xref: /dragonfly/sys/kern/kern_synch.c (revision 92fe556d)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vmmeter.h>
47 #include <sys/sysctl.h>
48 #include <sys/lock.h>
49 #include <sys/priv.h>
50 #include <sys/kcollect.h>
51 #include <sys/malloc.h>
52 #ifdef KTRACE
53 #include <sys/ktrace.h>
54 #endif
55 #include <sys/ktr.h>
56 #include <sys/serialize.h>
57 
58 #include <sys/signal2.h>
59 #include <sys/thread2.h>
60 #include <sys/spinlock2.h>
61 #include <sys/mutex2.h>
62 
63 #include <machine/cpu.h>
64 #include <machine/smp.h>
65 
66 #include <vm/vm_extern.h>
67 
68 struct tslpque {
69 	TAILQ_HEAD(, thread)	queue;
70 	const volatile void	*ident0;
71 	const volatile void	*ident1;
72 	const volatile void	*ident2;
73 	const volatile void	*ident3;
74 };
75 
76 static void sched_setup (void *dummy);
77 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL);
78 static void sched_dyninit (void *dummy);
79 SYSINIT(sched_dyninit, SI_BOOT1_DYNALLOC, SI_ORDER_FIRST, sched_dyninit, NULL);
80 
81 int	lbolt;
82 void	*lbolt_syncer;
83 __read_mostly int tsleep_crypto_dump = 0;
84 __read_mostly int ncpus;
85 __read_mostly int ncpus_fit, ncpus_fit_mask;	/* note: mask not cpumask_t */
86 __read_mostly int safepri;
87 __read_mostly int tsleep_now_works;
88 
89 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
90 
91 #define __DEALL(ident)	__DEQUALIFY(void *, ident)
92 
93 #if !defined(KTR_TSLEEP)
94 #define KTR_TSLEEP	KTR_ALL
95 #endif
96 KTR_INFO_MASTER(tsleep);
97 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
98 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
99 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
100 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
101 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", const volatile void *ident);
102 
103 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
104 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
105 
106 __exclusive_cache_line
107 struct loadavg averunnable =
108 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
109 /*
110  * Constants for averages over 1, 5, and 15 minutes
111  * when sampling at 5 second intervals.
112  */
113 __read_mostly
114 static fixpt_t cexp[3] = {
115 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
116 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
117 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
118 };
119 
120 static void	endtsleep (void *);
121 static void	loadav (void *arg);
122 static void	schedcpu (void *arg);
123 
124 __read_mostly static int pctcpu_decay = 10;
125 SYSCTL_INT(_kern, OID_AUTO, pctcpu_decay, CTLFLAG_RW,
126 	   &pctcpu_decay, 0, "");
127 
128 /*
129  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
130  */
131 __read_mostly int fscale __unused = FSCALE;	/* exported to systat */
132 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
133 
134 /*
135  * Issue a wakeup() from userland (debugging)
136  */
137 static int
138 sysctl_wakeup(SYSCTL_HANDLER_ARGS)
139 {
140 	uint64_t ident = 1;
141 	int error = 0;
142 
143 	if (req->newptr != NULL) {
144 		if (priv_check(curthread, PRIV_ROOT))
145 			return (EPERM);
146 		error = SYSCTL_IN(req, &ident, sizeof(ident));
147 		if (error)
148 			return error;
149 		kprintf("issue wakeup %016jx\n", ident);
150 		wakeup((void *)(intptr_t)ident);
151 	}
152 	if (req->oldptr != NULL) {
153 		error = SYSCTL_OUT(req, &ident, sizeof(ident));
154 	}
155 	return error;
156 }
157 
158 static int
159 sysctl_wakeup_umtx(SYSCTL_HANDLER_ARGS)
160 {
161 	uint64_t ident = 1;
162 	int error = 0;
163 
164 	if (req->newptr != NULL) {
165 		if (priv_check(curthread, PRIV_ROOT))
166 			return (EPERM);
167 		error = SYSCTL_IN(req, &ident, sizeof(ident));
168 		if (error)
169 			return error;
170 		kprintf("issue wakeup %016jx, PDOMAIN_UMTX\n", ident);
171 		wakeup_domain((void *)(intptr_t)ident, PDOMAIN_UMTX);
172 	}
173 	if (req->oldptr != NULL) {
174 		error = SYSCTL_OUT(req, &ident, sizeof(ident));
175 	}
176 	return error;
177 }
178 
179 SYSCTL_PROC(_debug, OID_AUTO, wakeup, CTLTYPE_UQUAD|CTLFLAG_RW, 0, 0,
180 	    sysctl_wakeup, "Q", "issue wakeup(addr)");
181 SYSCTL_PROC(_debug, OID_AUTO, wakeup_umtx, CTLTYPE_UQUAD|CTLFLAG_RW, 0, 0,
182 	    sysctl_wakeup_umtx, "Q", "issue wakeup(addr, PDOMAIN_UMTX)");
183 
184 /*
185  * Recompute process priorities, once a second.
186  *
187  * Since the userland schedulers are typically event oriented, if the
188  * estcpu calculation at wakeup() time is not sufficient to make a
189  * process runnable relative to other processes in the system we have
190  * a 1-second recalc to help out.
191  *
192  * This code also allows us to store sysclock_t data in the process structure
193  * without fear of an overrun, since sysclock_t are guarenteed to hold
194  * several seconds worth of count.
195  *
196  * WARNING!  callouts can preempt normal threads.  However, they will not
197  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
198  */
199 static int schedcpu_stats(struct proc *p, void *data __unused);
200 static int schedcpu_resource(struct proc *p, void *data __unused);
201 
202 static void
203 schedcpu(void *arg)
204 {
205 	allproc_scan(schedcpu_stats, NULL, 1);
206 	allproc_scan(schedcpu_resource, NULL, 1);
207 	if (mycpu->gd_cpuid == 0) {
208 		wakeup((caddr_t)&lbolt);
209 		wakeup(lbolt_syncer);
210 	}
211 	callout_reset(&mycpu->gd_schedcpu_callout, hz, schedcpu, NULL);
212 }
213 
214 /*
215  * General process statistics once a second
216  */
217 static int
218 schedcpu_stats(struct proc *p, void *data __unused)
219 {
220 	struct lwp *lp;
221 
222 	/*
223 	 * Threads may not be completely set up if process in SIDL state.
224 	 */
225 	if (p->p_stat == SIDL)
226 		return(0);
227 
228 	PHOLD(p);
229 	if (lwkt_trytoken(&p->p_token) == FALSE) {
230 		PRELE(p);
231 		return(0);
232 	}
233 
234 	p->p_swtime++;
235 	FOREACH_LWP_IN_PROC(lp, p) {
236 		if (lp->lwp_stat == LSSLEEP) {
237 			++lp->lwp_slptime;
238 			if (lp->lwp_slptime == 1)
239 				p->p_usched->uload_update(lp);
240 		}
241 
242 		/*
243 		 * Only recalculate processes that are active or have slept
244 		 * less then 2 seconds.  The schedulers understand this.
245 		 * Otherwise decay by 50% per second.
246 		 *
247 		 * NOTE: uload_update is called separately from kern_synch.c
248 		 *	 when slptime == 1, removing the thread's
249 		 *	 uload/ucount.
250 		 */
251 		if (lp->lwp_slptime <= 1) {
252 			p->p_usched->recalculate(lp);
253 		} else {
254 			int decay;
255 
256 			decay = pctcpu_decay;
257 			cpu_ccfence();
258 			if (decay <= 1)
259 				decay = 1;
260 			if (decay > 100)
261 				decay = 100;
262 			lp->lwp_pctcpu = (lp->lwp_pctcpu * (decay - 1)) / decay;
263 		}
264 	}
265 	lwkt_reltoken(&p->p_token);
266 	lwkt_yield();
267 	PRELE(p);
268 	return(0);
269 }
270 
271 /*
272  * Resource checks.  XXX break out since ksignal/killproc can block,
273  * limiting us to one process killed per second.  There is probably
274  * a better way.
275  */
276 static int
277 schedcpu_resource(struct proc *p, void *data __unused)
278 {
279 	u_int64_t ttime;
280 	struct lwp *lp;
281 
282 	if (p->p_stat == SIDL)
283 		return(0);
284 
285 	PHOLD(p);
286 	if (lwkt_trytoken(&p->p_token) == FALSE) {
287 		PRELE(p);
288 		return(0);
289 	}
290 
291 	if (p->p_stat == SZOMB || p->p_limit == NULL) {
292 		lwkt_reltoken(&p->p_token);
293 		PRELE(p);
294 		return(0);
295 	}
296 
297 	ttime = 0;
298 	FOREACH_LWP_IN_PROC(lp, p) {
299 		/*
300 		 * We may have caught an lp in the middle of being
301 		 * created, lwp_thread can be NULL.
302 		 */
303 		if (lp->lwp_thread) {
304 			ttime += lp->lwp_thread->td_sticks;
305 			ttime += lp->lwp_thread->td_uticks;
306 		}
307 	}
308 
309 	switch(plimit_testcpulimit(p, ttime)) {
310 	case PLIMIT_TESTCPU_KILL:
311 		killproc(p, "exceeded maximum CPU limit");
312 		break;
313 	case PLIMIT_TESTCPU_XCPU:
314 		if ((p->p_flags & P_XCPU) == 0) {
315 			p->p_flags |= P_XCPU;
316 			ksignal(p, SIGXCPU);
317 		}
318 		break;
319 	default:
320 		break;
321 	}
322 	lwkt_reltoken(&p->p_token);
323 	lwkt_yield();
324 	PRELE(p);
325 	return(0);
326 }
327 
328 /*
329  * This is only used by ps.  Generate a cpu percentage use over
330  * a period of one second.
331  */
332 void
333 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
334 {
335 	fixpt_t acc;
336 	int remticks;
337 
338 	acc = (cpticks << FSHIFT) / ttlticks;
339 	if (ttlticks >= ESTCPUFREQ) {
340 		lp->lwp_pctcpu = acc;
341 	} else {
342 		remticks = ESTCPUFREQ - ttlticks;
343 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
344 				ESTCPUFREQ;
345 	}
346 }
347 
348 /*
349  * Handy macros to calculate hash indices.  LOOKUP() calculates the
350  * global cpumask hash index, TCHASHSHIFT() converts that into the
351  * pcpu hash index.
352  *
353  * By making the pcpu hash arrays smaller we save a significant amount
354  * of memory at very low cost.  The real cost is in IPIs, which are handled
355  * by the much larger global cpumask hash table.
356  */
357 #define LOOKUP_PRIME	66555444443333333ULL
358 #define LOOKUP(x)	((((uintptr_t)(x) + ((uintptr_t)(x) >> 18)) ^	\
359 			  LOOKUP_PRIME) % slpque_tablesize)
360 #define TCHASHSHIFT(x)	((x) >> 4)
361 
362 __read_mostly static uint32_t	slpque_tablesize;
363 __read_mostly static cpumask_t *slpque_cpumasks;
364 
365 SYSCTL_UINT(_kern, OID_AUTO, slpque_tablesize, CTLFLAG_RD, &slpque_tablesize,
366     0, "");
367 
368 /*
369  * This is a dandy function that allows us to interlock tsleep/wakeup
370  * operations with unspecified upper level locks, such as lockmgr locks,
371  * simply by holding a critical section.  The sequence is:
372  *
373  *	(acquire upper level lock)
374  *	tsleep_interlock(blah)
375  *	(release upper level lock)
376  *	tsleep(blah, ...)
377  *
378  * Basically this functions queues us on the tsleep queue without actually
379  * descheduling us.  When tsleep() is later called with PINTERLOCK it
380  * assumes the thread was already queued, otherwise it queues it there.
381  *
382  * Thus it is possible to receive the wakeup prior to going to sleep and
383  * the race conditions are covered.
384  */
385 static __inline void
386 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
387 {
388 	thread_t td = gd->gd_curthread;
389 	struct tslpque *qp;
390 	uint32_t cid;
391 	uint32_t gid;
392 
393 	if (ident == NULL) {
394 		kprintf("tsleep_interlock: NULL ident %s\n", td->td_comm);
395 		print_backtrace(5);
396 	}
397 
398 	crit_enter_quick(td);
399 	if (td->td_flags & TDF_TSLEEPQ) {
400 		/*
401 		 * Shortcut if unchanged
402 		 */
403 		if (td->td_wchan == ident &&
404 		    td->td_wdomain == (flags & PDOMAIN_MASK)) {
405 			crit_exit_quick(td);
406 			return;
407 		}
408 
409 		/*
410 		 * Remove current sleepq
411 		 */
412 		cid = LOOKUP(td->td_wchan);
413 		gid = TCHASHSHIFT(cid);
414 		qp = &gd->gd_tsleep_hash[gid];
415 		TAILQ_REMOVE(&qp->queue, td, td_sleepq);
416 		if (TAILQ_FIRST(&qp->queue) == NULL) {
417 			qp->ident0 = NULL;
418 			qp->ident1 = NULL;
419 			qp->ident2 = NULL;
420 			qp->ident3 = NULL;
421 			ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
422 					       gd->gd_cpuid);
423 		}
424 	} else {
425 		td->td_flags |= TDF_TSLEEPQ;
426 	}
427 	cid = LOOKUP(ident);
428 	gid = TCHASHSHIFT(cid);
429 	qp = &gd->gd_tsleep_hash[gid];
430 	TAILQ_INSERT_TAIL(&qp->queue, td, td_sleepq);
431 	if (qp->ident0 != ident && qp->ident1 != ident &&
432 	    qp->ident2 != ident && qp->ident3 != ident) {
433 		if (qp->ident0 == NULL)
434 			qp->ident0 = ident;
435 		else if (qp->ident1 == NULL)
436 			qp->ident1 = ident;
437 		else if (qp->ident2 == NULL)
438 			qp->ident2 = ident;
439 		else if (qp->ident3 == NULL)
440 			qp->ident3 = ident;
441 		else
442 			qp->ident0 = (void *)(intptr_t)-1;
443 	}
444 	ATOMIC_CPUMASK_ORBIT(slpque_cpumasks[cid], gd->gd_cpuid);
445 	td->td_wchan = ident;
446 	td->td_wdomain = flags & PDOMAIN_MASK;
447 	crit_exit_quick(td);
448 }
449 
450 void
451 tsleep_interlock(const volatile void *ident, int flags)
452 {
453 	_tsleep_interlock(mycpu, ident, flags);
454 }
455 
456 /*
457  * Remove thread from sleepq.  Must be called with a critical section held.
458  * The thread must not be migrating.
459  */
460 static __inline void
461 _tsleep_remove(thread_t td)
462 {
463 	globaldata_t gd = mycpu;
464 	struct tslpque *qp;
465 	uint32_t cid;
466 	uint32_t gid;
467 
468 	KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
469 	KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
470 	if (td->td_flags & TDF_TSLEEPQ) {
471 		td->td_flags &= ~TDF_TSLEEPQ;
472 		cid = LOOKUP(td->td_wchan);
473 		gid = TCHASHSHIFT(cid);
474 		qp = &gd->gd_tsleep_hash[gid];
475 		TAILQ_REMOVE(&qp->queue, td, td_sleepq);
476 		if (TAILQ_FIRST(&qp->queue) == NULL) {
477 			ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
478 					       gd->gd_cpuid);
479 		}
480 		td->td_wchan = NULL;
481 		td->td_wdomain = 0;
482 	}
483 }
484 
485 void
486 tsleep_remove(thread_t td)
487 {
488 	_tsleep_remove(td);
489 }
490 
491 /*
492  * General sleep call.  Suspends the current process until a wakeup is
493  * performed on the specified identifier.  The process will then be made
494  * runnable with the specified priority.  Sleeps at most timo/hz seconds
495  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
496  * before and after sleeping, else signals are not checked.  Returns 0 if
497  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
498  * signal needs to be delivered, ERESTART is returned if the current system
499  * call should be restarted if possible, and EINTR is returned if the system
500  * call should be interrupted by the signal (return EINTR).
501  *
502  * Note that if we are a process, we release_curproc() before messing with
503  * the LWKT scheduler.
504  *
505  * During autoconfiguration or after a panic, a sleep will simply
506  * lower the priority briefly to allow interrupts, then return.
507  *
508  * WARNING!  This code can't block (short of switching away), or bad things
509  *           will happen.  No getting tokens, no blocking locks, etc.
510  */
511 int
512 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
513 {
514 	struct thread *td = curthread;
515 	struct lwp *lp = td->td_lwp;
516 	struct proc *p = td->td_proc;		/* may be NULL */
517 	globaldata_t gd;
518 	int sig;
519 	int catch;
520 	int error;
521 	int oldpri;
522 	struct callout thandle;
523 
524 	/*
525 	 * Currently a severe hack.  Make sure any delayed wakeups
526 	 * are flushed before we sleep or we might deadlock on whatever
527 	 * event we are sleeping on.
528 	 */
529 	if (td->td_flags & TDF_DELAYED_WAKEUP)
530 		wakeup_end_delayed();
531 
532 	/*
533 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
534 	 * even in stable.  Just scrap it for now.
535 	 */
536 	if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
537 		/*
538 		 * After a panic, or before we actually have an operational
539 		 * softclock, just give interrupts a chance, then just return;
540 		 *
541 		 * don't run any other procs or panic below,
542 		 * in case this is the idle process and already asleep.
543 		 */
544 		splz();
545 		oldpri = td->td_pri;
546 		lwkt_setpri_self(safepri);
547 		lwkt_switch();
548 		lwkt_setpri_self(oldpri);
549 		return (0);
550 	}
551 	logtsleep2(tsleep_beg, ident);
552 	gd = td->td_gd;
553 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
554 
555 	/*
556 	 * NOTE: all of this occurs on the current cpu, including any
557 	 * callout-based wakeups, so a critical section is a sufficient
558 	 * interlock.
559 	 *
560 	 * The entire sequence through to where we actually sleep must
561 	 * run without breaking the critical section.
562 	 */
563 	catch = flags & PCATCH;
564 	error = 0;
565 	sig = 0;
566 
567 	crit_enter_quick(td);
568 
569 	KASSERT(ident != NULL, ("tsleep: no ident"));
570 	KASSERT(lp == NULL ||
571 		lp->lwp_stat == LSRUN ||	/* Obvious */
572 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
573 		("tsleep %p %s %d",
574 			ident, wmesg, lp->lwp_stat));
575 
576 	/*
577 	 * We interlock the sleep queue if the caller has not already done
578 	 * it for us.  This must be done before we potentially acquire any
579 	 * tokens or we can loose the wakeup.
580 	 */
581 	if ((flags & PINTERLOCKED) == 0) {
582 		_tsleep_interlock(gd, ident, flags);
583 	}
584 
585 	/*
586 	 * Setup for the current process (if this is a process).  We must
587 	 * interlock with lwp_token to avoid remote wakeup races via
588 	 * setrunnable()
589 	 */
590 	if (lp) {
591 		lwkt_gettoken(&lp->lwp_token);
592 
593 		/*
594 		 * If the umbrella process is in the SCORE state then
595 		 * make sure that the thread is flagged going into a
596 		 * normal sleep to allow the core dump to proceed, otherwise
597 		 * the coredump can end up waiting forever.  If the normal
598 		 * sleep is woken up, the thread will enter a stopped state
599 		 * upon return to userland.
600 		 *
601 		 * We do not want to interrupt or cause a thread exist at
602 		 * this juncture because that will mess-up the state the
603 		 * coredump is trying to save.
604 		 */
605 		if (p->p_stat == SCORE) {
606 			lwkt_gettoken(&p->p_token);
607 			if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
608 				atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
609 				++p->p_nstopped;
610 			}
611 			lwkt_reltoken(&p->p_token);
612 		}
613 
614 		/*
615 		 * PCATCH requested.
616 		 */
617 		if (catch) {
618 			/*
619 			 * Early termination if PCATCH was set and a
620 			 * signal is pending, interlocked with the
621 			 * critical section.
622 			 *
623 			 * Early termination only occurs when tsleep() is
624 			 * entered while in a normal LSRUN state.
625 			 */
626 			if ((sig = CURSIG(lp)) != 0)
627 				goto resume;
628 
629 			/*
630 			 * Causes ksignal to wake us up if a signal is
631 			 * received (interlocked with lp->lwp_token).
632 			 */
633 			lp->lwp_flags |= LWP_SINTR;
634 		}
635 	} else {
636 		KKASSERT(p == NULL);
637 	}
638 
639 	/*
640 	 * Make sure the current process has been untangled from
641 	 * the userland scheduler and initialize slptime to start
642 	 * counting.
643 	 *
644 	 * NOTE: td->td_wakefromcpu is pre-set by the release function
645 	 *	 for the dfly scheduler, and then adjusted by _wakeup()
646 	 */
647 	if (lp) {
648 		p->p_usched->release_curproc(lp);
649 		lp->lwp_slptime = 0;
650 	}
651 
652 	/*
653 	 * For PINTERLOCKED operation, TDF_TSLEEPQ might not be set if
654 	 * a wakeup() was processed before the thread could go to sleep.
655 	 *
656 	 * If TDF_TSLEEPQ is set, make sure the ident matches the recorded
657 	 * ident.  If it does not then the thread slept inbetween the
658 	 * caller's initial tsleep_interlock() call and the caller's tsleep()
659 	 * call.
660 	 *
661 	 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
662 	 * to process incoming IPIs, thus draining incoming wakeups.
663 	 */
664 	if ((td->td_flags & TDF_TSLEEPQ) == 0) {
665 		logtsleep2(ilockfail, ident);
666 		goto resume;
667 	} else if (td->td_wchan != ident ||
668 		   td->td_wdomain != (flags & PDOMAIN_MASK)) {
669 		logtsleep2(ilockfail, ident);
670 		goto resume;
671 	}
672 
673 	/*
674 	 * scheduling is blocked while in a critical section.  Coincide
675 	 * the descheduled-by-tsleep flag with the descheduling of the
676 	 * lwkt.
677 	 *
678 	 * The timer callout is localized on our cpu and interlocked by
679 	 * our critical section.
680 	 */
681 	lwkt_deschedule_self(td);
682 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
683 	td->td_wmesg = wmesg;
684 
685 	/*
686 	 * Setup the timeout, if any.  The timeout is only operable while
687 	 * the thread is flagged descheduled.
688 	 */
689 	KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
690 	if (timo) {
691 		callout_init_mp(&thandle);
692 		callout_reset(&thandle, timo, endtsleep, td);
693 	}
694 
695 	/*
696 	 * Beddy bye bye.
697 	 */
698 	if (lp) {
699 		/*
700 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
701 		 */
702 		KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
703 
704 		/*
705 		 * tstop() sets LSSTOP, so don't fiddle with that.
706 		 */
707 		if (lp->lwp_stat != LSSTOP)
708 			lp->lwp_stat = LSSLEEP;
709 		lp->lwp_ru.ru_nvcsw++;
710 		p->p_usched->uload_update(lp);
711 		lwkt_switch();
712 
713 		/*
714 		 * And when we are woken up, put us back in LSRUN.  If we
715 		 * slept for over a second, recalculate our estcpu.
716 		 */
717 		lp->lwp_stat = LSRUN;
718 		if (lp->lwp_slptime) {
719 			p->p_usched->uload_update(lp);
720 			p->p_usched->recalculate(lp);
721 		}
722 		lp->lwp_slptime = 0;
723 	} else {
724 		lwkt_switch();
725 	}
726 
727 	/*
728 	 * Make sure we haven't switched cpus while we were asleep.  It's
729 	 * not supposed to happen.  Cleanup our temporary flags.
730 	 */
731 	KKASSERT(gd == td->td_gd);
732 
733 	/*
734 	 * Cleanup the timeout.  If the timeout has already occured thandle
735 	 * has already been stopped, otherwise stop thandle.  If the timeout
736 	 * is running (the callout thread must be blocked trying to get
737 	 * lwp_token) then wait for us to get scheduled.
738 	 */
739 	if (timo) {
740 		while (td->td_flags & TDF_TIMEOUT_RUNNING) {
741 			/* else we won't get rescheduled! */
742 			if (lp->lwp_stat != LSSTOP)
743 				lp->lwp_stat = LSSLEEP;
744 			lwkt_deschedule_self(td);
745 			td->td_wmesg = "tsrace";
746 			lwkt_switch();
747 			kprintf("td %p %s: timeout race\n", td, td->td_comm);
748 		}
749 		if (td->td_flags & TDF_TIMEOUT) {
750 			td->td_flags &= ~TDF_TIMEOUT;
751 			error = EWOULDBLOCK;
752 		} else {
753 			/* does not block when on same cpu */
754 			callout_cancel(&thandle);
755 		}
756 	}
757 	td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
758 
759 	/*
760 	 * Make sure we have been removed from the sleepq.  In most
761 	 * cases this will have been done for us already but it is
762 	 * possible for a scheduling IPI to be in-flight from a
763 	 * previous tsleep/tsleep_interlock() or due to a straight-out
764 	 * call to lwkt_schedule() (in the case of an interrupt thread),
765 	 * causing a spurious wakeup.
766 	 */
767 	_tsleep_remove(td);
768 	td->td_wmesg = NULL;
769 
770 	/*
771 	 * Figure out the correct error return.  If interrupted by a
772 	 * signal we want to return EINTR or ERESTART.
773 	 */
774 resume:
775 	if (lp) {
776 		if (catch && error == 0) {
777 			if (sig != 0 || (sig = CURSIG(lp))) {
778 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
779 					error = EINTR;
780 				else
781 					error = ERESTART;
782 			}
783 		}
784 
785 		lp->lwp_flags &= ~LWP_SINTR;
786 
787 		/*
788 		 * Unconditionally set us to LSRUN on resume.  lwp_stat could
789 		 * be in a weird state due to the goto resume, particularly
790 		 * when tsleep() is called from tstop().
791 		 */
792 		lp->lwp_stat = LSRUN;
793 		lwkt_reltoken(&lp->lwp_token);
794 	}
795 	logtsleep1(tsleep_end);
796 	crit_exit_quick(td);
797 
798 	return (error);
799 }
800 
801 /*
802  * Interlocked spinlock sleep.  An exclusively held spinlock must
803  * be passed to ssleep().  The function will atomically release the
804  * spinlock and tsleep on the ident, then reacquire the spinlock and
805  * return.
806  *
807  * This routine is fairly important along the critical path, so optimize it
808  * heavily.
809  */
810 int
811 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
812        const char *wmesg, int timo)
813 {
814 	globaldata_t gd = mycpu;
815 	int error;
816 
817 	_tsleep_interlock(gd, ident, flags);
818 	spin_unlock_quick(gd, spin);
819 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
820 	KKASSERT(gd == mycpu);
821 	_spin_lock_quick(gd, spin, wmesg);
822 
823 	return (error);
824 }
825 
826 int
827 lksleep(const volatile void *ident, struct lock *lock, int flags,
828 	const char *wmesg, int timo)
829 {
830 	globaldata_t gd = mycpu;
831 	int error;
832 
833 	_tsleep_interlock(gd, ident, flags);
834 	lockmgr(lock, LK_RELEASE);
835 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
836 	lockmgr(lock, LK_EXCLUSIVE);
837 
838 	return (error);
839 }
840 
841 /*
842  * Interlocked mutex sleep.  An exclusively held mutex must be passed
843  * to mtxsleep().  The function will atomically release the mutex
844  * and tsleep on the ident, then reacquire the mutex and return.
845  */
846 int
847 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
848 	 const char *wmesg, int timo)
849 {
850 	globaldata_t gd = mycpu;
851 	int error;
852 
853 	_tsleep_interlock(gd, ident, flags);
854 	mtx_unlock(mtx);
855 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
856 	mtx_lock_ex_quick(mtx);
857 
858 	return (error);
859 }
860 
861 /*
862  * Interlocked serializer sleep.  An exclusively held serializer must
863  * be passed to zsleep().  The function will atomically release
864  * the serializer and tsleep on the ident, then reacquire the serializer
865  * and return.
866  */
867 int
868 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
869        const char *wmesg, int timo)
870 {
871 	globaldata_t gd = mycpu;
872 	int ret;
873 
874 	ASSERT_SERIALIZED(slz);
875 
876 	_tsleep_interlock(gd, ident, flags);
877 	lwkt_serialize_exit(slz);
878 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
879 	lwkt_serialize_enter(slz);
880 
881 	return ret;
882 }
883 
884 /*
885  * Directly block on the LWKT thread by descheduling it.  This
886  * is much faster then tsleep(), but the only legal way to wake
887  * us up is to directly schedule the thread.
888  *
889  * Setting TDF_SINTR will cause new signals to directly schedule us.
890  *
891  * This routine must be called while in a critical section.
892  */
893 int
894 lwkt_sleep(const char *wmesg, int flags)
895 {
896 	thread_t td = curthread;
897 	int sig;
898 
899 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
900 		td->td_flags |= TDF_BLOCKED;
901 		td->td_wmesg = wmesg;
902 		lwkt_deschedule_self(td);
903 		lwkt_switch();
904 		td->td_wmesg = NULL;
905 		td->td_flags &= ~TDF_BLOCKED;
906 		return(0);
907 	}
908 	if ((sig = CURSIG(td->td_lwp)) != 0) {
909 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
910 			return(EINTR);
911 		else
912 			return(ERESTART);
913 
914 	}
915 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
916 	td->td_wmesg = wmesg;
917 	lwkt_deschedule_self(td);
918 	lwkt_switch();
919 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
920 	td->td_wmesg = NULL;
921 	return(0);
922 }
923 
924 /*
925  * Implement the timeout for tsleep.
926  *
927  * This type of callout timeout is scheduled on the same cpu the process
928  * is sleeping on.  Also, at the moment, the MP lock is held.
929  */
930 static void
931 endtsleep(void *arg)
932 {
933 	thread_t td = arg;
934 	struct lwp *lp;
935 
936 	/*
937 	 * We are going to have to get the lwp_token, which means we might
938 	 * block.  This can race a tsleep getting woken up by other means
939 	 * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
940 	 * processing to complete (sorry tsleep!).
941 	 *
942 	 * We can safely set td_flags because td MUST be on the same cpu
943 	 * as we are.
944 	 */
945 	KKASSERT(td->td_gd == mycpu);
946 	crit_enter();
947 	td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
948 
949 	/*
950 	 * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
951 	 * from exiting the tsleep on us.  The flag is interlocked by virtue
952 	 * of lp being on the same cpu as we are.
953 	 */
954 	if ((lp = td->td_lwp) != NULL)
955 		lwkt_gettoken(&lp->lwp_token);
956 
957 	KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
958 
959 	if (lp) {
960 		/*
961 		 * callout timer should normally never be set in tstop()
962 		 * because it passes a timeout of 0.  However, there is a
963 		 * case during thread exit (which SSTOP's all the threads)
964 		 * for which tstop() must break out and can (properly) leave
965 		 * the thread in LSSTOP.
966 		 */
967 		KKASSERT(lp->lwp_stat != LSSTOP ||
968 			 (lp->lwp_mpflags & LWP_MP_WEXIT));
969 		setrunnable(lp);
970 		lwkt_reltoken(&lp->lwp_token);
971 	} else {
972 		_tsleep_remove(td);
973 		lwkt_schedule(td);
974 	}
975 	KKASSERT(td->td_gd == mycpu);
976 	td->td_flags &= ~TDF_TIMEOUT_RUNNING;
977 	crit_exit();
978 }
979 
980 /*
981  * Make all processes sleeping on the specified identifier runnable.
982  * count may be zero or one only.
983  *
984  * The domain encodes the sleep/wakeup domain, flags, plus the originating
985  * cpu.
986  *
987  * This call may run without the MP lock held.  We can only manipulate thread
988  * state on the cpu owning the thread.  We CANNOT manipulate process state
989  * at all.
990  *
991  * _wakeup() can be passed to an IPI so we can't use (const volatile
992  * void *ident).
993  */
994 static void
995 _wakeup(void *ident, int domain)
996 {
997 	struct tslpque *qp;
998 	struct thread *td;
999 	struct thread *ntd;
1000 	globaldata_t gd;
1001 	cpumask_t mask;
1002 	uint32_t cid;
1003 	uint32_t gid;
1004 	int wids = 0;
1005 
1006 	crit_enter();
1007 	logtsleep2(wakeup_beg, ident);
1008 	gd = mycpu;
1009 	cid = LOOKUP(ident);
1010 	gid = TCHASHSHIFT(cid);
1011 	qp = &gd->gd_tsleep_hash[gid];
1012 restart:
1013 	for (td = TAILQ_FIRST(&qp->queue); td != NULL; td = ntd) {
1014 		ntd = TAILQ_NEXT(td, td_sleepq);
1015 		if (td->td_wchan == ident &&
1016 		    td->td_wdomain == (domain & PDOMAIN_MASK)
1017 		) {
1018 			KKASSERT(td->td_gd == gd);
1019 			_tsleep_remove(td);
1020 			td->td_wakefromcpu = PWAKEUP_DECODE(domain);
1021 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
1022 				lwkt_schedule(td);
1023 				if (domain & PWAKEUP_ONE)
1024 					goto done;
1025 			}
1026 			goto restart;
1027 		}
1028 		if (td->td_wchan == qp->ident0)
1029 			wids |= 1;
1030 		else if (td->td_wchan == qp->ident1)
1031 			wids |= 2;
1032 		else if (td->td_wchan == qp->ident2)
1033 			wids |= 4;
1034 		else if (td->td_wchan == qp->ident3)
1035 			wids |= 8;
1036 		else
1037 			wids |= 16;	/* force ident0 to be retained (-1) */
1038 	}
1039 
1040 	/*
1041 	 * Because a bunch of cpumask array entries cover the same queue, it
1042 	 * is possible for our bit to remain set in some of them and cause
1043 	 * spurious wakeup IPIs later on.  Make sure that the bit is cleared
1044 	 * when a spurious IPI occurs to prevent further spurious IPIs.
1045 	 */
1046 	if (TAILQ_FIRST(&qp->queue) == NULL) {
1047 		ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid], gd->gd_cpuid);
1048 		qp->ident0 = NULL;
1049 		qp->ident1 = NULL;
1050 		qp->ident2 = NULL;
1051 		qp->ident3 = NULL;
1052 	} else {
1053 		if ((wids & 1) == 0) {
1054 			if ((wids & 16) == 0) {
1055 				qp->ident0 = NULL;
1056 			} else {
1057 				KKASSERT(qp->ident0 == (void *)(intptr_t)-1);
1058 			}
1059 		}
1060 		if ((wids & 2) == 0)
1061 			qp->ident1 = NULL;
1062 		if ((wids & 4) == 0)
1063 			qp->ident2 = NULL;
1064 		if ((wids & 8) == 0)
1065 			qp->ident3 = NULL;
1066 	}
1067 
1068 	/*
1069 	 * We finished checking the current cpu but there still may be
1070 	 * more work to do.  Either wakeup_one was requested and no matching
1071 	 * thread was found, or a normal wakeup was requested and we have
1072 	 * to continue checking cpus.
1073 	 *
1074 	 * It should be noted that this scheme is actually less expensive then
1075 	 * the old scheme when waking up multiple threads, since we send
1076 	 * only one IPI message per target candidate which may then schedule
1077 	 * multiple threads.  Before we could have wound up sending an IPI
1078 	 * message for each thread on the target cpu (!= current cpu) that
1079 	 * needed to be woken up.
1080 	 *
1081 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
1082 	 *	 should be ok since we are passing idents in the IPI rather
1083 	 *	 then thread pointers.
1084 	 *
1085 	 * NOTE: We MUST mfence (or use an atomic op) prior to reading
1086 	 *	 the cpumask, as another cpu may have written to it in
1087 	 *	 a fashion interlocked with whatever the caller did before
1088 	 *	 calling wakeup().  Otherwise we might miss the interaction
1089 	 *	 (kern_mutex.c can cause this problem).
1090 	 *
1091 	 *	 lfence is insufficient as it may allow a written state to
1092 	 *	 reorder around the cpumask load.
1093 	 */
1094 	if ((domain & PWAKEUP_MYCPU) == 0) {
1095 		globaldata_t tgd;
1096 		const volatile void *id0;
1097 		int n;
1098 
1099 		cpu_mfence();
1100 		/* cpu_lfence(); */
1101 		mask = slpque_cpumasks[cid];
1102 		CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
1103 		while (CPUMASK_TESTNZERO(mask)) {
1104 			n = BSRCPUMASK(mask);
1105 			CPUMASK_NANDBIT(mask, n);
1106 			tgd = globaldata_find(n);
1107 
1108 			/*
1109 			 * Both ident0 compares must from a single load
1110 			 * to avoid ident0 update races crossing the two
1111 			 * compares.
1112 			 */
1113 			qp = &tgd->gd_tsleep_hash[gid];
1114 			id0 = qp->ident0;
1115 			cpu_ccfence();
1116 			if (id0 == (void *)(intptr_t)-1) {
1117 				lwkt_send_ipiq2(tgd, _wakeup, ident,
1118 						domain | PWAKEUP_MYCPU);
1119 				++tgd->gd_cnt.v_wakeup_colls;
1120 			} else if (id0 == ident ||
1121 				   qp->ident1 == ident ||
1122 				   qp->ident2 == ident ||
1123 				   qp->ident3 == ident) {
1124 				lwkt_send_ipiq2(tgd, _wakeup, ident,
1125 						domain | PWAKEUP_MYCPU);
1126 			}
1127 		}
1128 #if 0
1129 		if (CPUMASK_TESTNZERO(mask)) {
1130 			lwkt_send_ipiq2_mask(mask, _wakeup, ident,
1131 					     domain | PWAKEUP_MYCPU);
1132 		}
1133 #endif
1134 	}
1135 done:
1136 	logtsleep1(wakeup_end);
1137 	crit_exit();
1138 }
1139 
1140 /*
1141  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
1142  */
1143 void
1144 wakeup(const volatile void *ident)
1145 {
1146     globaldata_t gd = mycpu;
1147     thread_t td = gd->gd_curthread;
1148 
1149     if (td && (td->td_flags & TDF_DELAYED_WAKEUP)) {
1150 	/*
1151 	 * If we are in a delayed wakeup section, record up to two wakeups in
1152 	 * a per-CPU queue and issue them when we block or exit the delayed
1153 	 * wakeup section.
1154 	 */
1155 	if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[0], NULL, ident))
1156 		return;
1157 	if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[1], NULL, ident))
1158 		return;
1159 
1160 	ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[1]),
1161 				__DEALL(ident));
1162 	ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[0]),
1163 				__DEALL(ident));
1164     }
1165 
1166     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
1167 }
1168 
1169 /*
1170  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
1171  */
1172 void
1173 wakeup_one(const volatile void *ident)
1174 {
1175     /* XXX potentially round-robin the first responding cpu */
1176     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1177 			    PWAKEUP_ONE);
1178 }
1179 
1180 /*
1181  * Wakeup threads tsleep()ing on the specified ident on the current cpu
1182  * only.
1183  */
1184 void
1185 wakeup_mycpu(const volatile void *ident)
1186 {
1187     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1188 			    PWAKEUP_MYCPU);
1189 }
1190 
1191 /*
1192  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
1193  * only.
1194  */
1195 void
1196 wakeup_mycpu_one(const volatile void *ident)
1197 {
1198     /* XXX potentially round-robin the first responding cpu */
1199     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1200 			    PWAKEUP_MYCPU | PWAKEUP_ONE);
1201 }
1202 
1203 /*
1204  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
1205  * only.
1206  */
1207 void
1208 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
1209 {
1210     globaldata_t mygd = mycpu;
1211     if (gd == mycpu) {
1212 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1213 				PWAKEUP_MYCPU);
1214     } else {
1215 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1216 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1217 			PWAKEUP_MYCPU);
1218     }
1219 }
1220 
1221 /*
1222  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1223  * only.
1224  */
1225 void
1226 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1227 {
1228     globaldata_t mygd = mycpu;
1229     if (gd == mygd) {
1230 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1231 				PWAKEUP_MYCPU | PWAKEUP_ONE);
1232     } else {
1233 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1234 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1235 			PWAKEUP_MYCPU | PWAKEUP_ONE);
1236     }
1237 }
1238 
1239 /*
1240  * Wakeup all threads waiting on the specified ident that slept using
1241  * the specified domain, on all cpus.
1242  */
1243 void
1244 wakeup_domain(const volatile void *ident, int domain)
1245 {
1246     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1247 }
1248 
1249 /*
1250  * Wakeup one thread waiting on the specified ident that slept using
1251  * the specified  domain, on any cpu.
1252  */
1253 void
1254 wakeup_domain_one(const volatile void *ident, int domain)
1255 {
1256     /* XXX potentially round-robin the first responding cpu */
1257     _wakeup(__DEALL(ident),
1258 	    PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1259 }
1260 
1261 void
1262 wakeup_start_delayed(void)
1263 {
1264     globaldata_t gd = mycpu;
1265 
1266     crit_enter();
1267     gd->gd_curthread->td_flags |= TDF_DELAYED_WAKEUP;
1268     crit_exit();
1269 }
1270 
1271 void
1272 wakeup_end_delayed(void)
1273 {
1274     globaldata_t gd = mycpu;
1275 
1276     if (gd->gd_curthread->td_flags & TDF_DELAYED_WAKEUP) {
1277 	crit_enter();
1278 	gd->gd_curthread->td_flags &= ~TDF_DELAYED_WAKEUP;
1279 	if (gd->gd_delayed_wakeup[0] || gd->gd_delayed_wakeup[1]) {
1280 	    if (gd->gd_delayed_wakeup[0]) {
1281 		    wakeup(gd->gd_delayed_wakeup[0]);
1282 		    gd->gd_delayed_wakeup[0] = NULL;
1283 	    }
1284 	    if (gd->gd_delayed_wakeup[1]) {
1285 		    wakeup(gd->gd_delayed_wakeup[1]);
1286 		    gd->gd_delayed_wakeup[1] = NULL;
1287 	    }
1288 	}
1289 	crit_exit();
1290     }
1291 }
1292 
1293 /*
1294  * setrunnable()
1295  *
1296  * Make a process runnable.  lp->lwp_token must be held on call and this
1297  * function must be called from the cpu owning lp.
1298  *
1299  * This only has an effect if we are in LSSTOP or LSSLEEP.
1300  */
1301 void
1302 setrunnable(struct lwp *lp)
1303 {
1304 	thread_t td = lp->lwp_thread;
1305 
1306 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1307 	KKASSERT(td->td_gd == mycpu);
1308 	crit_enter();
1309 	if (lp->lwp_stat == LSSTOP)
1310 		lp->lwp_stat = LSSLEEP;
1311 	if (lp->lwp_stat == LSSLEEP) {
1312 		_tsleep_remove(td);
1313 		lwkt_schedule(td);
1314 	} else if (td->td_flags & TDF_SINTR) {
1315 		lwkt_schedule(td);
1316 	}
1317 	crit_exit();
1318 }
1319 
1320 /*
1321  * The process is stopped due to some condition, usually because p_stat is
1322  * set to SSTOP, but also possibly due to being traced.
1323  *
1324  * Caller must hold p->p_token
1325  *
1326  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
1327  * because the parent may check the child's status before the child actually
1328  * gets to this routine.
1329  *
1330  * This routine is called with the current lwp only, typically just
1331  * before returning to userland if the process state is detected as
1332  * possibly being in a stopped state.
1333  */
1334 void
1335 tstop(void)
1336 {
1337 	struct lwp *lp = curthread->td_lwp;
1338 	struct proc *p = lp->lwp_proc;
1339 	struct proc *q;
1340 
1341 	lwkt_gettoken(&lp->lwp_token);
1342 	crit_enter();
1343 
1344 	/*
1345 	 * If LWP_MP_WSTOP is set, we were sleeping
1346 	 * while our process was stopped.  At this point
1347 	 * we were already counted as stopped.
1348 	 */
1349 	if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1350 		/*
1351 		 * If we're the last thread to stop, signal
1352 		 * our parent.
1353 		 */
1354 		p->p_nstopped++;
1355 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1356 		wakeup(&p->p_nstopped);
1357 		if (p->p_nstopped == p->p_nthreads) {
1358 			/*
1359 			 * Token required to interlock kern_wait()
1360 			 */
1361 			q = p->p_pptr;
1362 			PHOLD(q);
1363 			lwkt_gettoken(&q->p_token);
1364 			p->p_flags &= ~P_WAITED;
1365 			wakeup(p->p_pptr);
1366 			if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1367 				ksignal(q, SIGCHLD);
1368 			lwkt_reltoken(&q->p_token);
1369 			PRELE(q);
1370 		}
1371 	}
1372 
1373 	/*
1374 	 * Wait here while in a stopped state, interlocked with lwp_token.
1375 	 * We must break-out if the whole process is trying to exit.
1376 	 */
1377 	while (STOPLWP(p, lp)) {
1378 		lp->lwp_stat = LSSTOP;
1379 		tsleep(p, 0, "stop", 0);
1380 	}
1381 	p->p_nstopped--;
1382 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1383 	crit_exit();
1384 	lwkt_reltoken(&lp->lwp_token);
1385 }
1386 
1387 /*
1388  * Compute a tenex style load average of a quantity on
1389  * 1, 5 and 15 minute intervals.  This is a pcpu callout.
1390  *
1391  * We segment the lwp scan on a pcpu basis.  This does NOT
1392  * mean the associated lwps are on this cpu, it is done
1393  * just to break the work up.
1394  *
1395  * The callout on cpu0 rolls up the stats from the other
1396  * cpus.
1397  */
1398 static int loadav_count_runnable(struct lwp *p, void *data);
1399 
1400 static void
1401 loadav(void *arg)
1402 {
1403 	globaldata_t gd = mycpu;
1404 	struct loadavg *avg;
1405 	int i, nrun;
1406 
1407 	nrun = 0;
1408 	alllwp_scan(loadav_count_runnable, &nrun, 1);
1409 	gd->gd_loadav_nrunnable = nrun;
1410 	if (gd->gd_cpuid == 0) {
1411 		avg = &averunnable;
1412 		nrun = 0;
1413 		for (i = 0; i < ncpus; ++i)
1414 			nrun += globaldata_find(i)->gd_loadav_nrunnable;
1415 		for (i = 0; i < 3; i++) {
1416 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1417 			    (long)nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1418 		}
1419 	}
1420 
1421 	/*
1422 	 * Schedule the next update to occur after 5 seconds, but add a
1423 	 * random variation to avoid synchronisation with processes that
1424 	 * run at regular intervals.
1425 	 */
1426 	callout_reset(&gd->gd_loadav_callout,
1427 		      hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1428 		      loadav, NULL);
1429 }
1430 
1431 static int
1432 loadav_count_runnable(struct lwp *lp, void *data)
1433 {
1434 	int *nrunp = data;
1435 	thread_t td;
1436 
1437 	switch (lp->lwp_stat) {
1438 	case LSRUN:
1439 		if ((td = lp->lwp_thread) == NULL)
1440 			break;
1441 		if (td->td_flags & TDF_BLOCKED)
1442 			break;
1443 		++*nrunp;
1444 		break;
1445 	default:
1446 		break;
1447 	}
1448 	lwkt_yield();
1449 	return(0);
1450 }
1451 
1452 /*
1453  * Regular data collection
1454  */
1455 static uint64_t
1456 collect_load_callback(int n)
1457 {
1458 	int fscale = averunnable.fscale;
1459 
1460 	return ((averunnable.ldavg[0] * 100 + (fscale >> 1)) / fscale);
1461 }
1462 
1463 static void
1464 sched_setup(void *dummy __unused)
1465 {
1466 	globaldata_t save_gd = mycpu;
1467 	globaldata_t gd;
1468 	int n;
1469 
1470 	kcollect_register(KCOLLECT_LOAD, "load", collect_load_callback,
1471 			  KCOLLECT_SCALE(KCOLLECT_LOAD_FORMAT, 0));
1472 
1473 	/*
1474 	 * Kick off timeout driven events by calling first time.  We
1475 	 * split the work across available cpus to help scale it,
1476 	 * it can eat a lot of cpu when there are a lot of processes
1477 	 * on the system.
1478 	 */
1479 	for (n = 0; n < ncpus; ++n) {
1480 		gd = globaldata_find(n);
1481 		lwkt_setcpu_self(gd);
1482 		callout_init_mp(&gd->gd_loadav_callout);
1483 		callout_init_mp(&gd->gd_schedcpu_callout);
1484 		schedcpu(NULL);
1485 		loadav(NULL);
1486 	}
1487 	lwkt_setcpu_self(save_gd);
1488 }
1489 
1490 /*
1491  * Extremely early initialization, dummy-up the tables so we don't have
1492  * to conditionalize for NULL in _wakeup() and tsleep_interlock().  Even
1493  * though the system isn't blocking this early, these functions still
1494  * try to access the hash table.
1495  *
1496  * This setup will be overridden once sched_dyninit() -> sleep_gdinit()
1497  * is called.
1498  */
1499 void
1500 sleep_early_gdinit(globaldata_t gd)
1501 {
1502 	static struct tslpque	dummy_slpque;
1503 	static cpumask_t dummy_cpumasks;
1504 
1505 	slpque_tablesize = 1;
1506 	gd->gd_tsleep_hash = &dummy_slpque;
1507 	slpque_cpumasks = &dummy_cpumasks;
1508 	TAILQ_INIT(&dummy_slpque.queue);
1509 }
1510 
1511 /*
1512  * PCPU initialization.  Called after KMALLOC is operational, by
1513  * sched_dyninit() for cpu 0, and by mi_gdinit() for other cpus later.
1514  *
1515  * WARNING! The pcpu hash table is smaller than the global cpumask
1516  *	    hash table, which can save us a lot of memory when maxproc
1517  *	    is set high.
1518  */
1519 void
1520 sleep_gdinit(globaldata_t gd)
1521 {
1522 	struct thread *td;
1523 	size_t hash_size;
1524 	uint32_t n;
1525 	uint32_t i;
1526 
1527 	/*
1528 	 * This shouldn't happen, that is there shouldn't be any threads
1529 	 * waiting on the dummy tsleep queue this early in the boot.
1530 	 */
1531 	if (gd->gd_cpuid == 0) {
1532 		struct tslpque *qp = &gd->gd_tsleep_hash[0];
1533 		TAILQ_FOREACH(td, &qp->queue, td_sleepq) {
1534 			kprintf("SLEEP_GDINIT SWITCH %s\n", td->td_comm);
1535 		}
1536 	}
1537 
1538 	/*
1539 	 * Note that we have to allocate one extra slot because we are
1540 	 * shifting a modulo value.  TCHASHSHIFT(slpque_tablesize - 1) can
1541 	 * return the same value as TCHASHSHIFT(slpque_tablesize).
1542 	 */
1543 	n = TCHASHSHIFT(slpque_tablesize) + 1;
1544 
1545 	hash_size = sizeof(struct tslpque) * n;
1546 	gd->gd_tsleep_hash = (void *)kmem_alloc3(&kernel_map, hash_size,
1547 						 VM_SUBSYS_GD,
1548 						 KM_CPU(gd->gd_cpuid));
1549 	memset(gd->gd_tsleep_hash, 0, hash_size);
1550 	for (i = 0; i < n; ++i)
1551 		TAILQ_INIT(&gd->gd_tsleep_hash[i].queue);
1552 }
1553 
1554 /*
1555  * Dynamic initialization after the memory system is operational.
1556  */
1557 static void
1558 sched_dyninit(void *dummy __unused)
1559 {
1560 	int tblsize;
1561 	int tblsize2;
1562 	int n;
1563 
1564 	/*
1565 	 * Calculate table size for slpque hash.  We want a prime number
1566 	 * large enough to avoid overloading slpque_cpumasks when the
1567 	 * system has a large number of sleeping processes, which will
1568 	 * spam IPIs on wakeup().
1569 	 *
1570 	 * While it is true this is really a per-lwp factor, generally
1571 	 * speaking the maxproc limit is a good metric to go by.
1572 	 */
1573 	for (tblsize = maxproc | 1; ; tblsize += 2) {
1574 		if (tblsize % 3 == 0)
1575 			continue;
1576 		if (tblsize % 5 == 0)
1577 			continue;
1578 		tblsize2 = (tblsize / 2) | 1;
1579 		for (n = 7; n < tblsize2; n += 2) {
1580 			if (tblsize % n == 0)
1581 				break;
1582 		}
1583 		if (n == tblsize2)
1584 			break;
1585 	}
1586 
1587 	/*
1588 	 * PIDs are currently limited to 6 digits.  Cap the table size
1589 	 * at double this.
1590 	 */
1591 	if (tblsize > 2000003)
1592 		tblsize = 2000003;
1593 
1594 	slpque_tablesize = tblsize;
1595 	slpque_cpumasks = kmalloc(sizeof(*slpque_cpumasks) * slpque_tablesize,
1596 				  M_TSLEEP, M_WAITOK | M_ZERO);
1597 	sleep_gdinit(mycpu);
1598 }
1599