xref: /dragonfly/sys/kern/kern_synch.c (revision d37f73b6)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vmmeter.h>
47 #include <sys/sysctl.h>
48 #include <sys/lock.h>
49 #include <sys/uio.h>
50 #ifdef KTRACE
51 #include <sys/ktrace.h>
52 #endif
53 #include <sys/xwait.h>
54 #include <sys/ktr.h>
55 #include <sys/serialize.h>
56 
57 #include <sys/signal2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <sys/mutex2.h>
61 
62 #include <machine/cpu.h>
63 #include <machine/smp.h>
64 
65 TAILQ_HEAD(tslpque, thread);
66 
67 static void sched_setup (void *dummy);
68 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
69 
70 int	hogticks;
71 int	lbolt;
72 void	*lbolt_syncer;
73 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
74 int	ncpus;
75 int	ncpus2, ncpus2_shift, ncpus2_mask;	/* note: mask not cpumask_t */
76 int	ncpus_fit, ncpus_fit_mask;		/* note: mask not cpumask_t */
77 int	safepri;
78 int	tsleep_now_works;
79 int	tsleep_crypto_dump = 0;
80 
81 static struct callout loadav_callout;
82 static struct callout schedcpu_callout;
83 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
84 
85 #define __DEALL(ident)	__DEQUALIFY(void *, ident)
86 
87 #if !defined(KTR_TSLEEP)
88 #define KTR_TSLEEP	KTR_ALL
89 #endif
90 KTR_INFO_MASTER(tsleep);
91 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
92 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
93 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
94 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
95 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", const volatile void *ident);
96 
97 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
98 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
99 
100 struct loadavg averunnable =
101 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
102 /*
103  * Constants for averages over 1, 5, and 15 minutes
104  * when sampling at 5 second intervals.
105  */
106 static fixpt_t cexp[3] = {
107 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
108 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
109 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
110 };
111 
112 static void	endtsleep (void *);
113 static void	loadav (void *arg);
114 static void	schedcpu (void *arg);
115 
116 /*
117  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
118  * Note that 'tick' is in microseconds per tick.
119  */
120 static int
121 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
122 {
123 	int error, new_val;
124 
125 	new_val = sched_quantum * ustick;
126 	error = sysctl_handle_int(oidp, &new_val, 0, req);
127         if (error != 0 || req->newptr == NULL)
128 		return (error);
129 	if (new_val < ustick)
130 		return (EINVAL);
131 	sched_quantum = new_val / ustick;
132 	hogticks = 2 * sched_quantum;
133 	return (0);
134 }
135 
136 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
137 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
138 
139 static int pctcpu_decay = 10;
140 SYSCTL_INT(_kern, OID_AUTO, pctcpu_decay, CTLFLAG_RW, &pctcpu_decay, 0, "");
141 
142 /*
143  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
144  */
145 int     fscale __unused = FSCALE;	/* exported to systat */
146 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
147 
148 /*
149  * Recompute process priorities, once a second.
150  *
151  * Since the userland schedulers are typically event oriented, if the
152  * estcpu calculation at wakeup() time is not sufficient to make a
153  * process runnable relative to other processes in the system we have
154  * a 1-second recalc to help out.
155  *
156  * This code also allows us to store sysclock_t data in the process structure
157  * without fear of an overrun, since sysclock_t are guarenteed to hold
158  * several seconds worth of count.
159  *
160  * WARNING!  callouts can preempt normal threads.  However, they will not
161  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
162  */
163 static int schedcpu_stats(struct proc *p, void *data __unused);
164 static int schedcpu_resource(struct proc *p, void *data __unused);
165 
166 static void
167 schedcpu(void *arg)
168 {
169 	allproc_scan(schedcpu_stats, NULL);
170 	allproc_scan(schedcpu_resource, NULL);
171 	wakeup((caddr_t)&lbolt);
172 	wakeup(lbolt_syncer);
173 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
174 }
175 
176 /*
177  * General process statistics once a second
178  */
179 static int
180 schedcpu_stats(struct proc *p, void *data __unused)
181 {
182 	struct lwp *lp;
183 
184 	/*
185 	 * Threads may not be completely set up if process in SIDL state.
186 	 */
187 	if (p->p_stat == SIDL)
188 		return(0);
189 
190 	PHOLD(p);
191 	if (lwkt_trytoken(&p->p_token) == FALSE) {
192 		PRELE(p);
193 		return(0);
194 	}
195 
196 	p->p_swtime++;
197 	FOREACH_LWP_IN_PROC(lp, p) {
198 		if (lp->lwp_stat == LSSLEEP) {
199 			++lp->lwp_slptime;
200 			if (lp->lwp_slptime == 1)
201 				p->p_usched->uload_update(lp);
202 		}
203 
204 		/*
205 		 * Only recalculate processes that are active or have slept
206 		 * less then 2 seconds.  The schedulers understand this.
207 		 * Otherwise decay by 50% per second.
208 		 */
209 		if (lp->lwp_slptime <= 1) {
210 			p->p_usched->recalculate(lp);
211 		} else {
212 			int decay;
213 
214 			decay = pctcpu_decay;
215 			cpu_ccfence();
216 			if (decay <= 1)
217 				decay = 1;
218 			if (decay > 100)
219 				decay = 100;
220 			lp->lwp_pctcpu = (lp->lwp_pctcpu * (decay - 1)) / decay;
221 		}
222 	}
223 	lwkt_reltoken(&p->p_token);
224 	lwkt_yield();
225 	PRELE(p);
226 	return(0);
227 }
228 
229 /*
230  * Resource checks.  XXX break out since ksignal/killproc can block,
231  * limiting us to one process killed per second.  There is probably
232  * a better way.
233  */
234 static int
235 schedcpu_resource(struct proc *p, void *data __unused)
236 {
237 	u_int64_t ttime;
238 	struct lwp *lp;
239 
240 	if (p->p_stat == SIDL)
241 		return(0);
242 
243 	PHOLD(p);
244 	if (lwkt_trytoken(&p->p_token) == FALSE) {
245 		PRELE(p);
246 		return(0);
247 	}
248 
249 	if (p->p_stat == SZOMB || p->p_limit == NULL) {
250 		lwkt_reltoken(&p->p_token);
251 		PRELE(p);
252 		return(0);
253 	}
254 
255 	ttime = 0;
256 	FOREACH_LWP_IN_PROC(lp, p) {
257 		/*
258 		 * We may have caught an lp in the middle of being
259 		 * created, lwp_thread can be NULL.
260 		 */
261 		if (lp->lwp_thread) {
262 			ttime += lp->lwp_thread->td_sticks;
263 			ttime += lp->lwp_thread->td_uticks;
264 		}
265 	}
266 
267 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
268 	case PLIMIT_TESTCPU_KILL:
269 		killproc(p, "exceeded maximum CPU limit");
270 		break;
271 	case PLIMIT_TESTCPU_XCPU:
272 		if ((p->p_flags & P_XCPU) == 0) {
273 			p->p_flags |= P_XCPU;
274 			ksignal(p, SIGXCPU);
275 		}
276 		break;
277 	default:
278 		break;
279 	}
280 	lwkt_reltoken(&p->p_token);
281 	lwkt_yield();
282 	PRELE(p);
283 	return(0);
284 }
285 
286 /*
287  * This is only used by ps.  Generate a cpu percentage use over
288  * a period of one second.
289  */
290 void
291 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
292 {
293 	fixpt_t acc;
294 	int remticks;
295 
296 	acc = (cpticks << FSHIFT) / ttlticks;
297 	if (ttlticks >= ESTCPUFREQ) {
298 		lp->lwp_pctcpu = acc;
299 	} else {
300 		remticks = ESTCPUFREQ - ttlticks;
301 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
302 				ESTCPUFREQ;
303 	}
304 }
305 
306 /*
307  * tsleep/wakeup hash table parameters.  Try to find the sweet spot for
308  * like addresses being slept on.
309  */
310 #define TABLESIZE	4001
311 #define LOOKUP(x)	(((u_int)(uintptr_t)(x)) % TABLESIZE)
312 
313 static cpumask_t slpque_cpumasks[TABLESIZE];
314 
315 /*
316  * General scheduler initialization.  We force a reschedule 25 times
317  * a second by default.  Note that cpu0 is initialized in early boot and
318  * cannot make any high level calls.
319  *
320  * Each cpu has its own sleep queue.
321  */
322 void
323 sleep_gdinit(globaldata_t gd)
324 {
325 	static struct tslpque slpque_cpu0[TABLESIZE];
326 	int i;
327 
328 	if (gd->gd_cpuid == 0) {
329 		sched_quantum = (hz + 24) / 25;
330 		hogticks = 2 * sched_quantum;
331 
332 		gd->gd_tsleep_hash = slpque_cpu0;
333 	} else {
334 		gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
335 					    M_TSLEEP, M_WAITOK | M_ZERO);
336 	}
337 	for (i = 0; i < TABLESIZE; ++i)
338 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
339 }
340 
341 /*
342  * This is a dandy function that allows us to interlock tsleep/wakeup
343  * operations with unspecified upper level locks, such as lockmgr locks,
344  * simply by holding a critical section.  The sequence is:
345  *
346  *	(acquire upper level lock)
347  *	tsleep_interlock(blah)
348  *	(release upper level lock)
349  *	tsleep(blah, ...)
350  *
351  * Basically this functions queues us on the tsleep queue without actually
352  * descheduling us.  When tsleep() is later called with PINTERLOCK it
353  * assumes the thread was already queued, otherwise it queues it there.
354  *
355  * Thus it is possible to receive the wakeup prior to going to sleep and
356  * the race conditions are covered.
357  */
358 static __inline void
359 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
360 {
361 	thread_t td = gd->gd_curthread;
362 	int id;
363 
364 	crit_enter_quick(td);
365 	if (td->td_flags & TDF_TSLEEPQ) {
366 		id = LOOKUP(td->td_wchan);
367 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
368 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL) {
369 			ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[id],
370 					       gd->gd_cpuid);
371 		}
372 	} else {
373 		td->td_flags |= TDF_TSLEEPQ;
374 	}
375 	id = LOOKUP(ident);
376 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
377 	ATOMIC_CPUMASK_ORBIT(slpque_cpumasks[id], gd->gd_cpuid);
378 	td->td_wchan = ident;
379 	td->td_wdomain = flags & PDOMAIN_MASK;
380 	crit_exit_quick(td);
381 }
382 
383 void
384 tsleep_interlock(const volatile void *ident, int flags)
385 {
386 	_tsleep_interlock(mycpu, ident, flags);
387 }
388 
389 /*
390  * Remove thread from sleepq.  Must be called with a critical section held.
391  * The thread must not be migrating.
392  */
393 static __inline void
394 _tsleep_remove(thread_t td)
395 {
396 	globaldata_t gd = mycpu;
397 	int id;
398 
399 	KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
400 	KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
401 	if (td->td_flags & TDF_TSLEEPQ) {
402 		td->td_flags &= ~TDF_TSLEEPQ;
403 		id = LOOKUP(td->td_wchan);
404 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
405 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL) {
406 			ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[id],
407 					       gd->gd_cpuid);
408 		}
409 		td->td_wchan = NULL;
410 		td->td_wdomain = 0;
411 	}
412 }
413 
414 void
415 tsleep_remove(thread_t td)
416 {
417 	_tsleep_remove(td);
418 }
419 
420 /*
421  * General sleep call.  Suspends the current process until a wakeup is
422  * performed on the specified identifier.  The process will then be made
423  * runnable with the specified priority.  Sleeps at most timo/hz seconds
424  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
425  * before and after sleeping, else signals are not checked.  Returns 0 if
426  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
427  * signal needs to be delivered, ERESTART is returned if the current system
428  * call should be restarted if possible, and EINTR is returned if the system
429  * call should be interrupted by the signal (return EINTR).
430  *
431  * Note that if we are a process, we release_curproc() before messing with
432  * the LWKT scheduler.
433  *
434  * During autoconfiguration or after a panic, a sleep will simply
435  * lower the priority briefly to allow interrupts, then return.
436  *
437  * WARNING!  This code can't block (short of switching away), or bad things
438  *           will happen.  No getting tokens, no blocking locks, etc.
439  */
440 int
441 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
442 {
443 	struct thread *td = curthread;
444 	struct lwp *lp = td->td_lwp;
445 	struct proc *p = td->td_proc;		/* may be NULL */
446 	globaldata_t gd;
447 	int sig;
448 	int catch;
449 	int error;
450 	int oldpri;
451 	struct callout thandle;
452 
453 	/*
454 	 * Currently a severe hack.  Make sure any delayed wakeups
455 	 * are flushed before we sleep or we might deadlock on whatever
456 	 * event we are sleeping on.
457 	 */
458 	if (td->td_flags & TDF_DELAYED_WAKEUP)
459 		wakeup_end_delayed();
460 
461 	/*
462 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
463 	 * even in stable.  Just scrap it for now.
464 	 */
465 	if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
466 		/*
467 		 * After a panic, or before we actually have an operational
468 		 * softclock, just give interrupts a chance, then just return;
469 		 *
470 		 * don't run any other procs or panic below,
471 		 * in case this is the idle process and already asleep.
472 		 */
473 		splz();
474 		oldpri = td->td_pri;
475 		lwkt_setpri_self(safepri);
476 		lwkt_switch();
477 		lwkt_setpri_self(oldpri);
478 		return (0);
479 	}
480 	logtsleep2(tsleep_beg, ident);
481 	gd = td->td_gd;
482 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
483 	td->td_wakefromcpu = -1;		/* overwritten by _wakeup */
484 
485 	/*
486 	 * NOTE: all of this occurs on the current cpu, including any
487 	 * callout-based wakeups, so a critical section is a sufficient
488 	 * interlock.
489 	 *
490 	 * The entire sequence through to where we actually sleep must
491 	 * run without breaking the critical section.
492 	 */
493 	catch = flags & PCATCH;
494 	error = 0;
495 	sig = 0;
496 
497 	crit_enter_quick(td);
498 
499 	KASSERT(ident != NULL, ("tsleep: no ident"));
500 	KASSERT(lp == NULL ||
501 		lp->lwp_stat == LSRUN ||	/* Obvious */
502 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
503 		("tsleep %p %s %d",
504 			ident, wmesg, lp->lwp_stat));
505 
506 	/*
507 	 * We interlock the sleep queue if the caller has not already done
508 	 * it for us.  This must be done before we potentially acquire any
509 	 * tokens or we can loose the wakeup.
510 	 */
511 	if ((flags & PINTERLOCKED) == 0) {
512 		_tsleep_interlock(gd, ident, flags);
513 	}
514 
515 	/*
516 	 * Setup for the current process (if this is a process).  We must
517 	 * interlock with lwp_token to avoid remote wakeup races via
518 	 * setrunnable()
519 	 */
520 	if (lp) {
521 		lwkt_gettoken(&lp->lwp_token);
522 		if (catch) {
523 			/*
524 			 * Early termination if PCATCH was set and a
525 			 * signal is pending, interlocked with the
526 			 * critical section.
527 			 *
528 			 * Early termination only occurs when tsleep() is
529 			 * entered while in a normal LSRUN state.
530 			 */
531 			if ((sig = CURSIG(lp)) != 0)
532 				goto resume;
533 
534 			/*
535 			 * Causes ksignal to wake us up if a signal is
536 			 * received (interlocked with p->p_token).
537 			 */
538 			lp->lwp_flags |= LWP_SINTR;
539 		}
540 	} else {
541 		KKASSERT(p == NULL);
542 	}
543 
544 	/*
545 	 * Make sure the current process has been untangled from
546 	 * the userland scheduler and initialize slptime to start
547 	 * counting.
548 	 *
549 	 * NOTE: td->td_wakefromcpu is pre-set by the release function
550 	 *	 for the dfly scheduler, and then adjusted by _wakeup()
551 	 */
552 	if (lp) {
553 		p->p_usched->release_curproc(lp);
554 		lp->lwp_slptime = 0;
555 	}
556 
557 	/*
558 	 * If the interlocked flag is set but our cpu bit in the slpqueue
559 	 * is no longer set, then a wakeup was processed inbetween the
560 	 * tsleep_interlock() (ours or the callers), and here.  This can
561 	 * occur under numerous circumstances including when we release the
562 	 * current process.
563 	 *
564 	 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
565 	 * to process incoming IPIs, thus draining incoming wakeups.
566 	 */
567 	if ((td->td_flags & TDF_TSLEEPQ) == 0) {
568 		logtsleep2(ilockfail, ident);
569 		goto resume;
570 	}
571 
572 	/*
573 	 * scheduling is blocked while in a critical section.  Coincide
574 	 * the descheduled-by-tsleep flag with the descheduling of the
575 	 * lwkt.
576 	 *
577 	 * The timer callout is localized on our cpu and interlocked by
578 	 * our critical section.
579 	 */
580 	lwkt_deschedule_self(td);
581 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
582 	td->td_wmesg = wmesg;
583 
584 	/*
585 	 * Setup the timeout, if any.  The timeout is only operable while
586 	 * the thread is flagged descheduled.
587 	 */
588 	KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
589 	if (timo) {
590 		callout_init_mp(&thandle);
591 		callout_reset(&thandle, timo, endtsleep, td);
592 	}
593 
594 	/*
595 	 * Beddy bye bye.
596 	 */
597 	if (lp) {
598 		/*
599 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
600 		 */
601 		KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
602 
603 		/*
604 		 * tstop() sets LSSTOP, so don't fiddle with that.
605 		 */
606 		if (lp->lwp_stat != LSSTOP)
607 			lp->lwp_stat = LSSLEEP;
608 		lp->lwp_ru.ru_nvcsw++;
609 		p->p_usched->uload_update(lp);
610 		lwkt_switch();
611 
612 		/*
613 		 * And when we are woken up, put us back in LSRUN.  If we
614 		 * slept for over a second, recalculate our estcpu.
615 		 */
616 		lp->lwp_stat = LSRUN;
617 		if (lp->lwp_slptime) {
618 			p->p_usched->uload_update(lp);
619 			p->p_usched->recalculate(lp);
620 		}
621 		lp->lwp_slptime = 0;
622 	} else {
623 		lwkt_switch();
624 	}
625 
626 	/*
627 	 * Make sure we haven't switched cpus while we were asleep.  It's
628 	 * not supposed to happen.  Cleanup our temporary flags.
629 	 */
630 	KKASSERT(gd == td->td_gd);
631 
632 	/*
633 	 * Cleanup the timeout.  If the timeout has already occured thandle
634 	 * has already been stopped, otherwise stop thandle.  If the timeout
635 	 * is running (the callout thread must be blocked trying to get
636 	 * lwp_token) then wait for us to get scheduled.
637 	 */
638 	if (timo) {
639 		while (td->td_flags & TDF_TIMEOUT_RUNNING) {
640 			lwkt_deschedule_self(td);
641 			td->td_wmesg = "tsrace";
642 			lwkt_switch();
643 			kprintf("td %p %s: timeout race\n", td, td->td_comm);
644 		}
645 		if (td->td_flags & TDF_TIMEOUT) {
646 			td->td_flags &= ~TDF_TIMEOUT;
647 			error = EWOULDBLOCK;
648 		} else {
649 			/* does not block when on same cpu */
650 			callout_stop(&thandle);
651 		}
652 	}
653 	td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
654 
655 	/*
656 	 * Make sure we have been removed from the sleepq.  In most
657 	 * cases this will have been done for us already but it is
658 	 * possible for a scheduling IPI to be in-flight from a
659 	 * previous tsleep/tsleep_interlock() or due to a straight-out
660 	 * call to lwkt_schedule() (in the case of an interrupt thread),
661 	 * causing a spurious wakeup.
662 	 */
663 	_tsleep_remove(td);
664 	td->td_wmesg = NULL;
665 
666 	/*
667 	 * Figure out the correct error return.  If interrupted by a
668 	 * signal we want to return EINTR or ERESTART.
669 	 */
670 resume:
671 	if (lp) {
672 		if (catch && error == 0) {
673 			if (sig != 0 || (sig = CURSIG(lp))) {
674 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
675 					error = EINTR;
676 				else
677 					error = ERESTART;
678 			}
679 		}
680 		lp->lwp_flags &= ~LWP_SINTR;
681 		lwkt_reltoken(&lp->lwp_token);
682 	}
683 	logtsleep1(tsleep_end);
684 	crit_exit_quick(td);
685 	return (error);
686 }
687 
688 /*
689  * Interlocked spinlock sleep.  An exclusively held spinlock must
690  * be passed to ssleep().  The function will atomically release the
691  * spinlock and tsleep on the ident, then reacquire the spinlock and
692  * return.
693  *
694  * This routine is fairly important along the critical path, so optimize it
695  * heavily.
696  */
697 int
698 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
699        const char *wmesg, int timo)
700 {
701 	globaldata_t gd = mycpu;
702 	int error;
703 
704 	_tsleep_interlock(gd, ident, flags);
705 	spin_unlock_quick(gd, spin);
706 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
707 	_spin_lock_quick(gd, spin, wmesg);
708 
709 	return (error);
710 }
711 
712 int
713 lksleep(const volatile void *ident, struct lock *lock, int flags,
714 	const char *wmesg, int timo)
715 {
716 	globaldata_t gd = mycpu;
717 	int error;
718 
719 	_tsleep_interlock(gd, ident, flags);
720 	lockmgr(lock, LK_RELEASE);
721 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
722 	lockmgr(lock, LK_EXCLUSIVE);
723 
724 	return (error);
725 }
726 
727 /*
728  * Interlocked mutex sleep.  An exclusively held mutex must be passed
729  * to mtxsleep().  The function will atomically release the mutex
730  * and tsleep on the ident, then reacquire the mutex and return.
731  */
732 int
733 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
734 	 const char *wmesg, int timo)
735 {
736 	globaldata_t gd = mycpu;
737 	int error;
738 
739 	_tsleep_interlock(gd, ident, flags);
740 	mtx_unlock(mtx);
741 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
742 	mtx_lock_ex_quick(mtx, wmesg);
743 
744 	return (error);
745 }
746 
747 /*
748  * Interlocked serializer sleep.  An exclusively held serializer must
749  * be passed to zsleep().  The function will atomically release
750  * the serializer and tsleep on the ident, then reacquire the serializer
751  * and return.
752  */
753 int
754 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
755        const char *wmesg, int timo)
756 {
757 	globaldata_t gd = mycpu;
758 	int ret;
759 
760 	ASSERT_SERIALIZED(slz);
761 
762 	_tsleep_interlock(gd, ident, flags);
763 	lwkt_serialize_exit(slz);
764 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
765 	lwkt_serialize_enter(slz);
766 
767 	return ret;
768 }
769 
770 /*
771  * Directly block on the LWKT thread by descheduling it.  This
772  * is much faster then tsleep(), but the only legal way to wake
773  * us up is to directly schedule the thread.
774  *
775  * Setting TDF_SINTR will cause new signals to directly schedule us.
776  *
777  * This routine must be called while in a critical section.
778  */
779 int
780 lwkt_sleep(const char *wmesg, int flags)
781 {
782 	thread_t td = curthread;
783 	int sig;
784 
785 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
786 		td->td_flags |= TDF_BLOCKED;
787 		td->td_wmesg = wmesg;
788 		lwkt_deschedule_self(td);
789 		lwkt_switch();
790 		td->td_wmesg = NULL;
791 		td->td_flags &= ~TDF_BLOCKED;
792 		return(0);
793 	}
794 	if ((sig = CURSIG(td->td_lwp)) != 0) {
795 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
796 			return(EINTR);
797 		else
798 			return(ERESTART);
799 
800 	}
801 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
802 	td->td_wmesg = wmesg;
803 	lwkt_deschedule_self(td);
804 	lwkt_switch();
805 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
806 	td->td_wmesg = NULL;
807 	return(0);
808 }
809 
810 /*
811  * Implement the timeout for tsleep.
812  *
813  * This type of callout timeout is scheduled on the same cpu the process
814  * is sleeping on.  Also, at the moment, the MP lock is held.
815  */
816 static void
817 endtsleep(void *arg)
818 {
819 	thread_t td = arg;
820 	struct lwp *lp;
821 
822 	/*
823 	 * We are going to have to get the lwp_token, which means we might
824 	 * block.  This can race a tsleep getting woken up by other means
825 	 * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
826 	 * processing to complete (sorry tsleep!).
827 	 *
828 	 * We can safely set td_flags because td MUST be on the same cpu
829 	 * as we are.
830 	 */
831 	KKASSERT(td->td_gd == mycpu);
832 	crit_enter();
833 	td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
834 
835 	/*
836 	 * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
837 	 * from exiting the tsleep on us.  The flag is interlocked by virtue
838 	 * of lp being on the same cpu as we are.
839 	 */
840 	if ((lp = td->td_lwp) != NULL)
841 		lwkt_gettoken(&lp->lwp_token);
842 
843 	KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
844 
845 	if (lp) {
846 		/*
847 		 * callout timer should never be set in tstop() because
848 		 * it passes a timeout of 0.
849 		 */
850 		KKASSERT(lp->lwp_stat != LSSTOP);
851 		setrunnable(lp);
852 		lwkt_reltoken(&lp->lwp_token);
853 	} else {
854 		_tsleep_remove(td);
855 		lwkt_schedule(td);
856 	}
857 	KKASSERT(td->td_gd == mycpu);
858 	td->td_flags &= ~TDF_TIMEOUT_RUNNING;
859 	crit_exit();
860 }
861 
862 /*
863  * Make all processes sleeping on the specified identifier runnable.
864  * count may be zero or one only.
865  *
866  * The domain encodes the sleep/wakeup domain, flags, plus the originating
867  * cpu.
868  *
869  * This call may run without the MP lock held.  We can only manipulate thread
870  * state on the cpu owning the thread.  We CANNOT manipulate process state
871  * at all.
872  *
873  * _wakeup() can be passed to an IPI so we can't use (const volatile
874  * void *ident).
875  */
876 static void
877 _wakeup(void *ident, int domain)
878 {
879 	struct tslpque *qp;
880 	struct thread *td;
881 	struct thread *ntd;
882 	globaldata_t gd;
883 	cpumask_t mask;
884 	int id;
885 
886 	crit_enter();
887 	logtsleep2(wakeup_beg, ident);
888 	gd = mycpu;
889 	id = LOOKUP(ident);
890 	qp = &gd->gd_tsleep_hash[id];
891 restart:
892 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
893 		ntd = TAILQ_NEXT(td, td_sleepq);
894 		if (td->td_wchan == ident &&
895 		    td->td_wdomain == (domain & PDOMAIN_MASK)
896 		) {
897 			KKASSERT(td->td_gd == gd);
898 			_tsleep_remove(td);
899 			td->td_wakefromcpu = PWAKEUP_DECODE(domain);
900 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
901 				lwkt_schedule(td);
902 				if (domain & PWAKEUP_ONE)
903 					goto done;
904 			}
905 			goto restart;
906 		}
907 	}
908 
909 	/*
910 	 * We finished checking the current cpu but there still may be
911 	 * more work to do.  Either wakeup_one was requested and no matching
912 	 * thread was found, or a normal wakeup was requested and we have
913 	 * to continue checking cpus.
914 	 *
915 	 * It should be noted that this scheme is actually less expensive then
916 	 * the old scheme when waking up multiple threads, since we send
917 	 * only one IPI message per target candidate which may then schedule
918 	 * multiple threads.  Before we could have wound up sending an IPI
919 	 * message for each thread on the target cpu (!= current cpu) that
920 	 * needed to be woken up.
921 	 *
922 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
923 	 * should be ok since we are passing idents in the IPI rather then
924 	 * thread pointers.
925 	 */
926 	if ((domain & PWAKEUP_MYCPU) == 0) {
927 		mask = slpque_cpumasks[id];
928 		CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
929 		if (CPUMASK_TESTNZERO(mask)) {
930 			lwkt_send_ipiq2_mask(mask, _wakeup, ident,
931 					     domain | PWAKEUP_MYCPU);
932 		}
933 	}
934 done:
935 	logtsleep1(wakeup_end);
936 	crit_exit();
937 }
938 
939 /*
940  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
941  */
942 void
943 wakeup(const volatile void *ident)
944 {
945     globaldata_t gd = mycpu;
946     thread_t td = gd->gd_curthread;
947 
948     if (td && (td->td_flags & TDF_DELAYED_WAKEUP)) {
949 	/*
950 	 * If we are in a delayed wakeup section, record up to two wakeups in
951 	 * a per-CPU queue and issue them when we block or exit the delayed
952 	 * wakeup section.
953 	 */
954 	if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[0], NULL, ident))
955 		return;
956 	if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[1], NULL, ident))
957 		return;
958 
959 	ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[1]),
960 				__DEALL(ident));
961 	ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[0]),
962 				__DEALL(ident));
963     }
964 
965     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
966 }
967 
968 /*
969  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
970  */
971 void
972 wakeup_one(const volatile void *ident)
973 {
974     /* XXX potentially round-robin the first responding cpu */
975     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
976 			    PWAKEUP_ONE);
977 }
978 
979 /*
980  * Wakeup threads tsleep()ing on the specified ident on the current cpu
981  * only.
982  */
983 void
984 wakeup_mycpu(const volatile void *ident)
985 {
986     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
987 			    PWAKEUP_MYCPU);
988 }
989 
990 /*
991  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
992  * only.
993  */
994 void
995 wakeup_mycpu_one(const volatile void *ident)
996 {
997     /* XXX potentially round-robin the first responding cpu */
998     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
999 			    PWAKEUP_MYCPU | PWAKEUP_ONE);
1000 }
1001 
1002 /*
1003  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
1004  * only.
1005  */
1006 void
1007 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
1008 {
1009     globaldata_t mygd = mycpu;
1010     if (gd == mycpu) {
1011 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1012 				PWAKEUP_MYCPU);
1013     } else {
1014 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1015 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1016 			PWAKEUP_MYCPU);
1017     }
1018 }
1019 
1020 /*
1021  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1022  * only.
1023  */
1024 void
1025 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1026 {
1027     globaldata_t mygd = mycpu;
1028     if (gd == mygd) {
1029 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1030 				PWAKEUP_MYCPU | PWAKEUP_ONE);
1031     } else {
1032 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1033 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1034 			PWAKEUP_MYCPU | PWAKEUP_ONE);
1035     }
1036 }
1037 
1038 /*
1039  * Wakeup all threads waiting on the specified ident that slept using
1040  * the specified domain, on all cpus.
1041  */
1042 void
1043 wakeup_domain(const volatile void *ident, int domain)
1044 {
1045     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1046 }
1047 
1048 /*
1049  * Wakeup one thread waiting on the specified ident that slept using
1050  * the specified  domain, on any cpu.
1051  */
1052 void
1053 wakeup_domain_one(const volatile void *ident, int domain)
1054 {
1055     /* XXX potentially round-robin the first responding cpu */
1056     _wakeup(__DEALL(ident),
1057 	    PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1058 }
1059 
1060 void
1061 wakeup_start_delayed(void)
1062 {
1063     globaldata_t gd = mycpu;
1064 
1065     crit_enter();
1066     gd->gd_curthread->td_flags |= TDF_DELAYED_WAKEUP;
1067     crit_exit();
1068 }
1069 
1070 void
1071 wakeup_end_delayed(void)
1072 {
1073     globaldata_t gd = mycpu;
1074 
1075     if (gd->gd_curthread->td_flags & TDF_DELAYED_WAKEUP) {
1076 	crit_enter();
1077 	gd->gd_curthread->td_flags &= ~TDF_DELAYED_WAKEUP;
1078 	if (gd->gd_delayed_wakeup[0] || gd->gd_delayed_wakeup[1]) {
1079 	    if (gd->gd_delayed_wakeup[0]) {
1080 		    wakeup(gd->gd_delayed_wakeup[0]);
1081 		    gd->gd_delayed_wakeup[0] = NULL;
1082 	    }
1083 	    if (gd->gd_delayed_wakeup[1]) {
1084 		    wakeup(gd->gd_delayed_wakeup[1]);
1085 		    gd->gd_delayed_wakeup[1] = NULL;
1086 	    }
1087 	}
1088 	crit_exit();
1089     }
1090 }
1091 
1092 /*
1093  * setrunnable()
1094  *
1095  * Make a process runnable.  lp->lwp_token must be held on call and this
1096  * function must be called from the cpu owning lp.
1097  *
1098  * This only has an effect if we are in LSSTOP or LSSLEEP.
1099  */
1100 void
1101 setrunnable(struct lwp *lp)
1102 {
1103 	thread_t td = lp->lwp_thread;
1104 
1105 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1106 	KKASSERT(td->td_gd == mycpu);
1107 	crit_enter();
1108 	if (lp->lwp_stat == LSSTOP)
1109 		lp->lwp_stat = LSSLEEP;
1110 	if (lp->lwp_stat == LSSLEEP) {
1111 		_tsleep_remove(td);
1112 		lwkt_schedule(td);
1113 	} else if (td->td_flags & TDF_SINTR) {
1114 		lwkt_schedule(td);
1115 	}
1116 	crit_exit();
1117 }
1118 
1119 /*
1120  * The process is stopped due to some condition, usually because p_stat is
1121  * set to SSTOP, but also possibly due to being traced.
1122  *
1123  * Caller must hold p->p_token
1124  *
1125  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
1126  * because the parent may check the child's status before the child actually
1127  * gets to this routine.
1128  *
1129  * This routine is called with the current lwp only, typically just
1130  * before returning to userland if the process state is detected as
1131  * possibly being in a stopped state.
1132  */
1133 void
1134 tstop(void)
1135 {
1136 	struct lwp *lp = curthread->td_lwp;
1137 	struct proc *p = lp->lwp_proc;
1138 	struct proc *q;
1139 
1140 	lwkt_gettoken(&lp->lwp_token);
1141 	crit_enter();
1142 
1143 	/*
1144 	 * If LWP_MP_WSTOP is set, we were sleeping
1145 	 * while our process was stopped.  At this point
1146 	 * we were already counted as stopped.
1147 	 */
1148 	if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1149 		/*
1150 		 * If we're the last thread to stop, signal
1151 		 * our parent.
1152 		 */
1153 		p->p_nstopped++;
1154 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1155 		wakeup(&p->p_nstopped);
1156 		if (p->p_nstopped == p->p_nthreads) {
1157 			/*
1158 			 * Token required to interlock kern_wait()
1159 			 */
1160 			q = p->p_pptr;
1161 			PHOLD(q);
1162 			lwkt_gettoken(&q->p_token);
1163 			p->p_flags &= ~P_WAITED;
1164 			wakeup(p->p_pptr);
1165 			if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1166 				ksignal(q, SIGCHLD);
1167 			lwkt_reltoken(&q->p_token);
1168 			PRELE(q);
1169 		}
1170 	}
1171 	while (p->p_stat == SSTOP) {
1172 		lp->lwp_stat = LSSTOP;
1173 		tsleep(p, 0, "stop", 0);
1174 	}
1175 	p->p_nstopped--;
1176 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1177 	crit_exit();
1178 	lwkt_reltoken(&lp->lwp_token);
1179 }
1180 
1181 /*
1182  * Compute a tenex style load average of a quantity on
1183  * 1, 5 and 15 minute intervals.
1184  */
1185 static int loadav_count_runnable(struct lwp *p, void *data);
1186 
1187 static void
1188 loadav(void *arg)
1189 {
1190 	struct loadavg *avg;
1191 	int i, nrun;
1192 
1193 	nrun = 0;
1194 	alllwp_scan(loadav_count_runnable, &nrun);
1195 	avg = &averunnable;
1196 	for (i = 0; i < 3; i++) {
1197 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1198 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1199 	}
1200 
1201 	/*
1202 	 * Schedule the next update to occur after 5 seconds, but add a
1203 	 * random variation to avoid synchronisation with processes that
1204 	 * run at regular intervals.
1205 	 */
1206 	callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1207 		      loadav, NULL);
1208 }
1209 
1210 static int
1211 loadav_count_runnable(struct lwp *lp, void *data)
1212 {
1213 	int *nrunp = data;
1214 	thread_t td;
1215 
1216 	switch (lp->lwp_stat) {
1217 	case LSRUN:
1218 		if ((td = lp->lwp_thread) == NULL)
1219 			break;
1220 		if (td->td_flags & TDF_BLOCKED)
1221 			break;
1222 		++*nrunp;
1223 		break;
1224 	default:
1225 		break;
1226 	}
1227 	lwkt_yield();
1228 	return(0);
1229 }
1230 
1231 /* ARGSUSED */
1232 static void
1233 sched_setup(void *dummy)
1234 {
1235 	callout_init_mp(&loadav_callout);
1236 	callout_init_mp(&schedcpu_callout);
1237 
1238 	/* Kick off timeout driven events by calling first time. */
1239 	schedcpu(NULL);
1240 	loadav(NULL);
1241 }
1242 
1243