call it while
566  * holding a critical section.
567  */
568 static __inline void
569 _tsleep_interlock(globaldata_t gd, void *ident)
570 {
571 	int id = LOOKUP(ident);
572 
573 	atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
574 }
575 
576 void
577 tsleep_interlock(void *ident)
578 {
579 	_tsleep_interlock(mycpu, ident);
580 }
581 
582 /*
583  * Interlocked spinlock sleep.  An exclusively held spinlock must
584  * be passed to msleep().  The function will atomically release the
585  * spinlock and tsleep on the ident, then reacquire the spinlock and
586  * return.
587  *
588  * This routine is fairly important along the critical path, so optimize it
589  * heavily.
590  */
591 int
592 msleep(void *ident, struct spinlock *spin, int flags,
593        const char *wmesg, int timo)
594 {
595 	globaldata_t gd = mycpu;
596 	int error;
597 
598 	crit_enter_gd(gd);
599 	_tsleep_interlock(gd, ident);
600 	spin_unlock_wr_quick(gd, spin);
601 	error = tsleep(ident, flags, wmesg, timo);
602 	spin_lock_wr_quick(gd, spin);
603 	crit_exit_gd(gd);
604 
605 	return (error);
606 }
607 
608 /*
609  * Implement the timeout for tsleep.
610  *
611  * We set LWP_BREAKTSLEEP to indicate that an event has occured, but
612  * we only call setrunnable if the process is not stopped.
613  *
614  * This type of callout timeout is scheduled on the same cpu the process
615  * is sleeping on.  Also, at the moment, the MP lock is held.
616  */
617 static void
618 endtsleep(void *arg)
619 {
620 	thread_t td = arg;
621 	struct lwp *lp;
622 
623 	ASSERT_MP_LOCK_HELD(curthread);
624 	crit_enter();
625 
626 	/*
627 	 * cpu interlock.  Thread flags are only manipulated on
628 	 * the cpu owning the thread.  proc flags are only manipulated
629 	 * by the older of the MP lock.  We have both.
630 	 */
631 	if (td->td_flags & TDF_TSLEEPQ) {
632 		td->td_flags |= TDF_TIMEOUT;
633 
634 		if ((lp = td->td_lwp) != NULL) {
635 			lp->lwp_flag |= LWP_BREAKTSLEEP;
636 			if (lp->lwp_proc->p_stat != SSTOP)
637 				setrunnable(lp);
638 		} else {
639 			unsleep_and_wakeup_thread(td);
640 		}
641 	}
642 	crit_exit();
643 }
644 
645 /*
646  * Unsleep and wakeup a thread.  This function runs without the MP lock
647  * which means that it can only manipulate thread state on the owning cpu,
648  * and cannot touch the process state at all.
649  */
650 static
651 void
652 unsleep_and_wakeup_thread(struct thread *td)
653 {
654 	globaldata_t gd = mycpu;
655 	int id;
656 
657 #ifdef SMP
658 	if (td->td_gd != gd) {
659 		lwkt_send_ipiq(td->td_gd, (ipifunc1_t)unsleep_and_wakeup_thread, td);
660 		return;
661 	}
662 #endif
663 	crit_enter();
664 	if (td->td_flags & TDF_TSLEEPQ) {
665 		td->td_flags &= ~TDF_TSLEEPQ;
666 		id = LOOKUP(td->td_wchan);
667 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_threadq);
668 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
669 			atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
670 		lwkt_schedule(td);
671 	}
672 	crit_exit();
673 }
674 
675 /*
676  * Make all processes sleeping on the specified identifier runnable.
677  * count may be zero or one only.
678  *
679  * The domain encodes the sleep/wakeup domain AND the first cpu to check
680  * (which is always the current cpu).  As we iterate across cpus
681  *
682  * This call may run without the MP lock held.  We can only manipulate thread
683  * state on the cpu owning the thread.  We CANNOT manipulate process state
684  * at all.
685  */
686 static void
687 _wakeup(void *ident, int domain)
688 {
689 	struct tslpque *qp;
690 	struct thread *td;
691 	struct thread *ntd;
692 	globaldata_t gd;
693 #ifdef SMP
694 	cpumask_t mask;
695 	cpumask_t tmask;
696 	int startcpu;
697 	int nextcpu;
698 #endif
699 	int id;
700 
701 	crit_enter();
702 	logtsleep(wakeup_beg);
703 	gd = mycpu;
704 	id = LOOKUP(ident);
705 	qp = &gd->gd_tsleep_hash[id];
706 restart:
707 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
708 		ntd = TAILQ_NEXT(td, td_threadq);
709 		if (td->td_wchan == ident &&
710 		    td->td_wdomain == (domain & PDOMAIN_MASK)
711 		) {
712 			KKASSERT(td->td_flags & TDF_TSLEEPQ);
713 			td->td_flags &= ~TDF_TSLEEPQ;
714 			TAILQ_REMOVE(qp, td, td_threadq);
715 			if (TAILQ_FIRST(qp) == NULL) {
716 				atomic_clear_int(&slpque_cpumasks[id],
717 						 gd->gd_cpumask);
718 			}
719 			lwkt_schedule(td);
720 			if (domain & PWAKEUP_ONE)
721 				goto done;
722 			goto restart;
723 		}
724 	}
725 
726 #ifdef SMP
727 	/*
728 	 * We finished checking the current cpu but there still may be
729 	 * more work to do.  Either wakeup_one was requested and no matching
730 	 * thread was found, or a normal wakeup was requested and we have
731 	 * to continue checking cpus.
732 	 *
733 	 * The cpu that started the wakeup sequence is encoded in the domain.
734 	 * We use this information to determine which cpus still need to be
735 	 * checked, locate a candidate cpu, and chain the wakeup
736 	 * asynchronously with an IPI message.
737 	 *
738 	 * It should be noted that this scheme is actually less expensive then
739 	 * the old scheme when waking up multiple threads, since we send
740 	 * only one IPI message per target candidate which may then schedule
741 	 * multiple threads.  Before we could have wound up sending an IPI
742 	 * message for each thread on the target cpu (!= current cpu) that
743 	 * needed to be woken up.
744 	 *
745 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
746 	 * should be ok since we are passing idents in the IPI rather then
747 	 * thread pointers.
748 	 */
749 	if ((domain & PWAKEUP_MYCPU) == 0 &&
750 	    (mask = slpque_cpumasks[id]) != 0
751 	) {
752 		/*
753 		 * Look for a cpu that might have work to do.  Mask out cpus
754 		 * which have already been processed.
755 		 *
756 		 * 31xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0
757 		 *        ^        ^           ^
758 		 *      start   currentcpu    start
759 		 *      case2                 case1
760 		 *        *        *           *
761 		 * 11111111111111110000000000000111	case1
762 		 * 00000000111111110000000000000000	case2
763 		 *
764 		 * case1:  We started at start_case1 and processed through
765 		 *  	   to the current cpu.  We have to check any bits
766 		 *	   after the current cpu, then check bits before
767 		 *         the starting cpu.
768 		 *
769 		 * case2:  We have already checked all the bits from
770 		 *         start_case2 to the end, and from 0 to the current
771 		 *         cpu.  We just have the bits from the current cpu
772 		 *         to start_case2 left to check.
773 		 */
774 		startcpu = PWAKEUP_DECODE(domain);
775 		if (gd->gd_cpuid >= startcpu) {
776 			/*
777 			 * CASE1
778 			 */
779 			tmask = mask & ~((gd->gd_cpumask << 1) - 1);
780 			if (mask & tmask) {
781 				nextcpu = bsfl(mask & tmask);
782 				lwkt_send_ipiq2(globaldata_find(nextcpu),
783 						_wakeup, ident, domain);
784 			} else {
785 				tmask = (1 << startcpu) - 1;
786 				if (mask & tmask) {
787 					nextcpu = bsfl(mask & tmask);
788 					lwkt_send_ipiq2(
789 						    globaldata_find(nextcpu),
790 						    _wakeup, ident, domain);
791 				}
792 			}
793 		} else {
794 			/*
795 			 * CASE2
796 			 */
797 			tmask = ~((gd->gd_cpumask << 1) - 1) &
798 				 ((1 << startcpu) - 1);
799 			if (mask & tmask) {
800 				nextcpu = bsfl(mask & tmask);
801 				lwkt_send_ipiq2(globaldata_find(nextcpu),
802 						_wakeup, ident, domain);
803 			}
804 		}
805 	}
806 #endif
807 done:
808 	logtsleep(wakeup_end);
809 	crit_exit();
810 }
811 
812 /*
813  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
814  */
815 void
816 wakeup(void *ident)
817 {
818     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
819 }
820 
821 /*
822  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
823  */
824 void
825 wakeup_one(void *ident)
826 {
827     /* XXX potentially round-robin the first responding cpu */
828     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
829 }
830 
831 /*
832  * Wakeup threads tsleep()ing on the specified ident on the current cpu
833  * only.
834  */
835 void
836 wakeup_mycpu(void *ident)
837 {
838     _wakeup(ident, PWAKEUP_MYCPU);
839 }
840 
841 /*
842  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
843  * only.
844  */
845 void
846 wakeup_mycpu_one(void *ident)
847 {
848     /* XXX potentially round-robin the first responding cpu */
849     _wakeup(ident, PWAKEUP_MYCPU|PWAKEUP_ONE);
850 }
851 
852 /*
853  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
854  * only.
855  */
856 void
857 wakeup_oncpu(globaldata_t gd, void *ident)
858 {
859 #ifdef SMP
860     if (gd == mycpu) {
861 	_wakeup(ident, PWAKEUP_MYCPU);
862     } else {
863 	lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU);
864     }
865 #else
866     _wakeup(ident, PWAKEUP_MYCPU);
867 #endif
868 }
869 
870 /*
871  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
872  * only.
873  */
874 void
875 wakeup_oncpu_one(globaldata_t gd, void *ident)
876 {
877 #ifdef SMP
878     if (gd == mycpu) {
879 	_wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
880     } else {
881 	lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
882     }
883 #else
884     _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
885 #endif
886 }
887 
888 /*
889  * Wakeup all threads waiting on the specified ident that slept using
890  * the specified domain, on all cpus.
891  */
892 void
893 wakeup_domain(void *ident, int domain)
894 {
895     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
896 }
897 
898 /*
899  * Wakeup one thread waiting on the specified ident that slept using
900  * the specified  domain, on any cpu.
901  */
902 void
903 wakeup_domain_one(void *ident, int domain)
904 {
905     /* XXX potentially round-robin the first responding cpu */
906     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
907 }
908 
909 /*
910  * setrunnable()
911  *
912  * Make a process runnable.  The MP lock must be held on call.  This only
913  * has an effect if we are in SSLEEP.  We only break out of the
914  * tsleep if LWP_BREAKTSLEEP is set, otherwise we just fix-up the state.
915  *
916  * NOTE: With the MP lock held we can only safely manipulate the process
917  * structure.  We cannot safely manipulate the thread structure.
918  */
919 void
920 setrunnable(struct lwp *lp)
921 {
922 	crit_enter();
923 	ASSERT_MP_LOCK_HELD(curthread);
924 	if (lp->lwp_stat == LSSTOP)
925 		lp->lwp_stat = LSSLEEP;
926 	if (lp->lwp_stat == LSSLEEP && (lp->lwp_flag & LWP_BREAKTSLEEP))
927 		unsleep_and_wakeup_thread(lp->lwp_thread);
928 	crit_exit();
929 }
930 
931 /*
932  * The process is stopped due to some condition, usually because p_stat is
933  * set to SSTOP, but also possibly due to being traced.
934  *
935  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
936  * because the parent may check the child's status before the child actually
937  * gets to this routine.
938  *
939  * This routine is called with the current lwp only, typically just
940  * before returning to userland.
941  *
942  * Setting LWP_BREAKTSLEEP before entering the tsleep will cause a passive
943  * SIGCONT to break out of the tsleep.
944  */
945 void
946 tstop(void)
947 {
948 	struct lwp *lp = curthread->td_lwp;
949 	struct proc *p = lp->lwp_proc;
950 
951 	lp->lwp_flag |= LWP_BREAKTSLEEP;
952 	lp->lwp_stat = LSSTOP;
953 	crit_enter();
954 	/*
955 	 * If LWP_WSTOP is set, we were sleeping
956 	 * while our process was stopped.  At this point
957 	 * we were already counted as stopped.
958 	 */
959 	if ((lp->lwp_flag & LWP_WSTOP) == 0) {
960 		/*
961 		 * If we're the last thread to stop, signal
962 		 * our parent.
963 		 */
964 		p->p_nstopped++;
965 		lp->lwp_flag |= LWP_WSTOP;
966 		if (p->p_nstopped == p->p_nthreads) {
967 			p->p_flag &= ~P_WAITED;
968 			wakeup(p->p_pptr);
969 			if ((p->p_pptr->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
970 				ksignal(p->p_pptr, SIGCHLD);
971 		}
972 	}
973 	tsleep(lp->lwp_proc, 0, "stop", 0);
974 	p->p_nstopped--;
975 	crit_exit();
976 }
977 
978 /*
979  * Yield / synchronous reschedule.  This is a bit tricky because the trap
980  * code might have set a lazy release on the switch function.   Setting
981  * P_PASSIVE_ACQ will ensure that the lazy release executes when we call
982  * switch, and that we are given a greater chance of affinity with our
983  * current cpu.
984  *
985  * We call lwkt_setpri_self() to rotate our thread to the end of the lwkt
986  * run queue.  lwkt_switch() will also execute any assigned passive release
987  * (which usually calls release_curproc()), allowing a same/higher priority
988  * process to be designated as the current process.
989  *
990  * While it is possible for a lower priority process to be designated,
991  * it's call to lwkt_maybe_switch() in acquire_curproc() will likely
992  * round-robin back to us and we will be able to re-acquire the current
993  * process designation.
994  */
995 void
996 uio_yield(void)
997 {
998 	struct thread *td = curthread;
999 	struct proc *p = td->td_proc;
1000 
1001 	lwkt_setpri_self(td->td_pri & TDPRI_MASK);
1002 	if (p) {
1003 		p->p_flag |= P_PASSIVE_ACQ;
1004 		lwkt_switch();
1005 		p->p_flag &= ~P_PASSIVE_ACQ;
1006 	} else {
1007 		lwkt_switch();
1008 	}
1009 }
1010 
1011 /*
1012  * Compute a tenex style load average of a quantity on
1013  * 1, 5 and 15 minute intervals.
1014  */
1015 static int loadav_count_runnable(struct lwp *p, void *data);
1016 
1017 static void
1018 loadav(void *arg)
1019 {
1020 	struct loadavg *avg;
1021 	int i, nrun;
1022 
1023 	nrun = 0;
1024 	alllwp_scan(loadav_count_runnable, &nrun);
1025 	avg = &averunnable;
1026 	for (i = 0; i < 3; i++) {
1027 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1028 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1029 	}
1030 
1031 	/*
1032 	 * Schedule the next update to occur after 5 seconds, but add a
1033 	 * random variation to avoid synchronisation with processes that
1034 	 * run at regular intervals.
1035 	 */
1036 	callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1037 		      loadav, NULL);
1038 }
1039 
1040 static int
1041 loadav_count_runnable(struct lwp *lp, void *data)
1042 {
1043 	int *nrunp = data;
1044 	thread_t td;
1045 
1046 	switch (lp->lwp_stat) {
1047 	case LSRUN:
1048 		if ((td = lp->lwp_thread) == NULL)
1049 			break;
1050 		if (td->td_flags & TDF_BLOCKED)
1051 			break;
1052 		++*nrunp;
1053 		break;
1054 	default:
1055 		break;
1056 	}
1057 	return(0);
1058 }
1059 
1060 /* ARGSUSED */
1061 static void
1062 sched_setup(void *dummy)
1063 {
1064 	callout_init(&loadav_callout);
1065 	callout_init(&schedcpu_callout);
1066 
1067 	/* Kick off timeout driven events by calling first time. */
1068 	schedcpu(NULL);
1069 	loadav(NULL);
1070 }
1071 
1072