xref: /dragonfly/sys/kern/kern_synch.c (revision c9c5aa9e)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vmmeter.h>
47 #include <sys/sysctl.h>
48 #include <sys/lock.h>
49 #include <sys/priv.h>
50 #include <sys/kcollect.h>
51 #include <sys/malloc.h>
52 #ifdef KTRACE
53 #include <sys/ktrace.h>
54 #endif
55 #include <sys/ktr.h>
56 #include <sys/serialize.h>
57 
58 #include <sys/signal2.h>
59 #include <sys/thread2.h>
60 #include <sys/spinlock2.h>
61 #include <sys/mutex2.h>
62 
63 #include <machine/cpu.h>
64 #include <machine/smp.h>
65 
66 #include <vm/vm_extern.h>
67 
68 struct tslpque {
69 	TAILQ_HEAD(, thread)	queue;
70 	const volatile void	*ident0;
71 	const volatile void	*ident1;
72 	const volatile void	*ident2;
73 	const volatile void	*ident3;
74 };
75 
76 static void sched_setup (void *dummy);
77 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL);
78 static void sched_dyninit (void *dummy);
79 SYSINIT(sched_dyninit, SI_BOOT1_DYNALLOC, SI_ORDER_FIRST, sched_dyninit, NULL);
80 
81 int	lbolt;
82 void	*lbolt_syncer;
83 __read_mostly int tsleep_crypto_dump = 0;
84 __read_mostly int ncpus;
85 __read_mostly int ncpus_fit, ncpus_fit_mask;	/* note: mask not cpumask_t */
86 __read_mostly int safepri;
87 __read_mostly int tsleep_now_works;
88 
89 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
90 
91 #define __DEALL(ident)	__DEQUALIFY(void *, ident)
92 
93 #if !defined(KTR_TSLEEP)
94 #define KTR_TSLEEP	KTR_ALL
95 #endif
96 KTR_INFO_MASTER(tsleep);
97 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
98 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
99 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
100 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
101 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", const volatile void *ident);
102 
103 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
104 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
105 
106 __exclusive_cache_line
107 struct loadavg averunnable =
108 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
109 /*
110  * Constants for averages over 1, 5, and 15 minutes
111  * when sampling at 5 second intervals.
112  */
113 __read_mostly
114 static fixpt_t cexp[3] = {
115 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
116 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
117 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
118 };
119 
120 static void	endtsleep (void *);
121 static void	loadav (void *arg);
122 static void	schedcpu (void *arg);
123 
124 __read_mostly static int pctcpu_decay = 10;
125 SYSCTL_INT(_kern, OID_AUTO, pctcpu_decay, CTLFLAG_RW,
126 	   &pctcpu_decay, 0, "");
127 
128 /*
129  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
130  */
131 __read_mostly int fscale __unused = FSCALE;	/* exported to systat */
132 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
133 
134 /*
135  * Issue a wakeup() from userland (debugging)
136  */
137 static int
138 sysctl_wakeup(SYSCTL_HANDLER_ARGS)
139 {
140 	uint64_t ident = 1;
141 	int error = 0;
142 
143 	if (req->newptr != NULL) {
144 		if (priv_check(curthread, PRIV_ROOT))
145 			return (EPERM);
146 		error = SYSCTL_IN(req, &ident, sizeof(ident));
147 		if (error)
148 			return error;
149 		kprintf("issue wakeup %016jx\n", ident);
150 		wakeup((void *)(intptr_t)ident);
151 	}
152 	if (req->oldptr != NULL) {
153 		error = SYSCTL_OUT(req, &ident, sizeof(ident));
154 	}
155 	return error;
156 }
157 
158 static int
159 sysctl_wakeup_umtx(SYSCTL_HANDLER_ARGS)
160 {
161 	uint64_t ident = 1;
162 	int error = 0;
163 
164 	if (req->newptr != NULL) {
165 		if (priv_check(curthread, PRIV_ROOT))
166 			return (EPERM);
167 		error = SYSCTL_IN(req, &ident, sizeof(ident));
168 		if (error)
169 			return error;
170 		kprintf("issue wakeup %016jx, PDOMAIN_UMTX\n", ident);
171 		wakeup_domain((void *)(intptr_t)ident, PDOMAIN_UMTX);
172 	}
173 	if (req->oldptr != NULL) {
174 		error = SYSCTL_OUT(req, &ident, sizeof(ident));
175 	}
176 	return error;
177 }
178 
179 SYSCTL_PROC(_debug, OID_AUTO, wakeup, CTLTYPE_UQUAD|CTLFLAG_RW, 0, 0,
180 	    sysctl_wakeup, "Q", "issue wakeup(addr)");
181 SYSCTL_PROC(_debug, OID_AUTO, wakeup_umtx, CTLTYPE_UQUAD|CTLFLAG_RW, 0, 0,
182 	    sysctl_wakeup_umtx, "Q", "issue wakeup(addr, PDOMAIN_UMTX)");
183 
184 /*
185  * Recompute process priorities, once a second.
186  *
187  * Since the userland schedulers are typically event oriented, if the
188  * estcpu calculation at wakeup() time is not sufficient to make a
189  * process runnable relative to other processes in the system we have
190  * a 1-second recalc to help out.
191  *
192  * This code also allows us to store sysclock_t data in the process structure
193  * without fear of an overrun, since sysclock_t are guarenteed to hold
194  * several seconds worth of count.
195  *
196  * WARNING!  callouts can preempt normal threads.  However, they will not
197  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
198  */
199 static int schedcpu_stats(struct proc *p, void *data __unused);
200 static int schedcpu_resource(struct proc *p, void *data __unused);
201 
202 static void
203 schedcpu(void *arg)
204 {
205 	allproc_scan(schedcpu_stats, NULL, 1);
206 	allproc_scan(schedcpu_resource, NULL, 1);
207 	if (mycpu->gd_cpuid == 0) {
208 		wakeup((caddr_t)&lbolt);
209 		wakeup(lbolt_syncer);
210 	}
211 	callout_reset(&mycpu->gd_schedcpu_callout, hz, schedcpu, NULL);
212 }
213 
214 /*
215  * General process statistics once a second
216  */
217 static int
218 schedcpu_stats(struct proc *p, void *data __unused)
219 {
220 	struct lwp *lp;
221 
222 	/*
223 	 * Threads may not be completely set up if process in SIDL state.
224 	 */
225 	if (p->p_stat == SIDL)
226 		return(0);
227 
228 	PHOLD(p);
229 	if (lwkt_trytoken(&p->p_token) == FALSE) {
230 		PRELE(p);
231 		return(0);
232 	}
233 
234 	p->p_swtime++;
235 	FOREACH_LWP_IN_PROC(lp, p) {
236 		if (lp->lwp_stat == LSSLEEP) {
237 			++lp->lwp_slptime;
238 			if (lp->lwp_slptime == 1)
239 				p->p_usched->uload_update(lp);
240 		}
241 
242 		/*
243 		 * Only recalculate processes that are active or have slept
244 		 * less then 2 seconds.  The schedulers understand this.
245 		 * Otherwise decay by 50% per second.
246 		 *
247 		 * NOTE: uload_update is called separately from kern_synch.c
248 		 *	 when slptime == 1, removing the thread's
249 		 *	 uload/ucount.
250 		 */
251 		if (lp->lwp_slptime <= 1) {
252 			p->p_usched->recalculate(lp);
253 		} else {
254 			int decay;
255 
256 			decay = pctcpu_decay;
257 			cpu_ccfence();
258 			if (decay <= 1)
259 				decay = 1;
260 			if (decay > 100)
261 				decay = 100;
262 			lp->lwp_pctcpu = (lp->lwp_pctcpu * (decay - 1)) / decay;
263 		}
264 	}
265 	lwkt_reltoken(&p->p_token);
266 	lwkt_yield();
267 	PRELE(p);
268 	return(0);
269 }
270 
271 /*
272  * Resource checks.  XXX break out since ksignal/killproc can block,
273  * limiting us to one process killed per second.  There is probably
274  * a better way.
275  */
276 static int
277 schedcpu_resource(struct proc *p, void *data __unused)
278 {
279 	u_int64_t ttime;
280 	struct lwp *lp;
281 
282 	if (p->p_stat == SIDL)
283 		return(0);
284 
285 	PHOLD(p);
286 	if (lwkt_trytoken(&p->p_token) == FALSE) {
287 		PRELE(p);
288 		return(0);
289 	}
290 
291 	if (p->p_stat == SZOMB || p->p_limit == NULL) {
292 		lwkt_reltoken(&p->p_token);
293 		PRELE(p);
294 		return(0);
295 	}
296 
297 	ttime = 0;
298 	FOREACH_LWP_IN_PROC(lp, p) {
299 		/*
300 		 * We may have caught an lp in the middle of being
301 		 * created, lwp_thread can be NULL.
302 		 */
303 		if (lp->lwp_thread) {
304 			ttime += lp->lwp_thread->td_sticks;
305 			ttime += lp->lwp_thread->td_uticks;
306 		}
307 	}
308 
309 	switch(plimit_testcpulimit(p, ttime)) {
310 	case PLIMIT_TESTCPU_KILL:
311 		killproc(p, "exceeded maximum CPU limit");
312 		break;
313 	case PLIMIT_TESTCPU_XCPU:
314 		if ((p->p_flags & P_XCPU) == 0) {
315 			p->p_flags |= P_XCPU;
316 			ksignal(p, SIGXCPU);
317 		}
318 		break;
319 	default:
320 		break;
321 	}
322 	lwkt_reltoken(&p->p_token);
323 	lwkt_yield();
324 	PRELE(p);
325 	return(0);
326 }
327 
328 /*
329  * This is only used by ps.  Generate a cpu percentage use over
330  * a period of one second.
331  */
332 void
333 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
334 {
335 	fixpt_t acc;
336 	int remticks;
337 
338 	acc = (cpticks << FSHIFT) / ttlticks;
339 	if (ttlticks >= ESTCPUFREQ) {
340 		lp->lwp_pctcpu = acc;
341 	} else {
342 		remticks = ESTCPUFREQ - ttlticks;
343 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
344 				ESTCPUFREQ;
345 	}
346 }
347 
348 /*
349  * Handy macros to calculate hash indices.  LOOKUP() calculates the
350  * global cpumask hash index, TCHASHSHIFT() converts that into the
351  * pcpu hash index.
352  *
353  * By making the pcpu hash arrays smaller we save a significant amount
354  * of memory at very low cost.  The real cost is in IPIs, which are handled
355  * by the much larger global cpumask hash table.
356  */
357 #define LOOKUP_PRIME	66555444443333333ULL
358 #define LOOKUP(x)	((((uintptr_t)(x) + ((uintptr_t)(x) >> 18)) ^	\
359 			  LOOKUP_PRIME) % slpque_tablesize)
360 #define TCHASHSHIFT(x)	((x) >> 4)
361 
362 __read_mostly static uint32_t	slpque_tablesize;
363 __read_mostly static cpumask_t *slpque_cpumasks;
364 
365 SYSCTL_UINT(_kern, OID_AUTO, slpque_tablesize, CTLFLAG_RD, &slpque_tablesize,
366     0, "");
367 
368 /*
369  * This is a dandy function that allows us to interlock tsleep/wakeup
370  * operations with unspecified upper level locks, such as lockmgr locks,
371  * simply by holding a critical section.  The sequence is:
372  *
373  *	(acquire upper level lock)
374  *	tsleep_interlock(blah)
375  *	(release upper level lock)
376  *	tsleep(blah, ...)
377  *
378  * Basically this functions queues us on the tsleep queue without actually
379  * descheduling us.  When tsleep() is later called with PINTERLOCK it
380  * assumes the thread was already queued, otherwise it queues it there.
381  *
382  * Thus it is possible to receive the wakeup prior to going to sleep and
383  * the race conditions are covered.
384  */
385 static __inline void
386 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
387 {
388 	thread_t td = gd->gd_curthread;
389 	struct tslpque *qp;
390 	uint32_t cid;
391 	uint32_t gid;
392 
393 	if (ident == NULL) {
394 		kprintf("tsleep_interlock: NULL ident %s\n", td->td_comm);
395 		print_backtrace(5);
396 	}
397 
398 	crit_enter_quick(td);
399 	if (td->td_flags & TDF_TSLEEPQ) {
400 		/*
401 		 * Shortcut if unchanged
402 		 */
403 		if (td->td_wchan == ident &&
404 		    td->td_wdomain == (flags & PDOMAIN_MASK)) {
405 			crit_exit_quick(td);
406 			return;
407 		}
408 
409 		/*
410 		 * Remove current sleepq
411 		 */
412 		cid = LOOKUP(td->td_wchan);
413 		gid = TCHASHSHIFT(cid);
414 		qp = &gd->gd_tsleep_hash[gid];
415 		TAILQ_REMOVE(&qp->queue, td, td_sleepq);
416 		if (TAILQ_FIRST(&qp->queue) == NULL) {
417 			qp->ident0 = NULL;
418 			qp->ident1 = NULL;
419 			qp->ident2 = NULL;
420 			qp->ident3 = NULL;
421 			ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
422 					       gd->gd_cpuid);
423 		}
424 	} else {
425 		td->td_flags |= TDF_TSLEEPQ;
426 	}
427 	cid = LOOKUP(ident);
428 	gid = TCHASHSHIFT(cid);
429 	qp = &gd->gd_tsleep_hash[gid];
430 	TAILQ_INSERT_TAIL(&qp->queue, td, td_sleepq);
431 	if (qp->ident0 != ident && qp->ident1 != ident &&
432 	    qp->ident2 != ident && qp->ident3 != ident) {
433 		if (qp->ident0 == NULL)
434 			qp->ident0 = ident;
435 		else if (qp->ident1 == NULL)
436 			qp->ident1 = ident;
437 		else if (qp->ident2 == NULL)
438 			qp->ident2 = ident;
439 		else if (qp->ident3 == NULL)
440 			qp->ident3 = ident;
441 		else
442 			qp->ident0 = (void *)(intptr_t)-1;
443 	}
444 	ATOMIC_CPUMASK_ORBIT(slpque_cpumasks[cid], gd->gd_cpuid);
445 	td->td_wchan = ident;
446 	td->td_wdomain = flags & PDOMAIN_MASK;
447 	crit_exit_quick(td);
448 }
449 
450 void
451 tsleep_interlock(const volatile void *ident, int flags)
452 {
453 	_tsleep_interlock(mycpu, ident, flags);
454 }
455 
456 /*
457  * Remove thread from sleepq.  Must be called with a critical section held.
458  * The thread must not be migrating.
459  */
460 static __inline void
461 _tsleep_remove(thread_t td)
462 {
463 	globaldata_t gd = mycpu;
464 	struct tslpque *qp;
465 	uint32_t cid;
466 	uint32_t gid;
467 
468 	KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
469 	KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
470 	if (td->td_flags & TDF_TSLEEPQ) {
471 		td->td_flags &= ~TDF_TSLEEPQ;
472 		cid = LOOKUP(td->td_wchan);
473 		gid = TCHASHSHIFT(cid);
474 		qp = &gd->gd_tsleep_hash[gid];
475 		TAILQ_REMOVE(&qp->queue, td, td_sleepq);
476 		if (TAILQ_FIRST(&qp->queue) == NULL) {
477 			ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
478 					       gd->gd_cpuid);
479 		}
480 		td->td_wchan = NULL;
481 		td->td_wdomain = 0;
482 	}
483 }
484 
485 void
486 tsleep_remove(thread_t td)
487 {
488 	_tsleep_remove(td);
489 }
490 
491 /*
492  * General sleep call.  Suspends the current process until a wakeup is
493  * performed on the specified identifier.  The process will then be made
494  * runnable with the specified priority.  Sleeps at most timo/hz seconds
495  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
496  * before and after sleeping, else signals are not checked.  Returns 0 if
497  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
498  * signal needs to be delivered, ERESTART is returned if the current system
499  * call should be restarted if possible, and EINTR is returned if the system
500  * call should be interrupted by the signal (return EINTR).
501  *
502  * Note that if we are a process, we release_curproc() before messing with
503  * the LWKT scheduler.
504  *
505  * During autoconfiguration or after a panic, a sleep will simply
506  * lower the priority briefly to allow interrupts, then return.
507  *
508  * WARNING!  This code can't block (short of switching away), or bad things
509  *           will happen.  No getting tokens, no blocking locks, etc.
510  */
511 int
512 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
513 {
514 	struct thread *td = curthread;
515 	struct lwp *lp = td->td_lwp;
516 	struct proc *p = td->td_proc;		/* may be NULL */
517 	globaldata_t gd;
518 	int sig;
519 	int catch;
520 	int error;
521 	int oldpri;
522 	struct callout thandle1;
523 	struct _callout thandle2;
524 
525 	/*
526 	 * Currently a severe hack.  Make sure any delayed wakeups
527 	 * are flushed before we sleep or we might deadlock on whatever
528 	 * event we are sleeping on.
529 	 */
530 	if (td->td_flags & TDF_DELAYED_WAKEUP)
531 		wakeup_end_delayed();
532 
533 	/*
534 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
535 	 * even in stable.  Just scrap it for now.
536 	 */
537 	if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
538 		/*
539 		 * After a panic, or before we actually have an operational
540 		 * softclock, just give interrupts a chance, then just return;
541 		 *
542 		 * don't run any other procs or panic below,
543 		 * in case this is the idle process and already asleep.
544 		 */
545 		splz();
546 		oldpri = td->td_pri;
547 		lwkt_setpri_self(safepri);
548 		lwkt_switch();
549 		lwkt_setpri_self(oldpri);
550 		return (0);
551 	}
552 	logtsleep2(tsleep_beg, ident);
553 	gd = td->td_gd;
554 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
555 
556 	/*
557 	 * NOTE: all of this occurs on the current cpu, including any
558 	 * callout-based wakeups, so a critical section is a sufficient
559 	 * interlock.
560 	 *
561 	 * The entire sequence through to where we actually sleep must
562 	 * run without breaking the critical section.
563 	 */
564 	catch = flags & PCATCH;
565 	error = 0;
566 	sig = 0;
567 
568 	crit_enter_quick(td);
569 
570 	KASSERT(ident != NULL, ("tsleep: no ident"));
571 	KASSERT(lp == NULL ||
572 		lp->lwp_stat == LSRUN ||	/* Obvious */
573 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
574 		("tsleep %p %s %d",
575 			ident, wmesg, lp->lwp_stat));
576 
577 	/*
578 	 * We interlock the sleep queue if the caller has not already done
579 	 * it for us.  This must be done before we potentially acquire any
580 	 * tokens or we can loose the wakeup.
581 	 */
582 	if ((flags & PINTERLOCKED) == 0) {
583 		_tsleep_interlock(gd, ident, flags);
584 	}
585 
586 	/*
587 	 * Setup for the current process (if this is a process).  We must
588 	 * interlock with lwp_token to avoid remote wakeup races via
589 	 * setrunnable()
590 	 */
591 	if (lp) {
592 		lwkt_gettoken(&lp->lwp_token);
593 
594 		/*
595 		 * If the umbrella process is in the SCORE state then
596 		 * make sure that the thread is flagged going into a
597 		 * normal sleep to allow the core dump to proceed, otherwise
598 		 * the coredump can end up waiting forever.  If the normal
599 		 * sleep is woken up, the thread will enter a stopped state
600 		 * upon return to userland.
601 		 *
602 		 * We do not want to interrupt or cause a thread exist at
603 		 * this juncture because that will mess-up the state the
604 		 * coredump is trying to save.
605 		 */
606 		if (p->p_stat == SCORE) {
607 			lwkt_gettoken(&p->p_token);
608 			if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
609 				atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
610 				++p->p_nstopped;
611 			}
612 			lwkt_reltoken(&p->p_token);
613 		}
614 
615 		/*
616 		 * PCATCH requested.
617 		 */
618 		if (catch) {
619 			/*
620 			 * Early termination if PCATCH was set and a
621 			 * signal is pending, interlocked with the
622 			 * critical section.
623 			 *
624 			 * Early termination only occurs when tsleep() is
625 			 * entered while in a normal LSRUN state.
626 			 */
627 			if ((sig = CURSIG(lp)) != 0)
628 				goto resume;
629 
630 			/*
631 			 * Causes ksignal to wake us up if a signal is
632 			 * received (interlocked with lp->lwp_token).
633 			 */
634 			lp->lwp_flags |= LWP_SINTR;
635 		}
636 	} else {
637 		KKASSERT(p == NULL);
638 	}
639 
640 	/*
641 	 * Make sure the current process has been untangled from
642 	 * the userland scheduler and initialize slptime to start
643 	 * counting.
644 	 *
645 	 * NOTE: td->td_wakefromcpu is pre-set by the release function
646 	 *	 for the dfly scheduler, and then adjusted by _wakeup()
647 	 */
648 	if (lp) {
649 		p->p_usched->release_curproc(lp);
650 		lp->lwp_slptime = 0;
651 	}
652 
653 	/*
654 	 * For PINTERLOCKED operation, TDF_TSLEEPQ might not be set if
655 	 * a wakeup() was processed before the thread could go to sleep.
656 	 *
657 	 * If TDF_TSLEEPQ is set, make sure the ident matches the recorded
658 	 * ident.  If it does not then the thread slept inbetween the
659 	 * caller's initial tsleep_interlock() call and the caller's tsleep()
660 	 * call.
661 	 *
662 	 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
663 	 * to process incoming IPIs, thus draining incoming wakeups.
664 	 */
665 	if ((td->td_flags & TDF_TSLEEPQ) == 0) {
666 		logtsleep2(ilockfail, ident);
667 		goto resume;
668 	} else if (td->td_wchan != ident ||
669 		   td->td_wdomain != (flags & PDOMAIN_MASK)) {
670 		logtsleep2(ilockfail, ident);
671 		goto resume;
672 	}
673 
674 	/*
675 	 * scheduling is blocked while in a critical section.  Coincide
676 	 * the descheduled-by-tsleep flag with the descheduling of the
677 	 * lwkt.
678 	 *
679 	 * The timer callout is localized on our cpu and interlocked by
680 	 * our critical section.
681 	 */
682 	lwkt_deschedule_self(td);
683 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
684 	td->td_wmesg = wmesg;
685 
686 	/*
687 	 * Setup the timeout, if any.  The timeout is only operable while
688 	 * the thread is flagged descheduled.
689 	 */
690 	KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
691 	if (timo) {
692 		_callout_setup_quick(&thandle1, &thandle2, timo, endtsleep, td);
693 	}
694 
695 	/*
696 	 * Beddy bye bye.
697 	 */
698 	if (lp) {
699 		/*
700 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
701 		 */
702 		KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
703 
704 		/*
705 		 * tstop() sets LSSTOP, so don't fiddle with that.
706 		 */
707 		if (lp->lwp_stat != LSSTOP)
708 			lp->lwp_stat = LSSLEEP;
709 		lp->lwp_ru.ru_nvcsw++;
710 		p->p_usched->uload_update(lp);
711 		lwkt_switch();
712 
713 		/*
714 		 * And when we are woken up, put us back in LSRUN.  If we
715 		 * slept for over a second, recalculate our estcpu.
716 		 */
717 		lp->lwp_stat = LSRUN;
718 		if (lp->lwp_slptime) {
719 			p->p_usched->uload_update(lp);
720 			p->p_usched->recalculate(lp);
721 		}
722 		lp->lwp_slptime = 0;
723 	} else {
724 		lwkt_switch();
725 	}
726 
727 	/*
728 	 * Make sure we haven't switched cpus while we were asleep.  It's
729 	 * not supposed to happen.  Cleanup our temporary flags.
730 	 */
731 	KKASSERT(gd == td->td_gd);
732 
733 	/*
734 	 * Cleanup the timeout.  If the timeout has already occured thandle
735 	 * has already been stopped, otherwise stop thandle.  If the timeout
736 	 * is running (the callout thread must be blocked trying to get
737 	 * lwp_token) then wait for us to get scheduled.
738 	 */
739 	if (timo) {
740 		while (td->td_flags & TDF_TIMEOUT_RUNNING) {
741 			/* else we won't get rescheduled! */
742 			if (lp->lwp_stat != LSSTOP)
743 				lp->lwp_stat = LSSLEEP;
744 			lwkt_deschedule_self(td);
745 			td->td_wmesg = "tsrace";
746 			lwkt_switch();
747 			kprintf("td %p %s: timeout race\n", td, td->td_comm);
748 		}
749 		if (td->td_flags & TDF_TIMEOUT) {
750 			td->td_flags &= ~TDF_TIMEOUT;
751 			error = EWOULDBLOCK;
752 		} else {
753 			/*
754 			 * We are on the same cpu so use the quick version
755 			 * which is guaranteed not to block or race.
756 			 */
757 			_callout_cancel_quick(&thandle2);
758 		}
759 	}
760 	td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
761 
762 	/*
763 	 * Make sure we have been removed from the sleepq.  In most
764 	 * cases this will have been done for us already but it is
765 	 * possible for a scheduling IPI to be in-flight from a
766 	 * previous tsleep/tsleep_interlock() or due to a straight-out
767 	 * call to lwkt_schedule() (in the case of an interrupt thread),
768 	 * causing a spurious wakeup.
769 	 */
770 	_tsleep_remove(td);
771 	td->td_wmesg = NULL;
772 
773 	/*
774 	 * Figure out the correct error return.  If interrupted by a
775 	 * signal we want to return EINTR or ERESTART.
776 	 */
777 resume:
778 	if (lp) {
779 		if (catch && error == 0) {
780 			if (sig != 0 || (sig = CURSIG(lp))) {
781 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
782 					error = EINTR;
783 				else
784 					error = ERESTART;
785 			}
786 		}
787 
788 		lp->lwp_flags &= ~LWP_SINTR;
789 
790 		/*
791 		 * Unconditionally set us to LSRUN on resume.  lwp_stat could
792 		 * be in a weird state due to the goto resume, particularly
793 		 * when tsleep() is called from tstop().
794 		 */
795 		lp->lwp_stat = LSRUN;
796 		lwkt_reltoken(&lp->lwp_token);
797 	}
798 	logtsleep1(tsleep_end);
799 	crit_exit_quick(td);
800 
801 	return (error);
802 }
803 
804 /*
805  * Interlocked spinlock sleep.  An exclusively held spinlock must
806  * be passed to ssleep().  The function will atomically release the
807  * spinlock and tsleep on the ident, then reacquire the spinlock and
808  * return.
809  *
810  * This routine is fairly important along the critical path, so optimize it
811  * heavily.
812  */
813 int
814 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
815        const char *wmesg, int timo)
816 {
817 	globaldata_t gd = mycpu;
818 	int error;
819 
820 	_tsleep_interlock(gd, ident, flags);
821 	spin_unlock_quick(gd, spin);
822 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
823 	KKASSERT(gd == mycpu);
824 	_spin_lock_quick(gd, spin, wmesg);
825 
826 	return (error);
827 }
828 
829 int
830 lksleep(const volatile void *ident, struct lock *lock, int flags,
831 	const char *wmesg, int timo)
832 {
833 	globaldata_t gd = mycpu;
834 	int error;
835 
836 	_tsleep_interlock(gd, ident, flags);
837 	lockmgr(lock, LK_RELEASE);
838 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
839 	lockmgr(lock, LK_EXCLUSIVE);
840 
841 	return (error);
842 }
843 
844 /*
845  * Interlocked mutex sleep.  An exclusively held mutex must be passed
846  * to mtxsleep().  The function will atomically release the mutex
847  * and tsleep on the ident, then reacquire the mutex and return.
848  */
849 int
850 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
851 	 const char *wmesg, int timo)
852 {
853 	globaldata_t gd = mycpu;
854 	int error;
855 
856 	_tsleep_interlock(gd, ident, flags);
857 	mtx_unlock(mtx);
858 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
859 	mtx_lock_ex_quick(mtx);
860 
861 	return (error);
862 }
863 
864 /*
865  * Interlocked serializer sleep.  An exclusively held serializer must
866  * be passed to zsleep().  The function will atomically release
867  * the serializer and tsleep on the ident, then reacquire the serializer
868  * and return.
869  */
870 int
871 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
872        const char *wmesg, int timo)
873 {
874 	globaldata_t gd = mycpu;
875 	int ret;
876 
877 	ASSERT_SERIALIZED(slz);
878 
879 	_tsleep_interlock(gd, ident, flags);
880 	lwkt_serialize_exit(slz);
881 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
882 	lwkt_serialize_enter(slz);
883 
884 	return ret;
885 }
886 
887 /*
888  * Directly block on the LWKT thread by descheduling it.  This
889  * is much faster then tsleep(), but the only legal way to wake
890  * us up is to directly schedule the thread.
891  *
892  * Setting TDF_SINTR will cause new signals to directly schedule us.
893  *
894  * This routine must be called while in a critical section.
895  */
896 int
897 lwkt_sleep(const char *wmesg, int flags)
898 {
899 	thread_t td = curthread;
900 	int sig;
901 
902 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
903 		td->td_flags |= TDF_BLOCKED;
904 		td->td_wmesg = wmesg;
905 		lwkt_deschedule_self(td);
906 		lwkt_switch();
907 		td->td_wmesg = NULL;
908 		td->td_flags &= ~TDF_BLOCKED;
909 		return(0);
910 	}
911 	if ((sig = CURSIG(td->td_lwp)) != 0) {
912 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
913 			return(EINTR);
914 		else
915 			return(ERESTART);
916 
917 	}
918 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
919 	td->td_wmesg = wmesg;
920 	lwkt_deschedule_self(td);
921 	lwkt_switch();
922 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
923 	td->td_wmesg = NULL;
924 	return(0);
925 }
926 
927 /*
928  * Implement the timeout for tsleep.
929  *
930  * This type of callout timeout is scheduled on the same cpu the process
931  * is sleeping on.  Also, at the moment, the MP lock is held.
932  */
933 static void
934 endtsleep(void *arg)
935 {
936 	thread_t td = arg;
937 	struct lwp *lp;
938 
939 	/*
940 	 * We are going to have to get the lwp_token, which means we might
941 	 * block.  This can race a tsleep getting woken up by other means
942 	 * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
943 	 * processing to complete (sorry tsleep!).
944 	 *
945 	 * We can safely set td_flags because td MUST be on the same cpu
946 	 * as we are.
947 	 */
948 	KKASSERT(td->td_gd == mycpu);
949 	crit_enter();
950 	td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
951 
952 	/*
953 	 * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
954 	 * from exiting the tsleep on us.  The flag is interlocked by virtue
955 	 * of lp being on the same cpu as we are.
956 	 */
957 	if ((lp = td->td_lwp) != NULL)
958 		lwkt_gettoken(&lp->lwp_token);
959 
960 	KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
961 
962 	if (lp) {
963 		/*
964 		 * callout timer should normally never be set in tstop()
965 		 * because it passes a timeout of 0.  However, there is a
966 		 * case during thread exit (which SSTOP's all the threads)
967 		 * for which tstop() must break out and can (properly) leave
968 		 * the thread in LSSTOP.
969 		 */
970 		KKASSERT(lp->lwp_stat != LSSTOP ||
971 			 (lp->lwp_mpflags & LWP_MP_WEXIT));
972 		setrunnable(lp);
973 		lwkt_reltoken(&lp->lwp_token);
974 	} else {
975 		_tsleep_remove(td);
976 		lwkt_schedule(td);
977 	}
978 	KKASSERT(td->td_gd == mycpu);
979 	td->td_flags &= ~TDF_TIMEOUT_RUNNING;
980 	crit_exit();
981 }
982 
983 /*
984  * Make all processes sleeping on the specified identifier runnable.
985  * count may be zero or one only.
986  *
987  * The domain encodes the sleep/wakeup domain, flags, plus the originating
988  * cpu.
989  *
990  * This call may run without the MP lock held.  We can only manipulate thread
991  * state on the cpu owning the thread.  We CANNOT manipulate process state
992  * at all.
993  *
994  * _wakeup() can be passed to an IPI so we can't use (const volatile
995  * void *ident).
996  */
997 static void
998 _wakeup(void *ident, int domain)
999 {
1000 	struct tslpque *qp;
1001 	struct thread *td;
1002 	struct thread *ntd;
1003 	globaldata_t gd;
1004 	cpumask_t mask;
1005 	uint32_t cid;
1006 	uint32_t gid;
1007 	int wids = 0;
1008 
1009 	crit_enter();
1010 	logtsleep2(wakeup_beg, ident);
1011 	gd = mycpu;
1012 	cid = LOOKUP(ident);
1013 	gid = TCHASHSHIFT(cid);
1014 	qp = &gd->gd_tsleep_hash[gid];
1015 restart:
1016 	for (td = TAILQ_FIRST(&qp->queue); td != NULL; td = ntd) {
1017 		ntd = TAILQ_NEXT(td, td_sleepq);
1018 		if (td->td_wchan == ident &&
1019 		    td->td_wdomain == (domain & PDOMAIN_MASK)
1020 		) {
1021 			KKASSERT(td->td_gd == gd);
1022 			_tsleep_remove(td);
1023 			td->td_wakefromcpu = PWAKEUP_DECODE(domain);
1024 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
1025 				lwkt_schedule(td);
1026 				if (domain & PWAKEUP_ONE)
1027 					goto done;
1028 			}
1029 			goto restart;
1030 		}
1031 		if (td->td_wchan == qp->ident0)
1032 			wids |= 1;
1033 		else if (td->td_wchan == qp->ident1)
1034 			wids |= 2;
1035 		else if (td->td_wchan == qp->ident2)
1036 			wids |= 4;
1037 		else if (td->td_wchan == qp->ident3)
1038 			wids |= 8;
1039 		else
1040 			wids |= 16;	/* force ident0 to be retained (-1) */
1041 	}
1042 
1043 	/*
1044 	 * Because a bunch of cpumask array entries cover the same queue, it
1045 	 * is possible for our bit to remain set in some of them and cause
1046 	 * spurious wakeup IPIs later on.  Make sure that the bit is cleared
1047 	 * when a spurious IPI occurs to prevent further spurious IPIs.
1048 	 */
1049 	if (TAILQ_FIRST(&qp->queue) == NULL) {
1050 		ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid], gd->gd_cpuid);
1051 		qp->ident0 = NULL;
1052 		qp->ident1 = NULL;
1053 		qp->ident2 = NULL;
1054 		qp->ident3 = NULL;
1055 	} else {
1056 		if ((wids & 1) == 0) {
1057 			if ((wids & 16) == 0) {
1058 				qp->ident0 = NULL;
1059 			} else {
1060 				KKASSERT(qp->ident0 == (void *)(intptr_t)-1);
1061 			}
1062 		}
1063 		if ((wids & 2) == 0)
1064 			qp->ident1 = NULL;
1065 		if ((wids & 4) == 0)
1066 			qp->ident2 = NULL;
1067 		if ((wids & 8) == 0)
1068 			qp->ident3 = NULL;
1069 	}
1070 
1071 	/*
1072 	 * We finished checking the current cpu but there still may be
1073 	 * more work to do.  Either wakeup_one was requested and no matching
1074 	 * thread was found, or a normal wakeup was requested and we have
1075 	 * to continue checking cpus.
1076 	 *
1077 	 * It should be noted that this scheme is actually less expensive then
1078 	 * the old scheme when waking up multiple threads, since we send
1079 	 * only one IPI message per target candidate which may then schedule
1080 	 * multiple threads.  Before we could have wound up sending an IPI
1081 	 * message for each thread on the target cpu (!= current cpu) that
1082 	 * needed to be woken up.
1083 	 *
1084 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
1085 	 *	 should be ok since we are passing idents in the IPI rather
1086 	 *	 then thread pointers.
1087 	 *
1088 	 * NOTE: We MUST mfence (or use an atomic op) prior to reading
1089 	 *	 the cpumask, as another cpu may have written to it in
1090 	 *	 a fashion interlocked with whatever the caller did before
1091 	 *	 calling wakeup().  Otherwise we might miss the interaction
1092 	 *	 (kern_mutex.c can cause this problem).
1093 	 *
1094 	 *	 lfence is insufficient as it may allow a written state to
1095 	 *	 reorder around the cpumask load.
1096 	 */
1097 	if ((domain & PWAKEUP_MYCPU) == 0) {
1098 		globaldata_t tgd;
1099 		const volatile void *id0;
1100 		int n;
1101 
1102 		cpu_mfence();
1103 		/* cpu_lfence(); */
1104 		mask = slpque_cpumasks[cid];
1105 		CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
1106 		while (CPUMASK_TESTNZERO(mask)) {
1107 			n = BSRCPUMASK(mask);
1108 			CPUMASK_NANDBIT(mask, n);
1109 			tgd = globaldata_find(n);
1110 
1111 			/*
1112 			 * Both ident0 compares must from a single load
1113 			 * to avoid ident0 update races crossing the two
1114 			 * compares.
1115 			 */
1116 			qp = &tgd->gd_tsleep_hash[gid];
1117 			id0 = qp->ident0;
1118 			cpu_ccfence();
1119 			if (id0 == (void *)(intptr_t)-1) {
1120 				lwkt_send_ipiq2(tgd, _wakeup, ident,
1121 						domain | PWAKEUP_MYCPU);
1122 				++tgd->gd_cnt.v_wakeup_colls;
1123 			} else if (id0 == ident ||
1124 				   qp->ident1 == ident ||
1125 				   qp->ident2 == ident ||
1126 				   qp->ident3 == ident) {
1127 				lwkt_send_ipiq2(tgd, _wakeup, ident,
1128 						domain | PWAKEUP_MYCPU);
1129 			}
1130 		}
1131 #if 0
1132 		if (CPUMASK_TESTNZERO(mask)) {
1133 			lwkt_send_ipiq2_mask(mask, _wakeup, ident,
1134 					     domain | PWAKEUP_MYCPU);
1135 		}
1136 #endif
1137 	}
1138 done:
1139 	logtsleep1(wakeup_end);
1140 	crit_exit();
1141 }
1142 
1143 /*
1144  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
1145  */
1146 void
1147 wakeup(const volatile void *ident)
1148 {
1149     globaldata_t gd = mycpu;
1150     thread_t td = gd->gd_curthread;
1151 
1152     if (td && (td->td_flags & TDF_DELAYED_WAKEUP)) {
1153 	/*
1154 	 * If we are in a delayed wakeup section, record up to two wakeups in
1155 	 * a per-CPU queue and issue them when we block or exit the delayed
1156 	 * wakeup section.
1157 	 */
1158 	if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[0], NULL, ident))
1159 		return;
1160 	if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[1], NULL, ident))
1161 		return;
1162 
1163 	ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[1]),
1164 				__DEALL(ident));
1165 	ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[0]),
1166 				__DEALL(ident));
1167     }
1168 
1169     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
1170 }
1171 
1172 /*
1173  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
1174  */
1175 void
1176 wakeup_one(const volatile void *ident)
1177 {
1178     /* XXX potentially round-robin the first responding cpu */
1179     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1180 			    PWAKEUP_ONE);
1181 }
1182 
1183 /*
1184  * Wakeup threads tsleep()ing on the specified ident on the current cpu
1185  * only.
1186  */
1187 void
1188 wakeup_mycpu(const volatile void *ident)
1189 {
1190     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1191 			    PWAKEUP_MYCPU);
1192 }
1193 
1194 /*
1195  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
1196  * only.
1197  */
1198 void
1199 wakeup_mycpu_one(const volatile void *ident)
1200 {
1201     /* XXX potentially round-robin the first responding cpu */
1202     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1203 			    PWAKEUP_MYCPU | PWAKEUP_ONE);
1204 }
1205 
1206 /*
1207  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
1208  * only.
1209  */
1210 void
1211 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
1212 {
1213     globaldata_t mygd = mycpu;
1214     if (gd == mycpu) {
1215 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1216 				PWAKEUP_MYCPU);
1217     } else {
1218 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1219 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1220 			PWAKEUP_MYCPU);
1221     }
1222 }
1223 
1224 /*
1225  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1226  * only.
1227  */
1228 void
1229 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1230 {
1231     globaldata_t mygd = mycpu;
1232     if (gd == mygd) {
1233 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1234 				PWAKEUP_MYCPU | PWAKEUP_ONE);
1235     } else {
1236 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1237 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1238 			PWAKEUP_MYCPU | PWAKEUP_ONE);
1239     }
1240 }
1241 
1242 /*
1243  * Wakeup all threads waiting on the specified ident that slept using
1244  * the specified domain, on all cpus.
1245  */
1246 void
1247 wakeup_domain(const volatile void *ident, int domain)
1248 {
1249     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1250 }
1251 
1252 /*
1253  * Wakeup one thread waiting on the specified ident that slept using
1254  * the specified  domain, on any cpu.
1255  */
1256 void
1257 wakeup_domain_one(const volatile void *ident, int domain)
1258 {
1259     /* XXX potentially round-robin the first responding cpu */
1260     _wakeup(__DEALL(ident),
1261 	    PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1262 }
1263 
1264 void
1265 wakeup_start_delayed(void)
1266 {
1267     globaldata_t gd = mycpu;
1268 
1269     crit_enter();
1270     gd->gd_curthread->td_flags |= TDF_DELAYED_WAKEUP;
1271     crit_exit();
1272 }
1273 
1274 void
1275 wakeup_end_delayed(void)
1276 {
1277     globaldata_t gd = mycpu;
1278 
1279     if (gd->gd_curthread->td_flags & TDF_DELAYED_WAKEUP) {
1280 	crit_enter();
1281 	gd->gd_curthread->td_flags &= ~TDF_DELAYED_WAKEUP;
1282 	if (gd->gd_delayed_wakeup[0] || gd->gd_delayed_wakeup[1]) {
1283 	    if (gd->gd_delayed_wakeup[0]) {
1284 		    wakeup(gd->gd_delayed_wakeup[0]);
1285 		    gd->gd_delayed_wakeup[0] = NULL;
1286 	    }
1287 	    if (gd->gd_delayed_wakeup[1]) {
1288 		    wakeup(gd->gd_delayed_wakeup[1]);
1289 		    gd->gd_delayed_wakeup[1] = NULL;
1290 	    }
1291 	}
1292 	crit_exit();
1293     }
1294 }
1295 
1296 /*
1297  * setrunnable()
1298  *
1299  * Make a process runnable.  lp->lwp_token must be held on call and this
1300  * function must be called from the cpu owning lp.
1301  *
1302  * This only has an effect if we are in LSSTOP or LSSLEEP.
1303  */
1304 void
1305 setrunnable(struct lwp *lp)
1306 {
1307 	thread_t td = lp->lwp_thread;
1308 
1309 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1310 	KKASSERT(td->td_gd == mycpu);
1311 	crit_enter();
1312 	if (lp->lwp_stat == LSSTOP)
1313 		lp->lwp_stat = LSSLEEP;
1314 	if (lp->lwp_stat == LSSLEEP) {
1315 		_tsleep_remove(td);
1316 		lwkt_schedule(td);
1317 	} else if (td->td_flags & TDF_SINTR) {
1318 		lwkt_schedule(td);
1319 	}
1320 	crit_exit();
1321 }
1322 
1323 /*
1324  * The process is stopped due to some condition, usually because p_stat is
1325  * set to SSTOP, but also possibly due to being traced.
1326  *
1327  * Caller must hold p->p_token
1328  *
1329  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
1330  * because the parent may check the child's status before the child actually
1331  * gets to this routine.
1332  *
1333  * This routine is called with the current lwp only, typically just
1334  * before returning to userland if the process state is detected as
1335  * possibly being in a stopped state.
1336  */
1337 void
1338 tstop(void)
1339 {
1340 	struct lwp *lp = curthread->td_lwp;
1341 	struct proc *p = lp->lwp_proc;
1342 	struct proc *q;
1343 
1344 	lwkt_gettoken(&lp->lwp_token);
1345 	crit_enter();
1346 
1347 	/*
1348 	 * If LWP_MP_WSTOP is set, we were sleeping
1349 	 * while our process was stopped.  At this point
1350 	 * we were already counted as stopped.
1351 	 */
1352 	if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1353 		/*
1354 		 * If we're the last thread to stop, signal
1355 		 * our parent.
1356 		 */
1357 		p->p_nstopped++;
1358 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1359 		wakeup(&p->p_nstopped);
1360 		if (p->p_nstopped == p->p_nthreads) {
1361 			/*
1362 			 * Token required to interlock kern_wait()
1363 			 */
1364 			q = p->p_pptr;
1365 			PHOLD(q);
1366 			lwkt_gettoken(&q->p_token);
1367 			p->p_flags &= ~P_WAITED;
1368 			wakeup(p->p_pptr);
1369 			if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1370 				ksignal(q, SIGCHLD);
1371 			lwkt_reltoken(&q->p_token);
1372 			PRELE(q);
1373 		}
1374 	}
1375 
1376 	/*
1377 	 * Wait here while in a stopped state, interlocked with lwp_token.
1378 	 * We must break-out if the whole process is trying to exit.
1379 	 */
1380 	while (STOPLWP(p, lp)) {
1381 		lp->lwp_stat = LSSTOP;
1382 		tsleep(p, 0, "stop", 0);
1383 	}
1384 	p->p_nstopped--;
1385 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1386 	crit_exit();
1387 	lwkt_reltoken(&lp->lwp_token);
1388 }
1389 
1390 /*
1391  * Compute a tenex style load average of a quantity on
1392  * 1, 5 and 15 minute intervals.  This is a pcpu callout.
1393  *
1394  * We segment the lwp scan on a pcpu basis.  This does NOT
1395  * mean the associated lwps are on this cpu, it is done
1396  * just to break the work up.
1397  *
1398  * The callout on cpu0 rolls up the stats from the other
1399  * cpus.
1400  */
1401 static int loadav_count_runnable(struct lwp *p, void *data);
1402 
1403 static void
1404 loadav(void *arg)
1405 {
1406 	globaldata_t gd = mycpu;
1407 	struct loadavg *avg;
1408 	int i, nrun;
1409 
1410 	nrun = 0;
1411 	alllwp_scan(loadav_count_runnable, &nrun, 1);
1412 	gd->gd_loadav_nrunnable = nrun;
1413 	if (gd->gd_cpuid == 0) {
1414 		avg = &averunnable;
1415 		nrun = 0;
1416 		for (i = 0; i < ncpus; ++i)
1417 			nrun += globaldata_find(i)->gd_loadav_nrunnable;
1418 		for (i = 0; i < 3; i++) {
1419 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1420 			    (long)nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1421 		}
1422 	}
1423 
1424 	/*
1425 	 * Schedule the next update to occur after 5 seconds, but add a
1426 	 * random variation to avoid synchronisation with processes that
1427 	 * run at regular intervals.
1428 	 */
1429 	callout_reset(&gd->gd_loadav_callout,
1430 		      hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1431 		      loadav, NULL);
1432 }
1433 
1434 static int
1435 loadav_count_runnable(struct lwp *lp, void *data)
1436 {
1437 	int *nrunp = data;
1438 	thread_t td;
1439 
1440 	switch (lp->lwp_stat) {
1441 	case LSRUN:
1442 		if ((td = lp->lwp_thread) == NULL)
1443 			break;
1444 		if (td->td_flags & TDF_BLOCKED)
1445 			break;
1446 		++*nrunp;
1447 		break;
1448 	default:
1449 		break;
1450 	}
1451 	lwkt_yield();
1452 	return(0);
1453 }
1454 
1455 /*
1456  * Regular data collection
1457  */
1458 static uint64_t
1459 collect_load_callback(int n)
1460 {
1461 	int fscale = averunnable.fscale;
1462 
1463 	return ((averunnable.ldavg[0] * 100 + (fscale >> 1)) / fscale);
1464 }
1465 
1466 static void
1467 sched_setup(void *dummy __unused)
1468 {
1469 	globaldata_t save_gd = mycpu;
1470 	globaldata_t gd;
1471 	int n;
1472 
1473 	kcollect_register(KCOLLECT_LOAD, "load", collect_load_callback,
1474 			  KCOLLECT_SCALE(KCOLLECT_LOAD_FORMAT, 0));
1475 
1476 	/*
1477 	 * Kick off timeout driven events by calling first time.  We
1478 	 * split the work across available cpus to help scale it,
1479 	 * it can eat a lot of cpu when there are a lot of processes
1480 	 * on the system.
1481 	 */
1482 	for (n = 0; n < ncpus; ++n) {
1483 		gd = globaldata_find(n);
1484 		lwkt_setcpu_self(gd);
1485 		callout_init_mp(&gd->gd_loadav_callout);
1486 		callout_init_mp(&gd->gd_schedcpu_callout);
1487 		schedcpu(NULL);
1488 		loadav(NULL);
1489 	}
1490 	lwkt_setcpu_self(save_gd);
1491 }
1492 
1493 /*
1494  * Extremely early initialization, dummy-up the tables so we don't have
1495  * to conditionalize for NULL in _wakeup() and tsleep_interlock().  Even
1496  * though the system isn't blocking this early, these functions still
1497  * try to access the hash table.
1498  *
1499  * This setup will be overridden once sched_dyninit() -> sleep_gdinit()
1500  * is called.
1501  */
1502 void
1503 sleep_early_gdinit(globaldata_t gd)
1504 {
1505 	static struct tslpque	dummy_slpque;
1506 	static cpumask_t dummy_cpumasks;
1507 
1508 	slpque_tablesize = 1;
1509 	gd->gd_tsleep_hash = &dummy_slpque;
1510 	slpque_cpumasks = &dummy_cpumasks;
1511 	TAILQ_INIT(&dummy_slpque.queue);
1512 }
1513 
1514 /*
1515  * PCPU initialization.  Called after KMALLOC is operational, by
1516  * sched_dyninit() for cpu 0, and by mi_gdinit() for other cpus later.
1517  *
1518  * WARNING! The pcpu hash table is smaller than the global cpumask
1519  *	    hash table, which can save us a lot of memory when maxproc
1520  *	    is set high.
1521  */
1522 void
1523 sleep_gdinit(globaldata_t gd)
1524 {
1525 	struct thread *td;
1526 	size_t hash_size;
1527 	uint32_t n;
1528 	uint32_t i;
1529 
1530 	/*
1531 	 * This shouldn't happen, that is there shouldn't be any threads
1532 	 * waiting on the dummy tsleep queue this early in the boot.
1533 	 */
1534 	if (gd->gd_cpuid == 0) {
1535 		struct tslpque *qp = &gd->gd_tsleep_hash[0];
1536 		TAILQ_FOREACH(td, &qp->queue, td_sleepq) {
1537 			kprintf("SLEEP_GDINIT SWITCH %s\n", td->td_comm);
1538 		}
1539 	}
1540 
1541 	/*
1542 	 * Note that we have to allocate one extra slot because we are
1543 	 * shifting a modulo value.  TCHASHSHIFT(slpque_tablesize - 1) can
1544 	 * return the same value as TCHASHSHIFT(slpque_tablesize).
1545 	 */
1546 	n = TCHASHSHIFT(slpque_tablesize) + 1;
1547 
1548 	hash_size = sizeof(struct tslpque) * n;
1549 	gd->gd_tsleep_hash = (void *)kmem_alloc3(&kernel_map, hash_size,
1550 						 VM_SUBSYS_GD,
1551 						 KM_CPU(gd->gd_cpuid));
1552 	memset(gd->gd_tsleep_hash, 0, hash_size);
1553 	for (i = 0; i < n; ++i)
1554 		TAILQ_INIT(&gd->gd_tsleep_hash[i].queue);
1555 }
1556 
1557 /*
1558  * Dynamic initialization after the memory system is operational.
1559  */
1560 static void
1561 sched_dyninit(void *dummy __unused)
1562 {
1563 	int tblsize;
1564 	int tblsize2;
1565 	int n;
1566 
1567 	/*
1568 	 * Calculate table size for slpque hash.  We want a prime number
1569 	 * large enough to avoid overloading slpque_cpumasks when the
1570 	 * system has a large number of sleeping processes, which will
1571 	 * spam IPIs on wakeup().
1572 	 *
1573 	 * While it is true this is really a per-lwp factor, generally
1574 	 * speaking the maxproc limit is a good metric to go by.
1575 	 */
1576 	for (tblsize = maxproc | 1; ; tblsize += 2) {
1577 		if (tblsize % 3 == 0)
1578 			continue;
1579 		if (tblsize % 5 == 0)
1580 			continue;
1581 		tblsize2 = (tblsize / 2) | 1;
1582 		for (n = 7; n < tblsize2; n += 2) {
1583 			if (tblsize % n == 0)
1584 				break;
1585 		}
1586 		if (n == tblsize2)
1587 			break;
1588 	}
1589 
1590 	/*
1591 	 * PIDs are currently limited to 6 digits.  Cap the table size
1592 	 * at double this.
1593 	 */
1594 	if (tblsize > 2000003)
1595 		tblsize = 2000003;
1596 
1597 	slpque_tablesize = tblsize;
1598 	slpque_cpumasks = kmalloc(sizeof(*slpque_cpumasks) * slpque_tablesize,
1599 				  M_TSLEEP, M_WAITOK | M_ZERO);
1600 	sleep_gdinit(mycpu);
1601 }
1602