xref: /dragonfly/sys/kern/kern_synch.c (revision 81c11cd3)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.91 2008/09/09 04:06:13 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <sys/sysctl.h>
53 #include <sys/lock.h>
54 #include <sys/uio.h>
55 #ifdef KTRACE
56 #include <sys/ktrace.h>
57 #endif
58 #include <sys/xwait.h>
59 #include <sys/ktr.h>
60 #include <sys/serialize.h>
61 
62 #include <sys/signal2.h>
63 #include <sys/thread2.h>
64 #include <sys/spinlock2.h>
65 #include <sys/mutex2.h>
66 #include <sys/mplock2.h>
67 
68 #include <machine/cpu.h>
69 #include <machine/smp.h>
70 
71 TAILQ_HEAD(tslpque, thread);
72 
73 static void sched_setup (void *dummy);
74 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
75 
76 int	hogticks;
77 int	lbolt;
78 int	lbolt_syncer;
79 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
80 int	ncpus;
81 int	ncpus2, ncpus2_shift, ncpus2_mask;	/* note: mask not cpumask_t */
82 int	ncpus_fit, ncpus_fit_mask;		/* note: mask not cpumask_t */
83 int	safepri;
84 int	tsleep_now_works;
85 int	tsleep_crypto_dump = 0;
86 
87 static struct callout loadav_callout;
88 static struct callout schedcpu_callout;
89 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
90 
91 #define __DEALL(ident)	__DEQUALIFY(void *, ident)
92 
93 #if !defined(KTR_TSLEEP)
94 #define KTR_TSLEEP	KTR_ALL
95 #endif
96 KTR_INFO_MASTER(tsleep);
97 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", sizeof(void *));
98 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit", 0);
99 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", sizeof(void *));
100 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit", 0);
101 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", sizeof(void *));
102 
103 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
104 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
105 
106 struct loadavg averunnable =
107 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
108 /*
109  * Constants for averages over 1, 5, and 15 minutes
110  * when sampling at 5 second intervals.
111  */
112 static fixpt_t cexp[3] = {
113 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
114 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
115 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
116 };
117 
118 static void	endtsleep (void *);
119 static void	loadav (void *arg);
120 static void	schedcpu (void *arg);
121 #ifdef SMP
122 static void	tsleep_wakeup_remote(struct thread *td);
123 #endif
124 
125 /*
126  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
127  * Note that 'tick' is in microseconds per tick.
128  */
129 static int
130 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
131 {
132 	int error, new_val;
133 
134 	new_val = sched_quantum * ustick;
135 	error = sysctl_handle_int(oidp, &new_val, 0, req);
136         if (error != 0 || req->newptr == NULL)
137 		return (error);
138 	if (new_val < ustick)
139 		return (EINVAL);
140 	sched_quantum = new_val / ustick;
141 	hogticks = 2 * sched_quantum;
142 	return (0);
143 }
144 
145 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
146 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
147 
148 /*
149  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
150  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
151  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
152  *
153  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
154  *     1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
155  *
156  * If you don't want to bother with the faster/more-accurate formula, you
157  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
158  * (more general) method of calculating the %age of CPU used by a process.
159  *
160  * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
161  */
162 #define CCPU_SHIFT	11
163 
164 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
165 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
166 
167 /*
168  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
169  */
170 int     fscale __unused = FSCALE;	/* exported to systat */
171 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
172 
173 /*
174  * Recompute process priorities, once a second.
175  *
176  * Since the userland schedulers are typically event oriented, if the
177  * estcpu calculation at wakeup() time is not sufficient to make a
178  * process runnable relative to other processes in the system we have
179  * a 1-second recalc to help out.
180  *
181  * This code also allows us to store sysclock_t data in the process structure
182  * without fear of an overrun, since sysclock_t are guarenteed to hold
183  * several seconds worth of count.
184  *
185  * WARNING!  callouts can preempt normal threads.  However, they will not
186  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
187  */
188 static int schedcpu_stats(struct proc *p, void *data __unused);
189 static int schedcpu_resource(struct proc *p, void *data __unused);
190 
191 static void
192 schedcpu(void *arg)
193 {
194 	allproc_scan(schedcpu_stats, NULL);
195 	allproc_scan(schedcpu_resource, NULL);
196 	wakeup((caddr_t)&lbolt);
197 	wakeup((caddr_t)&lbolt_syncer);
198 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
199 }
200 
201 /*
202  * General process statistics once a second
203  */
204 static int
205 schedcpu_stats(struct proc *p, void *data __unused)
206 {
207 	struct lwp *lp;
208 
209 	crit_enter();
210 	p->p_swtime++;
211 	FOREACH_LWP_IN_PROC(lp, p) {
212 		if (lp->lwp_stat == LSSLEEP)
213 			lp->lwp_slptime++;
214 
215 		/*
216 		 * Only recalculate processes that are active or have slept
217 		 * less then 2 seconds.  The schedulers understand this.
218 		 */
219 		if (lp->lwp_slptime <= 1) {
220 			p->p_usched->recalculate(lp);
221 		} else {
222 			lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
223 		}
224 	}
225 	crit_exit();
226 	return(0);
227 }
228 
229 /*
230  * Resource checks.  XXX break out since ksignal/killproc can block,
231  * limiting us to one process killed per second.  There is probably
232  * a better way.
233  */
234 static int
235 schedcpu_resource(struct proc *p, void *data __unused)
236 {
237 	u_int64_t ttime;
238 	struct lwp *lp;
239 
240 	crit_enter();
241 	if (p->p_stat == SIDL ||
242 	    p->p_stat == SZOMB ||
243 	    p->p_limit == NULL
244 	) {
245 		crit_exit();
246 		return(0);
247 	}
248 
249 	ttime = 0;
250 	FOREACH_LWP_IN_PROC(lp, p) {
251 		/*
252 		 * We may have caught an lp in the middle of being
253 		 * created, lwp_thread can be NULL.
254 		 */
255 		if (lp->lwp_thread) {
256 			ttime += lp->lwp_thread->td_sticks;
257 			ttime += lp->lwp_thread->td_uticks;
258 		}
259 	}
260 
261 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
262 	case PLIMIT_TESTCPU_KILL:
263 		killproc(p, "exceeded maximum CPU limit");
264 		break;
265 	case PLIMIT_TESTCPU_XCPU:
266 		if ((p->p_flag & P_XCPU) == 0) {
267 			p->p_flag |= P_XCPU;
268 			ksignal(p, SIGXCPU);
269 		}
270 		break;
271 	default:
272 		break;
273 	}
274 	crit_exit();
275 	return(0);
276 }
277 
278 /*
279  * This is only used by ps.  Generate a cpu percentage use over
280  * a period of one second.
281  *
282  * MPSAFE
283  */
284 void
285 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
286 {
287 	fixpt_t acc;
288 	int remticks;
289 
290 	acc = (cpticks << FSHIFT) / ttlticks;
291 	if (ttlticks >= ESTCPUFREQ) {
292 		lp->lwp_pctcpu = acc;
293 	} else {
294 		remticks = ESTCPUFREQ - ttlticks;
295 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
296 				ESTCPUFREQ;
297 	}
298 }
299 
300 /*
301  * tsleep/wakeup hash table parameters.  Try to find the sweet spot for
302  * like addresses being slept on.
303  */
304 #define TABLESIZE	1024
305 #define LOOKUP(x)	(((intptr_t)(x) >> 6) & (TABLESIZE - 1))
306 
307 static cpumask_t slpque_cpumasks[TABLESIZE];
308 
309 /*
310  * General scheduler initialization.  We force a reschedule 25 times
311  * a second by default.  Note that cpu0 is initialized in early boot and
312  * cannot make any high level calls.
313  *
314  * Each cpu has its own sleep queue.
315  */
316 void
317 sleep_gdinit(globaldata_t gd)
318 {
319 	static struct tslpque slpque_cpu0[TABLESIZE];
320 	int i;
321 
322 	if (gd->gd_cpuid == 0) {
323 		sched_quantum = (hz + 24) / 25;
324 		hogticks = 2 * sched_quantum;
325 
326 		gd->gd_tsleep_hash = slpque_cpu0;
327 	} else {
328 		gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
329 					    M_TSLEEP, M_WAITOK | M_ZERO);
330 	}
331 	for (i = 0; i < TABLESIZE; ++i)
332 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
333 }
334 
335 /*
336  * This is a dandy function that allows us to interlock tsleep/wakeup
337  * operations with unspecified upper level locks, such as lockmgr locks,
338  * simply by holding a critical section.  The sequence is:
339  *
340  *	(acquire upper level lock)
341  *	tsleep_interlock(blah)
342  *	(release upper level lock)
343  *	tsleep(blah, ...)
344  *
345  * Basically this functions queues us on the tsleep queue without actually
346  * descheduling us.  When tsleep() is later called with PINTERLOCK it
347  * assumes the thread was already queued, otherwise it queues it there.
348  *
349  * Thus it is possible to receive the wakeup prior to going to sleep and
350  * the race conditions are covered.
351  */
352 static __inline void
353 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
354 {
355 	thread_t td = gd->gd_curthread;
356 	int id;
357 
358 	crit_enter_quick(td);
359 	if (td->td_flags & TDF_TSLEEPQ) {
360 		id = LOOKUP(td->td_wchan);
361 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
362 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
363 			atomic_clear_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
364 	} else {
365 		td->td_flags |= TDF_TSLEEPQ;
366 	}
367 	id = LOOKUP(ident);
368 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
369 	atomic_set_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
370 	td->td_wchan = ident;
371 	td->td_wdomain = flags & PDOMAIN_MASK;
372 	crit_exit_quick(td);
373 }
374 
375 void
376 tsleep_interlock(const volatile void *ident, int flags)
377 {
378 	_tsleep_interlock(mycpu, ident, flags);
379 }
380 
381 /*
382  * Remove thread from sleepq.  Must be called with a critical section held.
383  */
384 static __inline void
385 _tsleep_remove(thread_t td)
386 {
387 	globaldata_t gd = mycpu;
388 	int id;
389 
390 	KKASSERT(td->td_gd == gd);
391 	if (td->td_flags & TDF_TSLEEPQ) {
392 		td->td_flags &= ~TDF_TSLEEPQ;
393 		id = LOOKUP(td->td_wchan);
394 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
395 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
396 			atomic_clear_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
397 		td->td_wchan = NULL;
398 		td->td_wdomain = 0;
399 	}
400 }
401 
402 void
403 tsleep_remove(thread_t td)
404 {
405 	_tsleep_remove(td);
406 }
407 
408 /*
409  * This function removes a thread from the tsleep queue and schedules
410  * it.  This function may act asynchronously.  The target thread may be
411  * sleeping on a different cpu.
412  *
413  * This function mus be called while in a critical section but if the
414  * target thread is sleeping on a different cpu we cannot safely probe
415  * td_flags.
416  *
417  * This function is only called from a different cpu via setrunnable()
418  * when the thread is in a known sleep.  However, multiple wakeups are
419  * possible and we must hold the td to prevent a race against the thread
420  * exiting.
421  */
422 static __inline
423 void
424 _tsleep_wakeup(struct thread *td)
425 {
426 #ifdef SMP
427 	globaldata_t gd = mycpu;
428 
429 	if (td->td_gd != gd) {
430 		lwkt_hold(td);
431 		lwkt_send_ipiq(td->td_gd, (ipifunc1_t)tsleep_wakeup_remote, td);
432 		return;
433 	}
434 #endif
435 	_tsleep_remove(td);
436 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
437 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
438 		lwkt_schedule(td);
439 	}
440 }
441 
442 #ifdef SMP
443 static
444 void
445 tsleep_wakeup_remote(struct thread *td)
446 {
447 	_tsleep_wakeup(td);
448 	lwkt_rele(td);
449 }
450 #endif
451 
452 
453 /*
454  * General sleep call.  Suspends the current process until a wakeup is
455  * performed on the specified identifier.  The process will then be made
456  * runnable with the specified priority.  Sleeps at most timo/hz seconds
457  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
458  * before and after sleeping, else signals are not checked.  Returns 0 if
459  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
460  * signal needs to be delivered, ERESTART is returned if the current system
461  * call should be restarted if possible, and EINTR is returned if the system
462  * call should be interrupted by the signal (return EINTR).
463  *
464  * Note that if we are a process, we release_curproc() before messing with
465  * the LWKT scheduler.
466  *
467  * During autoconfiguration or after a panic, a sleep will simply
468  * lower the priority briefly to allow interrupts, then return.
469  */
470 int
471 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
472 {
473 	struct thread *td = curthread;
474 	struct lwp *lp = td->td_lwp;
475 	struct proc *p = td->td_proc;		/* may be NULL */
476 	globaldata_t gd;
477 	int sig;
478 	int catch;
479 	int id;
480 	int error;
481 	int oldpri;
482 	struct callout thandle;
483 
484 	/*
485 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
486 	 * even in stable.  Just scrap it for now.
487 	 */
488 	if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
489 		/*
490 		 * After a panic, or before we actually have an operational
491 		 * softclock, just give interrupts a chance, then just return;
492 		 *
493 		 * don't run any other procs or panic below,
494 		 * in case this is the idle process and already asleep.
495 		 */
496 		splz();
497 		oldpri = td->td_pri;
498 		lwkt_setpri_self(safepri);
499 		lwkt_switch();
500 		lwkt_setpri_self(oldpri);
501 		return (0);
502 	}
503 	logtsleep2(tsleep_beg, ident);
504 	gd = td->td_gd;
505 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
506 
507 	/*
508 	 * NOTE: all of this occurs on the current cpu, including any
509 	 * callout-based wakeups, so a critical section is a sufficient
510 	 * interlock.
511 	 *
512 	 * The entire sequence through to where we actually sleep must
513 	 * run without breaking the critical section.
514 	 */
515 	catch = flags & PCATCH;
516 	error = 0;
517 	sig = 0;
518 
519 	crit_enter_quick(td);
520 
521 	KASSERT(ident != NULL, ("tsleep: no ident"));
522 	KASSERT(lp == NULL ||
523 		lp->lwp_stat == LSRUN ||	/* Obvious */
524 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
525 		("tsleep %p %s %d",
526 			ident, wmesg, lp->lwp_stat));
527 
528 	/*
529 	 * Setup for the current process (if this is a process).
530 	 */
531 	if (lp) {
532 		if (catch) {
533 			/*
534 			 * Early termination if PCATCH was set and a
535 			 * signal is pending, interlocked with the
536 			 * critical section.
537 			 *
538 			 * Early termination only occurs when tsleep() is
539 			 * entered while in a normal LSRUN state.
540 			 */
541 			if ((sig = CURSIG(lp)) != 0)
542 				goto resume;
543 
544 			/*
545 			 * Early termination if PCATCH was set and a
546 			 * mailbox signal was possibly delivered prior to
547 			 * the system call even being made, in order to
548 			 * allow the user to interlock without having to
549 			 * make additional system calls.
550 			 */
551 			if (p->p_flag & P_MAILBOX)
552 				goto resume;
553 
554 			/*
555 			 * Causes ksignal to wake us up when.
556 			 */
557 			lp->lwp_flag |= LWP_SINTR;
558 		}
559 	}
560 
561 	/*
562 	 * We interlock the sleep queue if the caller has not already done
563 	 * it for us.
564 	 */
565 	if ((flags & PINTERLOCKED) == 0) {
566 		id = LOOKUP(ident);
567 		_tsleep_interlock(gd, ident, flags);
568 	}
569 
570 	/*
571 	 *
572 	 * If no interlock was set we do an integrated interlock here.
573 	 * Make sure the current process has been untangled from
574 	 * the userland scheduler and initialize slptime to start
575 	 * counting.  We must interlock the sleep queue before doing
576 	 * this to avoid wakeup/process-ipi races which can occur under
577 	 * heavy loads.
578 	 */
579 	if (lp) {
580 		p->p_usched->release_curproc(lp);
581 		lp->lwp_slptime = 0;
582 	}
583 
584 	/*
585 	 * If the interlocked flag is set but our cpu bit in the slpqueue
586 	 * is no longer set, then a wakeup was processed inbetween the
587 	 * tsleep_interlock() (ours or the callers), and here.  This can
588 	 * occur under numerous circumstances including when we release the
589 	 * current process.
590 	 *
591 	 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
592 	 * to process incoming IPIs, thus draining incoming wakeups.
593 	 */
594 	if ((td->td_flags & TDF_TSLEEPQ) == 0) {
595 		logtsleep2(ilockfail, ident);
596 		goto resume;
597 	}
598 
599 	/*
600 	 * scheduling is blocked while in a critical section.  Coincide
601 	 * the descheduled-by-tsleep flag with the descheduling of the
602 	 * lwkt.
603 	 */
604 	lwkt_deschedule_self(td);
605 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
606 	td->td_wmesg = wmesg;
607 
608 	/*
609 	 * Setup the timeout, if any
610 	 */
611 	if (timo) {
612 		callout_init(&thandle);
613 		callout_reset(&thandle, timo, endtsleep, td);
614 	}
615 
616 	/*
617 	 * Beddy bye bye.
618 	 */
619 	if (lp) {
620 		/*
621 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
622 		 */
623 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
624 		/*
625 		 * tstop() sets LSSTOP, so don't fiddle with that.
626 		 */
627 		if (lp->lwp_stat != LSSTOP)
628 			lp->lwp_stat = LSSLEEP;
629 		lp->lwp_ru.ru_nvcsw++;
630 		lwkt_switch();
631 
632 		/*
633 		 * And when we are woken up, put us back in LSRUN.  If we
634 		 * slept for over a second, recalculate our estcpu.
635 		 */
636 		lp->lwp_stat = LSRUN;
637 		if (lp->lwp_slptime)
638 			p->p_usched->recalculate(lp);
639 		lp->lwp_slptime = 0;
640 	} else {
641 		lwkt_switch();
642 	}
643 
644 	/*
645 	 * Make sure we haven't switched cpus while we were asleep.  It's
646 	 * not supposed to happen.  Cleanup our temporary flags.
647 	 */
648 	KKASSERT(gd == td->td_gd);
649 
650 	/*
651 	 * Cleanup the timeout.
652 	 */
653 	if (timo) {
654 		if (td->td_flags & TDF_TIMEOUT) {
655 			td->td_flags &= ~TDF_TIMEOUT;
656 			error = EWOULDBLOCK;
657 		} else {
658 			callout_stop(&thandle);
659 		}
660 	}
661 
662 	/*
663 	 * Make sure we have been removed from the sleepq.  This should
664 	 * have been done for us already.
665 	 *
666 	 * However, it is possible for a scheduling IPI to be in flight
667 	 * from a previous tsleep/tsleep_interlock or due to a straight-out
668 	 * call to lwkt_schedule() (in the case of an interrupt thread).
669 	 * So don't complain if DESCHEDULED is still set.
670 	 */
671 	_tsleep_remove(td);
672 	td->td_wmesg = NULL;
673 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
674 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
675 	}
676 
677 	/*
678 	 * Figure out the correct error return.  If interrupted by a
679 	 * signal we want to return EINTR or ERESTART.
680 	 *
681 	 * If P_MAILBOX is set no automatic system call restart occurs
682 	 * and we return EINTR.  P_MAILBOX is meant to be used as an
683 	 * interlock, the user must poll it prior to any system call
684 	 * that it wishes to interlock a mailbox signal against since
685 	 * the flag is cleared on *any* system call that sleeps.
686 	 */
687 resume:
688 	if (p) {
689 		if (catch && error == 0) {
690 			if ((p->p_flag & P_MAILBOX) && sig == 0) {
691 				error = EINTR;
692 			} else if (sig != 0 || (sig = CURSIG(lp))) {
693 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
694 					error = EINTR;
695 				else
696 					error = ERESTART;
697 			}
698 		}
699 		lp->lwp_flag &= ~(LWP_BREAKTSLEEP | LWP_SINTR);
700 		p->p_flag &= ~P_MAILBOX;
701 	}
702 	logtsleep1(tsleep_end);
703 	crit_exit_quick(td);
704 	return (error);
705 }
706 
707 /*
708  * Interlocked spinlock sleep.  An exclusively held spinlock must
709  * be passed to ssleep().  The function will atomically release the
710  * spinlock and tsleep on the ident, then reacquire the spinlock and
711  * return.
712  *
713  * This routine is fairly important along the critical path, so optimize it
714  * heavily.
715  */
716 int
717 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
718        const char *wmesg, int timo)
719 {
720 	globaldata_t gd = mycpu;
721 	int error;
722 
723 	_tsleep_interlock(gd, ident, flags);
724 	spin_unlock_quick(gd, spin);
725 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
726 	spin_lock_quick(gd, spin);
727 
728 	return (error);
729 }
730 
731 int
732 lksleep(const volatile void *ident, struct lock *lock, int flags,
733 	const char *wmesg, int timo)
734 {
735 	globaldata_t gd = mycpu;
736 	int error;
737 
738 	_tsleep_interlock(gd, ident, flags);
739 	lockmgr(lock, LK_RELEASE);
740 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
741 	lockmgr(lock, LK_EXCLUSIVE);
742 
743 	return (error);
744 }
745 
746 /*
747  * Interlocked mutex sleep.  An exclusively held mutex must be passed
748  * to mtxsleep().  The function will atomically release the mutex
749  * and tsleep on the ident, then reacquire the mutex and return.
750  */
751 int
752 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
753 	 const char *wmesg, int timo)
754 {
755 	globaldata_t gd = mycpu;
756 	int error;
757 
758 	_tsleep_interlock(gd, ident, flags);
759 	mtx_unlock(mtx);
760 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
761 	mtx_lock_ex_quick(mtx, wmesg);
762 
763 	return (error);
764 }
765 
766 /*
767  * Interlocked serializer sleep.  An exclusively held serializer must
768  * be passed to zsleep().  The function will atomically release
769  * the serializer and tsleep on the ident, then reacquire the serializer
770  * and return.
771  */
772 int
773 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
774        const char *wmesg, int timo)
775 {
776 	globaldata_t gd = mycpu;
777 	int ret;
778 
779 	ASSERT_SERIALIZED(slz);
780 
781 	_tsleep_interlock(gd, ident, flags);
782 	lwkt_serialize_exit(slz);
783 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
784 	lwkt_serialize_enter(slz);
785 
786 	return ret;
787 }
788 
789 /*
790  * Directly block on the LWKT thread by descheduling it.  This
791  * is much faster then tsleep(), but the only legal way to wake
792  * us up is to directly schedule the thread.
793  *
794  * Setting TDF_SINTR will cause new signals to directly schedule us.
795  *
796  * This routine must be called while in a critical section.
797  */
798 int
799 lwkt_sleep(const char *wmesg, int flags)
800 {
801 	thread_t td = curthread;
802 	int sig;
803 
804 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
805 		td->td_flags |= TDF_BLOCKED;
806 		td->td_wmesg = wmesg;
807 		lwkt_deschedule_self(td);
808 		lwkt_switch();
809 		td->td_wmesg = NULL;
810 		td->td_flags &= ~TDF_BLOCKED;
811 		return(0);
812 	}
813 	if ((sig = CURSIG(td->td_lwp)) != 0) {
814 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
815 			return(EINTR);
816 		else
817 			return(ERESTART);
818 
819 	}
820 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
821 	td->td_wmesg = wmesg;
822 	lwkt_deschedule_self(td);
823 	lwkt_switch();
824 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
825 	td->td_wmesg = NULL;
826 	return(0);
827 }
828 
829 /*
830  * Implement the timeout for tsleep.
831  *
832  * We set LWP_BREAKTSLEEP to indicate that an event has occured, but
833  * we only call setrunnable if the process is not stopped.
834  *
835  * This type of callout timeout is scheduled on the same cpu the process
836  * is sleeping on.  Also, at the moment, the MP lock is held.
837  */
838 static void
839 endtsleep(void *arg)
840 {
841 	thread_t td = arg;
842 	struct lwp *lp;
843 
844 	crit_enter();
845 	lwkt_gettoken(&proc_token);
846 
847 	/*
848 	 * cpu interlock.  Thread flags are only manipulated on
849 	 * the cpu owning the thread.  proc flags are only manipulated
850 	 * by the older of the MP lock.  We have both.
851 	 */
852 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
853 		td->td_flags |= TDF_TIMEOUT;
854 
855 		if ((lp = td->td_lwp) != NULL) {
856 			lp->lwp_flag |= LWP_BREAKTSLEEP;
857 			if (lp->lwp_proc->p_stat != SSTOP)
858 				setrunnable(lp);
859 		} else {
860 			_tsleep_wakeup(td);
861 		}
862 	}
863 	lwkt_reltoken(&proc_token);
864 	crit_exit();
865 }
866 
867 /*
868  * Make all processes sleeping on the specified identifier runnable.
869  * count may be zero or one only.
870  *
871  * The domain encodes the sleep/wakeup domain AND the first cpu to check
872  * (which is always the current cpu).  As we iterate across cpus
873  *
874  * This call may run without the MP lock held.  We can only manipulate thread
875  * state on the cpu owning the thread.  We CANNOT manipulate process state
876  * at all.
877  *
878  * _wakeup() can be passed to an IPI so we can't use (const volatile
879  * void *ident).
880  */
881 static void
882 _wakeup(void *ident, int domain)
883 {
884 	struct tslpque *qp;
885 	struct thread *td;
886 	struct thread *ntd;
887 	globaldata_t gd;
888 #ifdef SMP
889 	cpumask_t mask;
890 #endif
891 	int id;
892 
893 	crit_enter();
894 	logtsleep2(wakeup_beg, ident);
895 	gd = mycpu;
896 	id = LOOKUP(ident);
897 	qp = &gd->gd_tsleep_hash[id];
898 restart:
899 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
900 		ntd = TAILQ_NEXT(td, td_sleepq);
901 		if (td->td_wchan == ident &&
902 		    td->td_wdomain == (domain & PDOMAIN_MASK)
903 		) {
904 			KKASSERT(td->td_gd == gd);
905 			_tsleep_remove(td);
906 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
907 				td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
908 				lwkt_schedule(td);
909 				if (domain & PWAKEUP_ONE)
910 					goto done;
911 			}
912 			goto restart;
913 		}
914 	}
915 
916 #ifdef SMP
917 	/*
918 	 * We finished checking the current cpu but there still may be
919 	 * more work to do.  Either wakeup_one was requested and no matching
920 	 * thread was found, or a normal wakeup was requested and we have
921 	 * to continue checking cpus.
922 	 *
923 	 * It should be noted that this scheme is actually less expensive then
924 	 * the old scheme when waking up multiple threads, since we send
925 	 * only one IPI message per target candidate which may then schedule
926 	 * multiple threads.  Before we could have wound up sending an IPI
927 	 * message for each thread on the target cpu (!= current cpu) that
928 	 * needed to be woken up.
929 	 *
930 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
931 	 * should be ok since we are passing idents in the IPI rather then
932 	 * thread pointers.
933 	 */
934 	if ((domain & PWAKEUP_MYCPU) == 0 &&
935 	    (mask = slpque_cpumasks[id] & gd->gd_other_cpus) != 0) {
936 		lwkt_send_ipiq2_mask(mask, _wakeup, ident,
937 				     domain | PWAKEUP_MYCPU);
938 	}
939 #endif
940 done:
941 	logtsleep1(wakeup_end);
942 	crit_exit();
943 }
944 
945 /*
946  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
947  */
948 void
949 wakeup(const volatile void *ident)
950 {
951     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
952 }
953 
954 /*
955  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
956  */
957 void
958 wakeup_one(const volatile void *ident)
959 {
960     /* XXX potentially round-robin the first responding cpu */
961     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
962 }
963 
964 /*
965  * Wakeup threads tsleep()ing on the specified ident on the current cpu
966  * only.
967  */
968 void
969 wakeup_mycpu(const volatile void *ident)
970 {
971     _wakeup(__DEALL(ident), PWAKEUP_MYCPU);
972 }
973 
974 /*
975  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
976  * only.
977  */
978 void
979 wakeup_mycpu_one(const volatile void *ident)
980 {
981     /* XXX potentially round-robin the first responding cpu */
982     _wakeup(__DEALL(ident), PWAKEUP_MYCPU|PWAKEUP_ONE);
983 }
984 
985 /*
986  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
987  * only.
988  */
989 void
990 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
991 {
992 #ifdef SMP
993     if (gd == mycpu) {
994 	_wakeup(__DEALL(ident), PWAKEUP_MYCPU);
995     } else {
996 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident), PWAKEUP_MYCPU);
997     }
998 #else
999     _wakeup(__DEALL(ident), PWAKEUP_MYCPU);
1000 #endif
1001 }
1002 
1003 /*
1004  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1005  * only.
1006  */
1007 void
1008 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1009 {
1010 #ifdef SMP
1011     if (gd == mycpu) {
1012 	_wakeup(__DEALL(ident), PWAKEUP_MYCPU | PWAKEUP_ONE);
1013     } else {
1014 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1015 			PWAKEUP_MYCPU | PWAKEUP_ONE);
1016     }
1017 #else
1018     _wakeup(__DEALL(ident), PWAKEUP_MYCPU | PWAKEUP_ONE);
1019 #endif
1020 }
1021 
1022 /*
1023  * Wakeup all threads waiting on the specified ident that slept using
1024  * the specified domain, on all cpus.
1025  */
1026 void
1027 wakeup_domain(const volatile void *ident, int domain)
1028 {
1029     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1030 }
1031 
1032 /*
1033  * Wakeup one thread waiting on the specified ident that slept using
1034  * the specified  domain, on any cpu.
1035  */
1036 void
1037 wakeup_domain_one(const volatile void *ident, int domain)
1038 {
1039     /* XXX potentially round-robin the first responding cpu */
1040     _wakeup(__DEALL(ident),
1041 	    PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1042 }
1043 
1044 /*
1045  * setrunnable()
1046  *
1047  * Make a process runnable.  The proc_token must be held on call.  This only
1048  * has an effect if we are in SSLEEP.  We only break out of the
1049  * tsleep if LWP_BREAKTSLEEP is set, otherwise we just fix-up the state.
1050  *
1051  * NOTE: With proc_token held we can only safely manipulate the process
1052  * structure and the lp's lwp_stat.
1053  */
1054 void
1055 setrunnable(struct lwp *lp)
1056 {
1057 	ASSERT_LWKT_TOKEN_HELD(&proc_token);
1058 	crit_enter();
1059 	if (lp->lwp_stat == LSSTOP)
1060 		lp->lwp_stat = LSSLEEP;
1061 	if (lp->lwp_stat == LSSLEEP && (lp->lwp_flag & LWP_BREAKTSLEEP))
1062 		_tsleep_wakeup(lp->lwp_thread);
1063 	crit_exit();
1064 }
1065 
1066 /*
1067  * The process is stopped due to some condition, usually because p_stat is
1068  * set to SSTOP, but also possibly due to being traced.
1069  *
1070  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
1071  * because the parent may check the child's status before the child actually
1072  * gets to this routine.
1073  *
1074  * This routine is called with the current lwp only, typically just
1075  * before returning to userland.
1076  *
1077  * Setting LWP_BREAKTSLEEP before entering the tsleep will cause a passive
1078  * SIGCONT to break out of the tsleep.
1079  */
1080 void
1081 tstop(void)
1082 {
1083 	struct lwp *lp = curthread->td_lwp;
1084 	struct proc *p = lp->lwp_proc;
1085 
1086 	crit_enter();
1087 	/*
1088 	 * If LWP_WSTOP is set, we were sleeping
1089 	 * while our process was stopped.  At this point
1090 	 * we were already counted as stopped.
1091 	 */
1092 	if ((lp->lwp_flag & LWP_WSTOP) == 0) {
1093 		/*
1094 		 * If we're the last thread to stop, signal
1095 		 * our parent.
1096 		 */
1097 		p->p_nstopped++;
1098 		lp->lwp_flag |= LWP_WSTOP;
1099 		wakeup(&p->p_nstopped);
1100 		if (p->p_nstopped == p->p_nthreads) {
1101 			p->p_flag &= ~P_WAITED;
1102 			wakeup(p->p_pptr);
1103 			if ((p->p_pptr->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1104 				ksignal(p->p_pptr, SIGCHLD);
1105 		}
1106 	}
1107 	while (p->p_stat == SSTOP) {
1108 		lp->lwp_flag |= LWP_BREAKTSLEEP;
1109 		lp->lwp_stat = LSSTOP;
1110 		tsleep(p, 0, "stop", 0);
1111 	}
1112 	p->p_nstopped--;
1113 	lp->lwp_flag &= ~LWP_WSTOP;
1114 	crit_exit();
1115 }
1116 
1117 /*
1118  * Compute a tenex style load average of a quantity on
1119  * 1, 5 and 15 minute intervals.
1120  */
1121 static int loadav_count_runnable(struct lwp *p, void *data);
1122 
1123 static void
1124 loadav(void *arg)
1125 {
1126 	struct loadavg *avg;
1127 	int i, nrun;
1128 
1129 	nrun = 0;
1130 	alllwp_scan(loadav_count_runnable, &nrun);
1131 	avg = &averunnable;
1132 	for (i = 0; i < 3; i++) {
1133 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1134 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1135 	}
1136 
1137 	/*
1138 	 * Schedule the next update to occur after 5 seconds, but add a
1139 	 * random variation to avoid synchronisation with processes that
1140 	 * run at regular intervals.
1141 	 */
1142 	callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1143 		      loadav, NULL);
1144 }
1145 
1146 static int
1147 loadav_count_runnable(struct lwp *lp, void *data)
1148 {
1149 	int *nrunp = data;
1150 	thread_t td;
1151 
1152 	switch (lp->lwp_stat) {
1153 	case LSRUN:
1154 		if ((td = lp->lwp_thread) == NULL)
1155 			break;
1156 		if (td->td_flags & TDF_BLOCKED)
1157 			break;
1158 		++*nrunp;
1159 		break;
1160 	default:
1161 		break;
1162 	}
1163 	return(0);
1164 }
1165 
1166 /* ARGSUSED */
1167 static void
1168 sched_setup(void *dummy)
1169 {
1170 	callout_init(&loadav_callout);
1171 	callout_init(&schedcpu_callout);
1172 
1173 	/* Kick off timeout driven events by calling first time. */
1174 	schedcpu(NULL);
1175 	loadav(NULL);
1176 }
1177 
1178