xref: /dragonfly/sys/kern/kern_synch.c (revision 650094e1)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.91 2008/09/09 04:06:13 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <sys/sysctl.h>
53 #include <sys/lock.h>
54 #include <sys/uio.h>
55 #ifdef KTRACE
56 #include <sys/ktrace.h>
57 #endif
58 #include <sys/xwait.h>
59 #include <sys/ktr.h>
60 #include <sys/serialize.h>
61 
62 #include <sys/signal2.h>
63 #include <sys/thread2.h>
64 #include <sys/spinlock2.h>
65 #include <sys/mutex2.h>
66 
67 #include <machine/cpu.h>
68 #include <machine/smp.h>
69 
70 TAILQ_HEAD(tslpque, thread);
71 
72 static void sched_setup (void *dummy);
73 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
74 
75 int	hogticks;
76 int	lbolt;
77 void	*lbolt_syncer;
78 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
79 int	ncpus;
80 int	ncpus2, ncpus2_shift, ncpus2_mask;	/* note: mask not cpumask_t */
81 int	ncpus_fit, ncpus_fit_mask;		/* note: mask not cpumask_t */
82 int	safepri;
83 int	tsleep_now_works;
84 int	tsleep_crypto_dump = 0;
85 
86 static struct callout loadav_callout;
87 static struct callout schedcpu_callout;
88 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
89 
90 #define __DEALL(ident)	__DEQUALIFY(void *, ident)
91 
92 #if !defined(KTR_TSLEEP)
93 #define KTR_TSLEEP	KTR_ALL
94 #endif
95 KTR_INFO_MASTER(tsleep);
96 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
97 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
98 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
99 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
100 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", const volatile void *ident);
101 
102 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
103 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
104 
105 struct loadavg averunnable =
106 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
107 /*
108  * Constants for averages over 1, 5, and 15 minutes
109  * when sampling at 5 second intervals.
110  */
111 static fixpt_t cexp[3] = {
112 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
113 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
114 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
115 };
116 
117 static void	endtsleep (void *);
118 static void	loadav (void *arg);
119 static void	schedcpu (void *arg);
120 
121 /*
122  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
123  * Note that 'tick' is in microseconds per tick.
124  */
125 static int
126 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
127 {
128 	int error, new_val;
129 
130 	new_val = sched_quantum * ustick;
131 	error = sysctl_handle_int(oidp, &new_val, 0, req);
132         if (error != 0 || req->newptr == NULL)
133 		return (error);
134 	if (new_val < ustick)
135 		return (EINVAL);
136 	sched_quantum = new_val / ustick;
137 	hogticks = 2 * sched_quantum;
138 	return (0);
139 }
140 
141 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
142 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
143 
144 /*
145  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
146  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
147  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
148  *
149  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
150  *     1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
151  *
152  * If you don't want to bother with the faster/more-accurate formula, you
153  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
154  * (more general) method of calculating the %age of CPU used by a process.
155  *
156  * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
157  */
158 #define CCPU_SHIFT	11
159 
160 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
161 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
162 
163 /*
164  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
165  */
166 int     fscale __unused = FSCALE;	/* exported to systat */
167 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
168 
169 /*
170  * Recompute process priorities, once a second.
171  *
172  * Since the userland schedulers are typically event oriented, if the
173  * estcpu calculation at wakeup() time is not sufficient to make a
174  * process runnable relative to other processes in the system we have
175  * a 1-second recalc to help out.
176  *
177  * This code also allows us to store sysclock_t data in the process structure
178  * without fear of an overrun, since sysclock_t are guarenteed to hold
179  * several seconds worth of count.
180  *
181  * WARNING!  callouts can preempt normal threads.  However, they will not
182  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
183  */
184 static int schedcpu_stats(struct proc *p, void *data __unused);
185 static int schedcpu_resource(struct proc *p, void *data __unused);
186 
187 static void
188 schedcpu(void *arg)
189 {
190 	allproc_scan(schedcpu_stats, NULL);
191 	allproc_scan(schedcpu_resource, NULL);
192 	wakeup((caddr_t)&lbolt);
193 	wakeup(lbolt_syncer);
194 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
195 }
196 
197 /*
198  * General process statistics once a second
199  */
200 static int
201 schedcpu_stats(struct proc *p, void *data __unused)
202 {
203 	struct lwp *lp;
204 
205 	/*
206 	 * Threads may not be completely set up if process in SIDL state.
207 	 */
208 	if (p->p_stat == SIDL)
209 		return(0);
210 
211 	PHOLD(p);
212 	if (lwkt_trytoken(&p->p_token) == FALSE) {
213 		PRELE(p);
214 		return(0);
215 	}
216 
217 	p->p_swtime++;
218 	FOREACH_LWP_IN_PROC(lp, p) {
219 		if (lp->lwp_stat == LSSLEEP)
220 			lp->lwp_slptime++;
221 
222 		/*
223 		 * Only recalculate processes that are active or have slept
224 		 * less then 2 seconds.  The schedulers understand this.
225 		 */
226 		if (lp->lwp_slptime <= 1) {
227 			p->p_usched->recalculate(lp);
228 		} else {
229 			lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
230 		}
231 	}
232 	lwkt_reltoken(&p->p_token);
233 	lwkt_yield();
234 	PRELE(p);
235 	return(0);
236 }
237 
238 /*
239  * Resource checks.  XXX break out since ksignal/killproc can block,
240  * limiting us to one process killed per second.  There is probably
241  * a better way.
242  */
243 static int
244 schedcpu_resource(struct proc *p, void *data __unused)
245 {
246 	u_int64_t ttime;
247 	struct lwp *lp;
248 
249 	if (p->p_stat == SIDL)
250 		return(0);
251 
252 	PHOLD(p);
253 	if (lwkt_trytoken(&p->p_token) == FALSE) {
254 		PRELE(p);
255 		return(0);
256 	}
257 
258 	if (p->p_stat == SZOMB || p->p_limit == NULL) {
259 		lwkt_reltoken(&p->p_token);
260 		PRELE(p);
261 		return(0);
262 	}
263 
264 	ttime = 0;
265 	FOREACH_LWP_IN_PROC(lp, p) {
266 		/*
267 		 * We may have caught an lp in the middle of being
268 		 * created, lwp_thread can be NULL.
269 		 */
270 		if (lp->lwp_thread) {
271 			ttime += lp->lwp_thread->td_sticks;
272 			ttime += lp->lwp_thread->td_uticks;
273 		}
274 	}
275 
276 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
277 	case PLIMIT_TESTCPU_KILL:
278 		killproc(p, "exceeded maximum CPU limit");
279 		break;
280 	case PLIMIT_TESTCPU_XCPU:
281 		if ((p->p_flags & P_XCPU) == 0) {
282 			p->p_flags |= P_XCPU;
283 			ksignal(p, SIGXCPU);
284 		}
285 		break;
286 	default:
287 		break;
288 	}
289 	lwkt_reltoken(&p->p_token);
290 	lwkt_yield();
291 	PRELE(p);
292 	return(0);
293 }
294 
295 /*
296  * This is only used by ps.  Generate a cpu percentage use over
297  * a period of one second.
298  *
299  * MPSAFE
300  */
301 void
302 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
303 {
304 	fixpt_t acc;
305 	int remticks;
306 
307 	acc = (cpticks << FSHIFT) / ttlticks;
308 	if (ttlticks >= ESTCPUFREQ) {
309 		lp->lwp_pctcpu = acc;
310 	} else {
311 		remticks = ESTCPUFREQ - ttlticks;
312 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
313 				ESTCPUFREQ;
314 	}
315 }
316 
317 /*
318  * tsleep/wakeup hash table parameters.  Try to find the sweet spot for
319  * like addresses being slept on.
320  */
321 #define TABLESIZE	4001
322 #define LOOKUP(x)	(((u_int)(uintptr_t)(x)) % TABLESIZE)
323 
324 static cpumask_t slpque_cpumasks[TABLESIZE];
325 
326 /*
327  * General scheduler initialization.  We force a reschedule 25 times
328  * a second by default.  Note that cpu0 is initialized in early boot and
329  * cannot make any high level calls.
330  *
331  * Each cpu has its own sleep queue.
332  */
333 void
334 sleep_gdinit(globaldata_t gd)
335 {
336 	static struct tslpque slpque_cpu0[TABLESIZE];
337 	int i;
338 
339 	if (gd->gd_cpuid == 0) {
340 		sched_quantum = (hz + 24) / 25;
341 		hogticks = 2 * sched_quantum;
342 
343 		gd->gd_tsleep_hash = slpque_cpu0;
344 	} else {
345 		gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
346 					    M_TSLEEP, M_WAITOK | M_ZERO);
347 	}
348 	for (i = 0; i < TABLESIZE; ++i)
349 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
350 }
351 
352 /*
353  * This is a dandy function that allows us to interlock tsleep/wakeup
354  * operations with unspecified upper level locks, such as lockmgr locks,
355  * simply by holding a critical section.  The sequence is:
356  *
357  *	(acquire upper level lock)
358  *	tsleep_interlock(blah)
359  *	(release upper level lock)
360  *	tsleep(blah, ...)
361  *
362  * Basically this functions queues us on the tsleep queue without actually
363  * descheduling us.  When tsleep() is later called with PINTERLOCK it
364  * assumes the thread was already queued, otherwise it queues it there.
365  *
366  * Thus it is possible to receive the wakeup prior to going to sleep and
367  * the race conditions are covered.
368  */
369 static __inline void
370 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
371 {
372 	thread_t td = gd->gd_curthread;
373 	int id;
374 
375 	crit_enter_quick(td);
376 	if (td->td_flags & TDF_TSLEEPQ) {
377 		id = LOOKUP(td->td_wchan);
378 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
379 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL) {
380 			atomic_clear_cpumask(&slpque_cpumasks[id],
381 					     gd->gd_cpumask);
382 		}
383 	} else {
384 		td->td_flags |= TDF_TSLEEPQ;
385 	}
386 	id = LOOKUP(ident);
387 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
388 	atomic_set_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
389 	td->td_wchan = ident;
390 	td->td_wdomain = flags & PDOMAIN_MASK;
391 	crit_exit_quick(td);
392 }
393 
394 void
395 tsleep_interlock(const volatile void *ident, int flags)
396 {
397 	_tsleep_interlock(mycpu, ident, flags);
398 }
399 
400 /*
401  * Remove thread from sleepq.  Must be called with a critical section held.
402  * The thread must not be migrating.
403  */
404 static __inline void
405 _tsleep_remove(thread_t td)
406 {
407 	globaldata_t gd = mycpu;
408 	int id;
409 
410 	KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
411 	KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
412 	if (td->td_flags & TDF_TSLEEPQ) {
413 		td->td_flags &= ~TDF_TSLEEPQ;
414 		id = LOOKUP(td->td_wchan);
415 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
416 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
417 			atomic_clear_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
418 		td->td_wchan = NULL;
419 		td->td_wdomain = 0;
420 	}
421 }
422 
423 void
424 tsleep_remove(thread_t td)
425 {
426 	_tsleep_remove(td);
427 }
428 
429 /*
430  * General sleep call.  Suspends the current process until a wakeup is
431  * performed on the specified identifier.  The process will then be made
432  * runnable with the specified priority.  Sleeps at most timo/hz seconds
433  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
434  * before and after sleeping, else signals are not checked.  Returns 0 if
435  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
436  * signal needs to be delivered, ERESTART is returned if the current system
437  * call should be restarted if possible, and EINTR is returned if the system
438  * call should be interrupted by the signal (return EINTR).
439  *
440  * Note that if we are a process, we release_curproc() before messing with
441  * the LWKT scheduler.
442  *
443  * During autoconfiguration or after a panic, a sleep will simply
444  * lower the priority briefly to allow interrupts, then return.
445  *
446  * WARNING!  This code can't block (short of switching away), or bad things
447  *           will happen.  No getting tokens, no blocking locks, etc.
448  */
449 int
450 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
451 {
452 	struct thread *td = curthread;
453 	struct lwp *lp = td->td_lwp;
454 	struct proc *p = td->td_proc;		/* may be NULL */
455 	globaldata_t gd;
456 	int sig;
457 	int catch;
458 	int error;
459 	int oldpri;
460 	struct callout thandle;
461 
462 	/*
463 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
464 	 * even in stable.  Just scrap it for now.
465 	 */
466 	if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
467 		/*
468 		 * After a panic, or before we actually have an operational
469 		 * softclock, just give interrupts a chance, then just return;
470 		 *
471 		 * don't run any other procs or panic below,
472 		 * in case this is the idle process and already asleep.
473 		 */
474 		splz();
475 		oldpri = td->td_pri;
476 		lwkt_setpri_self(safepri);
477 		lwkt_switch();
478 		lwkt_setpri_self(oldpri);
479 		return (0);
480 	}
481 	logtsleep2(tsleep_beg, ident);
482 	gd = td->td_gd;
483 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
484 
485 	/*
486 	 * NOTE: all of this occurs on the current cpu, including any
487 	 * callout-based wakeups, so a critical section is a sufficient
488 	 * interlock.
489 	 *
490 	 * The entire sequence through to where we actually sleep must
491 	 * run without breaking the critical section.
492 	 */
493 	catch = flags & PCATCH;
494 	error = 0;
495 	sig = 0;
496 
497 	crit_enter_quick(td);
498 
499 	KASSERT(ident != NULL, ("tsleep: no ident"));
500 	KASSERT(lp == NULL ||
501 		lp->lwp_stat == LSRUN ||	/* Obvious */
502 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
503 		("tsleep %p %s %d",
504 			ident, wmesg, lp->lwp_stat));
505 
506 	/*
507 	 * We interlock the sleep queue if the caller has not already done
508 	 * it for us.  This must be done before we potentially acquire any
509 	 * tokens or we can loose the wakeup.
510 	 */
511 	if ((flags & PINTERLOCKED) == 0) {
512 		_tsleep_interlock(gd, ident, flags);
513 	}
514 
515 	/*
516 	 * Setup for the current process (if this is a process).  We must
517 	 * interlock with lwp_token to avoid remote wakeup races via
518 	 * setrunnable()
519 	 */
520 	if (lp) {
521 		lwkt_gettoken(&lp->lwp_token);
522 		if (catch) {
523 			/*
524 			 * Early termination if PCATCH was set and a
525 			 * signal is pending, interlocked with the
526 			 * critical section.
527 			 *
528 			 * Early termination only occurs when tsleep() is
529 			 * entered while in a normal LSRUN state.
530 			 */
531 			if ((sig = CURSIG(lp)) != 0)
532 				goto resume;
533 
534 			/*
535 			 * Causes ksignal to wake us up if a signal is
536 			 * received (interlocked with p->p_token).
537 			 */
538 			lp->lwp_flags |= LWP_SINTR;
539 		}
540 	} else {
541 		KKASSERT(p == NULL);
542 	}
543 
544 	/*
545 	 * Make sure the current process has been untangled from
546 	 * the userland scheduler and initialize slptime to start
547 	 * counting.
548 	 */
549 	if (lp) {
550 		p->p_usched->release_curproc(lp);
551 		lp->lwp_slptime = 0;
552 	}
553 
554 	/*
555 	 * If the interlocked flag is set but our cpu bit in the slpqueue
556 	 * is no longer set, then a wakeup was processed inbetween the
557 	 * tsleep_interlock() (ours or the callers), and here.  This can
558 	 * occur under numerous circumstances including when we release the
559 	 * current process.
560 	 *
561 	 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
562 	 * to process incoming IPIs, thus draining incoming wakeups.
563 	 */
564 	if ((td->td_flags & TDF_TSLEEPQ) == 0) {
565 		logtsleep2(ilockfail, ident);
566 		goto resume;
567 	}
568 
569 	/*
570 	 * scheduling is blocked while in a critical section.  Coincide
571 	 * the descheduled-by-tsleep flag with the descheduling of the
572 	 * lwkt.
573 	 *
574 	 * The timer callout is localized on our cpu and interlocked by
575 	 * our critical section.
576 	 */
577 	lwkt_deschedule_self(td);
578 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
579 	td->td_wmesg = wmesg;
580 
581 	/*
582 	 * Setup the timeout, if any.  The timeout is only operable while
583 	 * the thread is flagged descheduled.
584 	 */
585 	KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
586 	if (timo) {
587 		callout_init_mp(&thandle);
588 		callout_reset(&thandle, timo, endtsleep, td);
589 	}
590 
591 	/*
592 	 * Beddy bye bye.
593 	 */
594 	if (lp) {
595 		/*
596 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
597 		 */
598 		KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
599 		/*
600 		 * tstop() sets LSSTOP, so don't fiddle with that.
601 		 */
602 		if (lp->lwp_stat != LSSTOP)
603 			lp->lwp_stat = LSSLEEP;
604 		lp->lwp_ru.ru_nvcsw++;
605 		lwkt_switch();
606 
607 		/*
608 		 * And when we are woken up, put us back in LSRUN.  If we
609 		 * slept for over a second, recalculate our estcpu.
610 		 */
611 		lp->lwp_stat = LSRUN;
612 		if (lp->lwp_slptime)
613 			p->p_usched->recalculate(lp);
614 		lp->lwp_slptime = 0;
615 	} else {
616 		lwkt_switch();
617 	}
618 
619 	/*
620 	 * Make sure we haven't switched cpus while we were asleep.  It's
621 	 * not supposed to happen.  Cleanup our temporary flags.
622 	 */
623 	KKASSERT(gd == td->td_gd);
624 
625 	/*
626 	 * Cleanup the timeout.  If the timeout has already occured thandle
627 	 * has already been stopped, otherwise stop thandle.  If the timeout
628 	 * is running (the callout thread must be blocked trying to get
629 	 * lwp_token) then wait for us to get scheduled.
630 	 */
631 	if (timo) {
632 		while (td->td_flags & TDF_TIMEOUT_RUNNING) {
633 			lwkt_deschedule_self(td);
634 			td->td_wmesg = "tsrace";
635 			lwkt_switch();
636 			kprintf("td %p %s: timeout race\n", td, td->td_comm);
637 		}
638 		if (td->td_flags & TDF_TIMEOUT) {
639 			td->td_flags &= ~TDF_TIMEOUT;
640 			error = EWOULDBLOCK;
641 		} else {
642 			/* does not block when on same cpu */
643 			callout_stop(&thandle);
644 		}
645 	}
646 	td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
647 
648 	/*
649 	 * Make sure we have been removed from the sleepq.  In most
650 	 * cases this will have been done for us already but it is
651 	 * possible for a scheduling IPI to be in-flight from a
652 	 * previous tsleep/tsleep_interlock() or due to a straight-out
653 	 * call to lwkt_schedule() (in the case of an interrupt thread),
654 	 * causing a spurious wakeup.
655 	 */
656 	_tsleep_remove(td);
657 	td->td_wmesg = NULL;
658 
659 	/*
660 	 * Figure out the correct error return.  If interrupted by a
661 	 * signal we want to return EINTR or ERESTART.
662 	 */
663 resume:
664 	if (lp) {
665 		if (catch && error == 0) {
666 			if (sig != 0 || (sig = CURSIG(lp))) {
667 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
668 					error = EINTR;
669 				else
670 					error = ERESTART;
671 			}
672 		}
673 		lp->lwp_flags &= ~LWP_SINTR;
674 		lwkt_reltoken(&lp->lwp_token);
675 	}
676 	logtsleep1(tsleep_end);
677 	crit_exit_quick(td);
678 	return (error);
679 }
680 
681 /*
682  * Interlocked spinlock sleep.  An exclusively held spinlock must
683  * be passed to ssleep().  The function will atomically release the
684  * spinlock and tsleep on the ident, then reacquire the spinlock and
685  * return.
686  *
687  * This routine is fairly important along the critical path, so optimize it
688  * heavily.
689  */
690 int
691 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
692        const char *wmesg, int timo)
693 {
694 	globaldata_t gd = mycpu;
695 	int error;
696 
697 	_tsleep_interlock(gd, ident, flags);
698 	spin_unlock_quick(gd, spin);
699 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
700 	spin_lock_quick(gd, spin);
701 
702 	return (error);
703 }
704 
705 int
706 lksleep(const volatile void *ident, struct lock *lock, int flags,
707 	const char *wmesg, int timo)
708 {
709 	globaldata_t gd = mycpu;
710 	int error;
711 
712 	_tsleep_interlock(gd, ident, flags);
713 	lockmgr(lock, LK_RELEASE);
714 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
715 	lockmgr(lock, LK_EXCLUSIVE);
716 
717 	return (error);
718 }
719 
720 /*
721  * Interlocked mutex sleep.  An exclusively held mutex must be passed
722  * to mtxsleep().  The function will atomically release the mutex
723  * and tsleep on the ident, then reacquire the mutex and return.
724  */
725 int
726 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
727 	 const char *wmesg, int timo)
728 {
729 	globaldata_t gd = mycpu;
730 	int error;
731 
732 	_tsleep_interlock(gd, ident, flags);
733 	mtx_unlock(mtx);
734 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
735 	mtx_lock_ex_quick(mtx, wmesg);
736 
737 	return (error);
738 }
739 
740 /*
741  * Interlocked serializer sleep.  An exclusively held serializer must
742  * be passed to zsleep().  The function will atomically release
743  * the serializer and tsleep on the ident, then reacquire the serializer
744  * and return.
745  */
746 int
747 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
748        const char *wmesg, int timo)
749 {
750 	globaldata_t gd = mycpu;
751 	int ret;
752 
753 	ASSERT_SERIALIZED(slz);
754 
755 	_tsleep_interlock(gd, ident, flags);
756 	lwkt_serialize_exit(slz);
757 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
758 	lwkt_serialize_enter(slz);
759 
760 	return ret;
761 }
762 
763 /*
764  * Directly block on the LWKT thread by descheduling it.  This
765  * is much faster then tsleep(), but the only legal way to wake
766  * us up is to directly schedule the thread.
767  *
768  * Setting TDF_SINTR will cause new signals to directly schedule us.
769  *
770  * This routine must be called while in a critical section.
771  */
772 int
773 lwkt_sleep(const char *wmesg, int flags)
774 {
775 	thread_t td = curthread;
776 	int sig;
777 
778 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
779 		td->td_flags |= TDF_BLOCKED;
780 		td->td_wmesg = wmesg;
781 		lwkt_deschedule_self(td);
782 		lwkt_switch();
783 		td->td_wmesg = NULL;
784 		td->td_flags &= ~TDF_BLOCKED;
785 		return(0);
786 	}
787 	if ((sig = CURSIG(td->td_lwp)) != 0) {
788 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
789 			return(EINTR);
790 		else
791 			return(ERESTART);
792 
793 	}
794 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
795 	td->td_wmesg = wmesg;
796 	lwkt_deschedule_self(td);
797 	lwkt_switch();
798 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
799 	td->td_wmesg = NULL;
800 	return(0);
801 }
802 
803 /*
804  * Implement the timeout for tsleep.
805  *
806  * This type of callout timeout is scheduled on the same cpu the process
807  * is sleeping on.  Also, at the moment, the MP lock is held.
808  */
809 static void
810 endtsleep(void *arg)
811 {
812 	thread_t td = arg;
813 	struct lwp *lp;
814 
815 	/*
816 	 * We are going to have to get the lwp_token, which means we might
817 	 * block.  This can race a tsleep getting woken up by other means
818 	 * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
819 	 * processing to complete (sorry tsleep!).
820 	 *
821 	 * We can safely set td_flags because td MUST be on the same cpu
822 	 * as we are.
823 	 */
824 	KKASSERT(td->td_gd == mycpu);
825 	crit_enter();
826 	td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
827 
828 	/*
829 	 * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
830 	 * from exiting the tsleep on us.  The flag is interlocked by virtue
831 	 * of lp being on the same cpu as we are.
832 	 */
833 	if ((lp = td->td_lwp) != NULL)
834 		lwkt_gettoken(&lp->lwp_token);
835 
836 	KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
837 
838 	if (lp) {
839 		if (lp->lwp_proc->p_stat != SSTOP)
840 			setrunnable(lp);
841 		lwkt_reltoken(&lp->lwp_token);
842 	} else {
843 		_tsleep_remove(td);
844 		lwkt_schedule(td);
845 	}
846 	KKASSERT(td->td_gd == mycpu);
847 	td->td_flags &= ~TDF_TIMEOUT_RUNNING;
848 	crit_exit();
849 }
850 
851 /*
852  * Make all processes sleeping on the specified identifier runnable.
853  * count may be zero or one only.
854  *
855  * The domain encodes the sleep/wakeup domain AND the first cpu to check
856  * (which is always the current cpu).  As we iterate across cpus
857  *
858  * This call may run without the MP lock held.  We can only manipulate thread
859  * state on the cpu owning the thread.  We CANNOT manipulate process state
860  * at all.
861  *
862  * _wakeup() can be passed to an IPI so we can't use (const volatile
863  * void *ident).
864  */
865 static void
866 _wakeup(void *ident, int domain)
867 {
868 	struct tslpque *qp;
869 	struct thread *td;
870 	struct thread *ntd;
871 	globaldata_t gd;
872 #ifdef SMP
873 	cpumask_t mask;
874 #endif
875 	int id;
876 
877 	crit_enter();
878 	logtsleep2(wakeup_beg, ident);
879 	gd = mycpu;
880 	id = LOOKUP(ident);
881 	qp = &gd->gd_tsleep_hash[id];
882 restart:
883 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
884 		ntd = TAILQ_NEXT(td, td_sleepq);
885 		if (td->td_wchan == ident &&
886 		    td->td_wdomain == (domain & PDOMAIN_MASK)
887 		) {
888 			KKASSERT(td->td_gd == gd);
889 			_tsleep_remove(td);
890 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
891 				lwkt_schedule(td);
892 				if (domain & PWAKEUP_ONE)
893 					goto done;
894 			}
895 			goto restart;
896 		}
897 	}
898 
899 #ifdef SMP
900 	/*
901 	 * We finished checking the current cpu but there still may be
902 	 * more work to do.  Either wakeup_one was requested and no matching
903 	 * thread was found, or a normal wakeup was requested and we have
904 	 * to continue checking cpus.
905 	 *
906 	 * It should be noted that this scheme is actually less expensive then
907 	 * the old scheme when waking up multiple threads, since we send
908 	 * only one IPI message per target candidate which may then schedule
909 	 * multiple threads.  Before we could have wound up sending an IPI
910 	 * message for each thread on the target cpu (!= current cpu) that
911 	 * needed to be woken up.
912 	 *
913 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
914 	 * should be ok since we are passing idents in the IPI rather then
915 	 * thread pointers.
916 	 */
917 	if ((domain & PWAKEUP_MYCPU) == 0 &&
918 	    (mask = slpque_cpumasks[id] & gd->gd_other_cpus) != 0) {
919 		lwkt_send_ipiq2_mask(mask, _wakeup, ident,
920 				     domain | PWAKEUP_MYCPU);
921 	}
922 #endif
923 done:
924 	logtsleep1(wakeup_end);
925 	crit_exit();
926 }
927 
928 /*
929  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
930  */
931 void
932 wakeup(const volatile void *ident)
933 {
934     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
935 }
936 
937 /*
938  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
939  */
940 void
941 wakeup_one(const volatile void *ident)
942 {
943     /* XXX potentially round-robin the first responding cpu */
944     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
945 }
946 
947 /*
948  * Wakeup threads tsleep()ing on the specified ident on the current cpu
949  * only.
950  */
951 void
952 wakeup_mycpu(const volatile void *ident)
953 {
954     _wakeup(__DEALL(ident), PWAKEUP_MYCPU);
955 }
956 
957 /*
958  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
959  * only.
960  */
961 void
962 wakeup_mycpu_one(const volatile void *ident)
963 {
964     /* XXX potentially round-robin the first responding cpu */
965     _wakeup(__DEALL(ident), PWAKEUP_MYCPU|PWAKEUP_ONE);
966 }
967 
968 /*
969  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
970  * only.
971  */
972 void
973 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
974 {
975 #ifdef SMP
976     if (gd == mycpu) {
977 	_wakeup(__DEALL(ident), PWAKEUP_MYCPU);
978     } else {
979 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident), PWAKEUP_MYCPU);
980     }
981 #else
982     _wakeup(__DEALL(ident), PWAKEUP_MYCPU);
983 #endif
984 }
985 
986 /*
987  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
988  * only.
989  */
990 void
991 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
992 {
993 #ifdef SMP
994     if (gd == mycpu) {
995 	_wakeup(__DEALL(ident), PWAKEUP_MYCPU | PWAKEUP_ONE);
996     } else {
997 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
998 			PWAKEUP_MYCPU | PWAKEUP_ONE);
999     }
1000 #else
1001     _wakeup(__DEALL(ident), PWAKEUP_MYCPU | PWAKEUP_ONE);
1002 #endif
1003 }
1004 
1005 /*
1006  * Wakeup all threads waiting on the specified ident that slept using
1007  * the specified domain, on all cpus.
1008  */
1009 void
1010 wakeup_domain(const volatile void *ident, int domain)
1011 {
1012     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1013 }
1014 
1015 /*
1016  * Wakeup one thread waiting on the specified ident that slept using
1017  * the specified  domain, on any cpu.
1018  */
1019 void
1020 wakeup_domain_one(const volatile void *ident, int domain)
1021 {
1022     /* XXX potentially round-robin the first responding cpu */
1023     _wakeup(__DEALL(ident),
1024 	    PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1025 }
1026 
1027 /*
1028  * setrunnable()
1029  *
1030  * Make a process runnable.  lp->lwp_token must be held on call and this
1031  * function must be called from the cpu owning lp.
1032  *
1033  * This only has an effect if we are in LSSTOP or LSSLEEP.
1034  */
1035 void
1036 setrunnable(struct lwp *lp)
1037 {
1038 	thread_t td = lp->lwp_thread;
1039 
1040 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1041 	KKASSERT(td->td_gd == mycpu);
1042 	crit_enter();
1043 	if (lp->lwp_stat == LSSTOP)
1044 		lp->lwp_stat = LSSLEEP;
1045 	if (lp->lwp_stat == LSSLEEP) {
1046 		_tsleep_remove(td);
1047 		lwkt_schedule(td);
1048 	} else if (td->td_flags & TDF_SINTR) {
1049 		lwkt_schedule(td);
1050 	}
1051 	crit_exit();
1052 }
1053 
1054 /*
1055  * The process is stopped due to some condition, usually because p_stat is
1056  * set to SSTOP, but also possibly due to being traced.
1057  *
1058  * Caller must hold p->p_token
1059  *
1060  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
1061  * because the parent may check the child's status before the child actually
1062  * gets to this routine.
1063  *
1064  * This routine is called with the current lwp only, typically just
1065  * before returning to userland if the process state is detected as
1066  * possibly being in a stopped state.
1067  */
1068 void
1069 tstop(void)
1070 {
1071 	struct lwp *lp = curthread->td_lwp;
1072 	struct proc *p = lp->lwp_proc;
1073 	struct proc *q;
1074 
1075 	lwkt_gettoken(&lp->lwp_token);
1076 	crit_enter();
1077 
1078 	/*
1079 	 * If LWP_MP_WSTOP is set, we were sleeping
1080 	 * while our process was stopped.  At this point
1081 	 * we were already counted as stopped.
1082 	 */
1083 	if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1084 		/*
1085 		 * If we're the last thread to stop, signal
1086 		 * our parent.
1087 		 */
1088 		p->p_nstopped++;
1089 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1090 		wakeup(&p->p_nstopped);
1091 		if (p->p_nstopped == p->p_nthreads) {
1092 			/*
1093 			 * Token required to interlock kern_wait()
1094 			 */
1095 			q = p->p_pptr;
1096 			PHOLD(q);
1097 			lwkt_gettoken(&q->p_token);
1098 			p->p_flags &= ~P_WAITED;
1099 			wakeup(p->p_pptr);
1100 			if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1101 				ksignal(q, SIGCHLD);
1102 			lwkt_reltoken(&q->p_token);
1103 			PRELE(q);
1104 		}
1105 	}
1106 	while (p->p_stat == SSTOP) {
1107 		lp->lwp_stat = LSSTOP;
1108 		tsleep(p, 0, "stop", 0);
1109 	}
1110 	p->p_nstopped--;
1111 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1112 	crit_exit();
1113 	lwkt_reltoken(&lp->lwp_token);
1114 }
1115 
1116 /*
1117  * Compute a tenex style load average of a quantity on
1118  * 1, 5 and 15 minute intervals.
1119  */
1120 static int loadav_count_runnable(struct lwp *p, void *data);
1121 
1122 static void
1123 loadav(void *arg)
1124 {
1125 	struct loadavg *avg;
1126 	int i, nrun;
1127 
1128 	nrun = 0;
1129 	alllwp_scan(loadav_count_runnable, &nrun);
1130 	avg = &averunnable;
1131 	for (i = 0; i < 3; i++) {
1132 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1133 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1134 	}
1135 
1136 	/*
1137 	 * Schedule the next update to occur after 5 seconds, but add a
1138 	 * random variation to avoid synchronisation with processes that
1139 	 * run at regular intervals.
1140 	 */
1141 	callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1142 		      loadav, NULL);
1143 }
1144 
1145 static int
1146 loadav_count_runnable(struct lwp *lp, void *data)
1147 {
1148 	int *nrunp = data;
1149 	thread_t td;
1150 
1151 	switch (lp->lwp_stat) {
1152 	case LSRUN:
1153 		if ((td = lp->lwp_thread) == NULL)
1154 			break;
1155 		if (td->td_flags & TDF_BLOCKED)
1156 			break;
1157 		++*nrunp;
1158 		break;
1159 	default:
1160 		break;
1161 	}
1162 	lwkt_yield();
1163 	return(0);
1164 }
1165 
1166 /* ARGSUSED */
1167 static void
1168 sched_setup(void *dummy)
1169 {
1170 	callout_init_mp(&loadav_callout);
1171 	callout_init_mp(&schedcpu_callout);
1172 
1173 	/* Kick off timeout driven events by calling first time. */
1174 	schedcpu(NULL);
1175 	loadav(NULL);
1176 }
1177 
1178