xref: /dragonfly/sys/kern/kern_synch.c (revision e8c03636)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vmmeter.h>
47 #include <sys/sysctl.h>
48 #include <sys/lock.h>
49 #include <sys/uio.h>
50 #ifdef KTRACE
51 #include <sys/ktrace.h>
52 #endif
53 #include <sys/xwait.h>
54 #include <sys/ktr.h>
55 #include <sys/serialize.h>
56 
57 #include <sys/signal2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <sys/mutex2.h>
61 
62 #include <machine/cpu.h>
63 #include <machine/smp.h>
64 
65 TAILQ_HEAD(tslpque, thread);
66 
67 static void sched_setup (void *dummy);
68 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
69 
70 int	hogticks;
71 int	lbolt;
72 void	*lbolt_syncer;
73 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
74 int	ncpus;
75 int	ncpus2, ncpus2_shift, ncpus2_mask;	/* note: mask not cpumask_t */
76 int	ncpus_fit, ncpus_fit_mask;		/* note: mask not cpumask_t */
77 int	safepri;
78 int	tsleep_now_works;
79 int	tsleep_crypto_dump = 0;
80 
81 static struct callout loadav_callout;
82 static struct callout schedcpu_callout;
83 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
84 
85 #define __DEALL(ident)	__DEQUALIFY(void *, ident)
86 
87 #if !defined(KTR_TSLEEP)
88 #define KTR_TSLEEP	KTR_ALL
89 #endif
90 KTR_INFO_MASTER(tsleep);
91 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
92 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
93 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
94 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
95 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", const volatile void *ident);
96 
97 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
98 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
99 
100 struct loadavg averunnable =
101 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
102 /*
103  * Constants for averages over 1, 5, and 15 minutes
104  * when sampling at 5 second intervals.
105  */
106 static fixpt_t cexp[3] = {
107 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
108 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
109 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
110 };
111 
112 static void	endtsleep (void *);
113 static void	loadav (void *arg);
114 static void	schedcpu (void *arg);
115 
116 /*
117  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
118  * Note that 'tick' is in microseconds per tick.
119  */
120 static int
121 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
122 {
123 	int error, new_val;
124 
125 	new_val = sched_quantum * ustick;
126 	error = sysctl_handle_int(oidp, &new_val, 0, req);
127         if (error != 0 || req->newptr == NULL)
128 		return (error);
129 	if (new_val < ustick)
130 		return (EINVAL);
131 	sched_quantum = new_val / ustick;
132 	hogticks = 2 * sched_quantum;
133 	return (0);
134 }
135 
136 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
137 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
138 
139 static int pctcpu_decay = 10;
140 SYSCTL_INT(_kern, OID_AUTO, pctcpu_decay, CTLFLAG_RW, &pctcpu_decay, 0, "");
141 
142 /*
143  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
144  */
145 int     fscale __unused = FSCALE;	/* exported to systat */
146 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
147 
148 /*
149  * Recompute process priorities, once a second.
150  *
151  * Since the userland schedulers are typically event oriented, if the
152  * estcpu calculation at wakeup() time is not sufficient to make a
153  * process runnable relative to other processes in the system we have
154  * a 1-second recalc to help out.
155  *
156  * This code also allows us to store sysclock_t data in the process structure
157  * without fear of an overrun, since sysclock_t are guarenteed to hold
158  * several seconds worth of count.
159  *
160  * WARNING!  callouts can preempt normal threads.  However, they will not
161  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
162  */
163 static int schedcpu_stats(struct proc *p, void *data __unused);
164 static int schedcpu_resource(struct proc *p, void *data __unused);
165 
166 static void
167 schedcpu(void *arg)
168 {
169 	allproc_scan(schedcpu_stats, NULL);
170 	allproc_scan(schedcpu_resource, NULL);
171 	wakeup((caddr_t)&lbolt);
172 	wakeup(lbolt_syncer);
173 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
174 }
175 
176 /*
177  * General process statistics once a second
178  */
179 static int
180 schedcpu_stats(struct proc *p, void *data __unused)
181 {
182 	struct lwp *lp;
183 
184 	/*
185 	 * Threads may not be completely set up if process in SIDL state.
186 	 */
187 	if (p->p_stat == SIDL)
188 		return(0);
189 
190 	PHOLD(p);
191 	if (lwkt_trytoken(&p->p_token) == FALSE) {
192 		PRELE(p);
193 		return(0);
194 	}
195 
196 	p->p_swtime++;
197 	FOREACH_LWP_IN_PROC(lp, p) {
198 		if (lp->lwp_stat == LSSLEEP) {
199 			++lp->lwp_slptime;
200 			if (lp->lwp_slptime == 1)
201 				p->p_usched->uload_update(lp);
202 		}
203 
204 		/*
205 		 * Only recalculate processes that are active or have slept
206 		 * less then 2 seconds.  The schedulers understand this.
207 		 * Otherwise decay by 50% per second.
208 		 */
209 		if (lp->lwp_slptime <= 1) {
210 			p->p_usched->recalculate(lp);
211 		} else {
212 			int decay;
213 
214 			decay = pctcpu_decay;
215 			cpu_ccfence();
216 			if (decay <= 1)
217 				decay = 1;
218 			if (decay > 100)
219 				decay = 100;
220 			lp->lwp_pctcpu = (lp->lwp_pctcpu * (decay - 1)) / decay;
221 		}
222 	}
223 	lwkt_reltoken(&p->p_token);
224 	lwkt_yield();
225 	PRELE(p);
226 	return(0);
227 }
228 
229 /*
230  * Resource checks.  XXX break out since ksignal/killproc can block,
231  * limiting us to one process killed per second.  There is probably
232  * a better way.
233  */
234 static int
235 schedcpu_resource(struct proc *p, void *data __unused)
236 {
237 	u_int64_t ttime;
238 	struct lwp *lp;
239 
240 	if (p->p_stat == SIDL)
241 		return(0);
242 
243 	PHOLD(p);
244 	if (lwkt_trytoken(&p->p_token) == FALSE) {
245 		PRELE(p);
246 		return(0);
247 	}
248 
249 	if (p->p_stat == SZOMB || p->p_limit == NULL) {
250 		lwkt_reltoken(&p->p_token);
251 		PRELE(p);
252 		return(0);
253 	}
254 
255 	ttime = 0;
256 	FOREACH_LWP_IN_PROC(lp, p) {
257 		/*
258 		 * We may have caught an lp in the middle of being
259 		 * created, lwp_thread can be NULL.
260 		 */
261 		if (lp->lwp_thread) {
262 			ttime += lp->lwp_thread->td_sticks;
263 			ttime += lp->lwp_thread->td_uticks;
264 		}
265 	}
266 
267 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
268 	case PLIMIT_TESTCPU_KILL:
269 		killproc(p, "exceeded maximum CPU limit");
270 		break;
271 	case PLIMIT_TESTCPU_XCPU:
272 		if ((p->p_flags & P_XCPU) == 0) {
273 			p->p_flags |= P_XCPU;
274 			ksignal(p, SIGXCPU);
275 		}
276 		break;
277 	default:
278 		break;
279 	}
280 	lwkt_reltoken(&p->p_token);
281 	lwkt_yield();
282 	PRELE(p);
283 	return(0);
284 }
285 
286 /*
287  * This is only used by ps.  Generate a cpu percentage use over
288  * a period of one second.
289  */
290 void
291 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
292 {
293 	fixpt_t acc;
294 	int remticks;
295 
296 	acc = (cpticks << FSHIFT) / ttlticks;
297 	if (ttlticks >= ESTCPUFREQ) {
298 		lp->lwp_pctcpu = acc;
299 	} else {
300 		remticks = ESTCPUFREQ - ttlticks;
301 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
302 				ESTCPUFREQ;
303 	}
304 }
305 
306 /*
307  * tsleep/wakeup hash table parameters.  Try to find the sweet spot for
308  * like addresses being slept on.
309  */
310 #define TABLESIZE	4001
311 #define LOOKUP(x)	(((u_int)(uintptr_t)(x)) % TABLESIZE)
312 
313 static cpumask_t slpque_cpumasks[TABLESIZE];
314 
315 /*
316  * General scheduler initialization.  We force a reschedule 25 times
317  * a second by default.  Note that cpu0 is initialized in early boot and
318  * cannot make any high level calls.
319  *
320  * Each cpu has its own sleep queue.
321  */
322 void
323 sleep_gdinit(globaldata_t gd)
324 {
325 	static struct tslpque slpque_cpu0[TABLESIZE];
326 	int i;
327 
328 	if (gd->gd_cpuid == 0) {
329 		sched_quantum = (hz + 24) / 25;
330 		hogticks = 2 * sched_quantum;
331 
332 		gd->gd_tsleep_hash = slpque_cpu0;
333 	} else {
334 		gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
335 					    M_TSLEEP, M_WAITOK | M_ZERO);
336 	}
337 	for (i = 0; i < TABLESIZE; ++i)
338 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
339 }
340 
341 /*
342  * This is a dandy function that allows us to interlock tsleep/wakeup
343  * operations with unspecified upper level locks, such as lockmgr locks,
344  * simply by holding a critical section.  The sequence is:
345  *
346  *	(acquire upper level lock)
347  *	tsleep_interlock(blah)
348  *	(release upper level lock)
349  *	tsleep(blah, ...)
350  *
351  * Basically this functions queues us on the tsleep queue without actually
352  * descheduling us.  When tsleep() is later called with PINTERLOCK it
353  * assumes the thread was already queued, otherwise it queues it there.
354  *
355  * Thus it is possible to receive the wakeup prior to going to sleep and
356  * the race conditions are covered.
357  */
358 static __inline void
359 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
360 {
361 	thread_t td = gd->gd_curthread;
362 	int id;
363 
364 	crit_enter_quick(td);
365 	if (td->td_flags & TDF_TSLEEPQ) {
366 		id = LOOKUP(td->td_wchan);
367 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
368 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL) {
369 			atomic_clear_cpumask(&slpque_cpumasks[id],
370 					     gd->gd_cpumask);
371 		}
372 	} else {
373 		td->td_flags |= TDF_TSLEEPQ;
374 	}
375 	id = LOOKUP(ident);
376 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
377 	atomic_set_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
378 	td->td_wchan = ident;
379 	td->td_wdomain = flags & PDOMAIN_MASK;
380 	crit_exit_quick(td);
381 }
382 
383 void
384 tsleep_interlock(const volatile void *ident, int flags)
385 {
386 	_tsleep_interlock(mycpu, ident, flags);
387 }
388 
389 /*
390  * Remove thread from sleepq.  Must be called with a critical section held.
391  * The thread must not be migrating.
392  */
393 static __inline void
394 _tsleep_remove(thread_t td)
395 {
396 	globaldata_t gd = mycpu;
397 	int id;
398 
399 	KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
400 	KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
401 	if (td->td_flags & TDF_TSLEEPQ) {
402 		td->td_flags &= ~TDF_TSLEEPQ;
403 		id = LOOKUP(td->td_wchan);
404 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
405 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
406 			atomic_clear_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
407 		td->td_wchan = NULL;
408 		td->td_wdomain = 0;
409 	}
410 }
411 
412 void
413 tsleep_remove(thread_t td)
414 {
415 	_tsleep_remove(td);
416 }
417 
418 /*
419  * General sleep call.  Suspends the current process until a wakeup is
420  * performed on the specified identifier.  The process will then be made
421  * runnable with the specified priority.  Sleeps at most timo/hz seconds
422  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
423  * before and after sleeping, else signals are not checked.  Returns 0 if
424  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
425  * signal needs to be delivered, ERESTART is returned if the current system
426  * call should be restarted if possible, and EINTR is returned if the system
427  * call should be interrupted by the signal (return EINTR).
428  *
429  * Note that if we are a process, we release_curproc() before messing with
430  * the LWKT scheduler.
431  *
432  * During autoconfiguration or after a panic, a sleep will simply
433  * lower the priority briefly to allow interrupts, then return.
434  *
435  * WARNING!  This code can't block (short of switching away), or bad things
436  *           will happen.  No getting tokens, no blocking locks, etc.
437  */
438 int
439 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
440 {
441 	struct thread *td = curthread;
442 	struct lwp *lp = td->td_lwp;
443 	struct proc *p = td->td_proc;		/* may be NULL */
444 	globaldata_t gd;
445 	int sig;
446 	int catch;
447 	int error;
448 	int oldpri;
449 	struct callout thandle;
450 
451 	/*
452 	 * Currently a severe hack.  Make sure any delayed wakeups
453 	 * are flushed before we sleep or we might deadlock on whatever
454 	 * event we are sleeping on.
455 	 */
456 	if (td->td_flags & TDF_DELAYED_WAKEUP)
457 		wakeup_end_delayed();
458 
459 	/*
460 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
461 	 * even in stable.  Just scrap it for now.
462 	 */
463 	if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
464 		/*
465 		 * After a panic, or before we actually have an operational
466 		 * softclock, just give interrupts a chance, then just return;
467 		 *
468 		 * don't run any other procs or panic below,
469 		 * in case this is the idle process and already asleep.
470 		 */
471 		splz();
472 		oldpri = td->td_pri;
473 		lwkt_setpri_self(safepri);
474 		lwkt_switch();
475 		lwkt_setpri_self(oldpri);
476 		return (0);
477 	}
478 	logtsleep2(tsleep_beg, ident);
479 	gd = td->td_gd;
480 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
481 	td->td_wakefromcpu = -1;		/* overwritten by _wakeup */
482 
483 	/*
484 	 * NOTE: all of this occurs on the current cpu, including any
485 	 * callout-based wakeups, so a critical section is a sufficient
486 	 * interlock.
487 	 *
488 	 * The entire sequence through to where we actually sleep must
489 	 * run without breaking the critical section.
490 	 */
491 	catch = flags & PCATCH;
492 	error = 0;
493 	sig = 0;
494 
495 	crit_enter_quick(td);
496 
497 	KASSERT(ident != NULL, ("tsleep: no ident"));
498 	KASSERT(lp == NULL ||
499 		lp->lwp_stat == LSRUN ||	/* Obvious */
500 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
501 		("tsleep %p %s %d",
502 			ident, wmesg, lp->lwp_stat));
503 
504 	/*
505 	 * We interlock the sleep queue if the caller has not already done
506 	 * it for us.  This must be done before we potentially acquire any
507 	 * tokens or we can loose the wakeup.
508 	 */
509 	if ((flags & PINTERLOCKED) == 0) {
510 		_tsleep_interlock(gd, ident, flags);
511 	}
512 
513 	/*
514 	 * Setup for the current process (if this is a process).  We must
515 	 * interlock with lwp_token to avoid remote wakeup races via
516 	 * setrunnable()
517 	 */
518 	if (lp) {
519 		lwkt_gettoken(&lp->lwp_token);
520 		if (catch) {
521 			/*
522 			 * Early termination if PCATCH was set and a
523 			 * signal is pending, interlocked with the
524 			 * critical section.
525 			 *
526 			 * Early termination only occurs when tsleep() is
527 			 * entered while in a normal LSRUN state.
528 			 */
529 			if ((sig = CURSIG(lp)) != 0)
530 				goto resume;
531 
532 			/*
533 			 * Causes ksignal to wake us up if a signal is
534 			 * received (interlocked with p->p_token).
535 			 */
536 			lp->lwp_flags |= LWP_SINTR;
537 		}
538 	} else {
539 		KKASSERT(p == NULL);
540 	}
541 
542 	/*
543 	 * Make sure the current process has been untangled from
544 	 * the userland scheduler and initialize slptime to start
545 	 * counting.
546 	 *
547 	 * NOTE: td->td_wakefromcpu is pre-set by the release function
548 	 *	 for the dfly scheduler, and then adjusted by _wakeup()
549 	 */
550 	if (lp) {
551 		p->p_usched->release_curproc(lp);
552 		lp->lwp_slptime = 0;
553 	}
554 
555 	/*
556 	 * If the interlocked flag is set but our cpu bit in the slpqueue
557 	 * is no longer set, then a wakeup was processed inbetween the
558 	 * tsleep_interlock() (ours or the callers), and here.  This can
559 	 * occur under numerous circumstances including when we release the
560 	 * current process.
561 	 *
562 	 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
563 	 * to process incoming IPIs, thus draining incoming wakeups.
564 	 */
565 	if ((td->td_flags & TDF_TSLEEPQ) == 0) {
566 		logtsleep2(ilockfail, ident);
567 		goto resume;
568 	}
569 
570 	/*
571 	 * scheduling is blocked while in a critical section.  Coincide
572 	 * the descheduled-by-tsleep flag with the descheduling of the
573 	 * lwkt.
574 	 *
575 	 * The timer callout is localized on our cpu and interlocked by
576 	 * our critical section.
577 	 */
578 	lwkt_deschedule_self(td);
579 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
580 	td->td_wmesg = wmesg;
581 
582 	/*
583 	 * Setup the timeout, if any.  The timeout is only operable while
584 	 * the thread is flagged descheduled.
585 	 */
586 	KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
587 	if (timo) {
588 		callout_init_mp(&thandle);
589 		callout_reset(&thandle, timo, endtsleep, td);
590 	}
591 
592 	/*
593 	 * Beddy bye bye.
594 	 */
595 	if (lp) {
596 		/*
597 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
598 		 */
599 		KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
600 
601 		/*
602 		 * tstop() sets LSSTOP, so don't fiddle with that.
603 		 */
604 		if (lp->lwp_stat != LSSTOP)
605 			lp->lwp_stat = LSSLEEP;
606 		lp->lwp_ru.ru_nvcsw++;
607 		p->p_usched->uload_update(lp);
608 		lwkt_switch();
609 
610 		/*
611 		 * And when we are woken up, put us back in LSRUN.  If we
612 		 * slept for over a second, recalculate our estcpu.
613 		 */
614 		lp->lwp_stat = LSRUN;
615 		if (lp->lwp_slptime) {
616 			p->p_usched->uload_update(lp);
617 			p->p_usched->recalculate(lp);
618 		}
619 		lp->lwp_slptime = 0;
620 	} else {
621 		lwkt_switch();
622 	}
623 
624 	/*
625 	 * Make sure we haven't switched cpus while we were asleep.  It's
626 	 * not supposed to happen.  Cleanup our temporary flags.
627 	 */
628 	KKASSERT(gd == td->td_gd);
629 
630 	/*
631 	 * Cleanup the timeout.  If the timeout has already occured thandle
632 	 * has already been stopped, otherwise stop thandle.  If the timeout
633 	 * is running (the callout thread must be blocked trying to get
634 	 * lwp_token) then wait for us to get scheduled.
635 	 */
636 	if (timo) {
637 		while (td->td_flags & TDF_TIMEOUT_RUNNING) {
638 			lwkt_deschedule_self(td);
639 			td->td_wmesg = "tsrace";
640 			lwkt_switch();
641 			kprintf("td %p %s: timeout race\n", td, td->td_comm);
642 		}
643 		if (td->td_flags & TDF_TIMEOUT) {
644 			td->td_flags &= ~TDF_TIMEOUT;
645 			error = EWOULDBLOCK;
646 		} else {
647 			/* does not block when on same cpu */
648 			callout_stop(&thandle);
649 		}
650 	}
651 	td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
652 
653 	/*
654 	 * Make sure we have been removed from the sleepq.  In most
655 	 * cases this will have been done for us already but it is
656 	 * possible for a scheduling IPI to be in-flight from a
657 	 * previous tsleep/tsleep_interlock() or due to a straight-out
658 	 * call to lwkt_schedule() (in the case of an interrupt thread),
659 	 * causing a spurious wakeup.
660 	 */
661 	_tsleep_remove(td);
662 	td->td_wmesg = NULL;
663 
664 	/*
665 	 * Figure out the correct error return.  If interrupted by a
666 	 * signal we want to return EINTR or ERESTART.
667 	 */
668 resume:
669 	if (lp) {
670 		if (catch && error == 0) {
671 			if (sig != 0 || (sig = CURSIG(lp))) {
672 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
673 					error = EINTR;
674 				else
675 					error = ERESTART;
676 			}
677 		}
678 		lp->lwp_flags &= ~LWP_SINTR;
679 		lwkt_reltoken(&lp->lwp_token);
680 	}
681 	logtsleep1(tsleep_end);
682 	crit_exit_quick(td);
683 	return (error);
684 }
685 
686 /*
687  * Interlocked spinlock sleep.  An exclusively held spinlock must
688  * be passed to ssleep().  The function will atomically release the
689  * spinlock and tsleep on the ident, then reacquire the spinlock and
690  * return.
691  *
692  * This routine is fairly important along the critical path, so optimize it
693  * heavily.
694  */
695 int
696 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
697        const char *wmesg, int timo)
698 {
699 	globaldata_t gd = mycpu;
700 	int error;
701 
702 	_tsleep_interlock(gd, ident, flags);
703 	spin_unlock_quick(gd, spin);
704 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
705 	spin_lock_quick(gd, spin);
706 
707 	return (error);
708 }
709 
710 int
711 lksleep(const volatile void *ident, struct lock *lock, int flags,
712 	const char *wmesg, int timo)
713 {
714 	globaldata_t gd = mycpu;
715 	int error;
716 
717 	_tsleep_interlock(gd, ident, flags);
718 	lockmgr(lock, LK_RELEASE);
719 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
720 	lockmgr(lock, LK_EXCLUSIVE);
721 
722 	return (error);
723 }
724 
725 /*
726  * Interlocked mutex sleep.  An exclusively held mutex must be passed
727  * to mtxsleep().  The function will atomically release the mutex
728  * and tsleep on the ident, then reacquire the mutex and return.
729  */
730 int
731 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
732 	 const char *wmesg, int timo)
733 {
734 	globaldata_t gd = mycpu;
735 	int error;
736 
737 	_tsleep_interlock(gd, ident, flags);
738 	mtx_unlock(mtx);
739 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
740 	mtx_lock_ex_quick(mtx, wmesg);
741 
742 	return (error);
743 }
744 
745 /*
746  * Interlocked serializer sleep.  An exclusively held serializer must
747  * be passed to zsleep().  The function will atomically release
748  * the serializer and tsleep on the ident, then reacquire the serializer
749  * and return.
750  */
751 int
752 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
753        const char *wmesg, int timo)
754 {
755 	globaldata_t gd = mycpu;
756 	int ret;
757 
758 	ASSERT_SERIALIZED(slz);
759 
760 	_tsleep_interlock(gd, ident, flags);
761 	lwkt_serialize_exit(slz);
762 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
763 	lwkt_serialize_enter(slz);
764 
765 	return ret;
766 }
767 
768 /*
769  * Directly block on the LWKT thread by descheduling it.  This
770  * is much faster then tsleep(), but the only legal way to wake
771  * us up is to directly schedule the thread.
772  *
773  * Setting TDF_SINTR will cause new signals to directly schedule us.
774  *
775  * This routine must be called while in a critical section.
776  */
777 int
778 lwkt_sleep(const char *wmesg, int flags)
779 {
780 	thread_t td = curthread;
781 	int sig;
782 
783 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
784 		td->td_flags |= TDF_BLOCKED;
785 		td->td_wmesg = wmesg;
786 		lwkt_deschedule_self(td);
787 		lwkt_switch();
788 		td->td_wmesg = NULL;
789 		td->td_flags &= ~TDF_BLOCKED;
790 		return(0);
791 	}
792 	if ((sig = CURSIG(td->td_lwp)) != 0) {
793 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
794 			return(EINTR);
795 		else
796 			return(ERESTART);
797 
798 	}
799 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
800 	td->td_wmesg = wmesg;
801 	lwkt_deschedule_self(td);
802 	lwkt_switch();
803 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
804 	td->td_wmesg = NULL;
805 	return(0);
806 }
807 
808 /*
809  * Implement the timeout for tsleep.
810  *
811  * This type of callout timeout is scheduled on the same cpu the process
812  * is sleeping on.  Also, at the moment, the MP lock is held.
813  */
814 static void
815 endtsleep(void *arg)
816 {
817 	thread_t td = arg;
818 	struct lwp *lp;
819 
820 	/*
821 	 * We are going to have to get the lwp_token, which means we might
822 	 * block.  This can race a tsleep getting woken up by other means
823 	 * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
824 	 * processing to complete (sorry tsleep!).
825 	 *
826 	 * We can safely set td_flags because td MUST be on the same cpu
827 	 * as we are.
828 	 */
829 	KKASSERT(td->td_gd == mycpu);
830 	crit_enter();
831 	td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
832 
833 	/*
834 	 * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
835 	 * from exiting the tsleep on us.  The flag is interlocked by virtue
836 	 * of lp being on the same cpu as we are.
837 	 */
838 	if ((lp = td->td_lwp) != NULL)
839 		lwkt_gettoken(&lp->lwp_token);
840 
841 	KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
842 
843 	if (lp) {
844 		if (lp->lwp_proc->p_stat != SSTOP)
845 			setrunnable(lp);
846 		lwkt_reltoken(&lp->lwp_token);
847 	} else {
848 		_tsleep_remove(td);
849 		lwkt_schedule(td);
850 	}
851 	KKASSERT(td->td_gd == mycpu);
852 	td->td_flags &= ~TDF_TIMEOUT_RUNNING;
853 	crit_exit();
854 }
855 
856 /*
857  * Make all processes sleeping on the specified identifier runnable.
858  * count may be zero or one only.
859  *
860  * The domain encodes the sleep/wakeup domain, flags, plus the originating
861  * cpu.
862  *
863  * This call may run without the MP lock held.  We can only manipulate thread
864  * state on the cpu owning the thread.  We CANNOT manipulate process state
865  * at all.
866  *
867  * _wakeup() can be passed to an IPI so we can't use (const volatile
868  * void *ident).
869  */
870 static void
871 _wakeup(void *ident, int domain)
872 {
873 	struct tslpque *qp;
874 	struct thread *td;
875 	struct thread *ntd;
876 	globaldata_t gd;
877 	cpumask_t mask;
878 	int id;
879 
880 	crit_enter();
881 	logtsleep2(wakeup_beg, ident);
882 	gd = mycpu;
883 	id = LOOKUP(ident);
884 	qp = &gd->gd_tsleep_hash[id];
885 restart:
886 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
887 		ntd = TAILQ_NEXT(td, td_sleepq);
888 		if (td->td_wchan == ident &&
889 		    td->td_wdomain == (domain & PDOMAIN_MASK)
890 		) {
891 			KKASSERT(td->td_gd == gd);
892 			_tsleep_remove(td);
893 			td->td_wakefromcpu = PWAKEUP_DECODE(domain);
894 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
895 				lwkt_schedule(td);
896 				if (domain & PWAKEUP_ONE)
897 					goto done;
898 			}
899 			goto restart;
900 		}
901 	}
902 
903 	/*
904 	 * We finished checking the current cpu but there still may be
905 	 * more work to do.  Either wakeup_one was requested and no matching
906 	 * thread was found, or a normal wakeup was requested and we have
907 	 * to continue checking cpus.
908 	 *
909 	 * It should be noted that this scheme is actually less expensive then
910 	 * the old scheme when waking up multiple threads, since we send
911 	 * only one IPI message per target candidate which may then schedule
912 	 * multiple threads.  Before we could have wound up sending an IPI
913 	 * message for each thread on the target cpu (!= current cpu) that
914 	 * needed to be woken up.
915 	 *
916 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
917 	 * should be ok since we are passing idents in the IPI rather then
918 	 * thread pointers.
919 	 */
920 	if ((domain & PWAKEUP_MYCPU) == 0 &&
921 	    (mask = slpque_cpumasks[id] & gd->gd_other_cpus) != 0) {
922 		lwkt_send_ipiq2_mask(mask, _wakeup, ident,
923 				     domain | PWAKEUP_MYCPU);
924 	}
925 done:
926 	logtsleep1(wakeup_end);
927 	crit_exit();
928 }
929 
930 /*
931  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
932  */
933 void
934 wakeup(const volatile void *ident)
935 {
936     globaldata_t gd = mycpu;
937     thread_t td = gd->gd_curthread;
938 
939     if (td && (td->td_flags & TDF_DELAYED_WAKEUP)) {
940 	if (!atomic_cmpset_ptr(&gd->gd_delayed_wakeup[0], NULL, ident)) {
941 	    if (!atomic_cmpset_ptr(&gd->gd_delayed_wakeup[1], NULL, ident))
942 		_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
943 	}
944 	return;
945     }
946     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
947 }
948 
949 /*
950  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
951  */
952 void
953 wakeup_one(const volatile void *ident)
954 {
955     /* XXX potentially round-robin the first responding cpu */
956     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
957 			    PWAKEUP_ONE);
958 }
959 
960 /*
961  * Wakeup threads tsleep()ing on the specified ident on the current cpu
962  * only.
963  */
964 void
965 wakeup_mycpu(const volatile void *ident)
966 {
967     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
968 			    PWAKEUP_MYCPU);
969 }
970 
971 /*
972  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
973  * only.
974  */
975 void
976 wakeup_mycpu_one(const volatile void *ident)
977 {
978     /* XXX potentially round-robin the first responding cpu */
979     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
980 			    PWAKEUP_MYCPU | PWAKEUP_ONE);
981 }
982 
983 /*
984  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
985  * only.
986  */
987 void
988 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
989 {
990     globaldata_t mygd = mycpu;
991     if (gd == mycpu) {
992 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
993 				PWAKEUP_MYCPU);
994     } else {
995 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
996 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
997 			PWAKEUP_MYCPU);
998     }
999 }
1000 
1001 /*
1002  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1003  * only.
1004  */
1005 void
1006 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1007 {
1008     globaldata_t mygd = mycpu;
1009     if (gd == mygd) {
1010 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1011 				PWAKEUP_MYCPU | PWAKEUP_ONE);
1012     } else {
1013 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1014 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1015 			PWAKEUP_MYCPU | PWAKEUP_ONE);
1016     }
1017 }
1018 
1019 /*
1020  * Wakeup all threads waiting on the specified ident that slept using
1021  * the specified domain, on all cpus.
1022  */
1023 void
1024 wakeup_domain(const volatile void *ident, int domain)
1025 {
1026     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1027 }
1028 
1029 /*
1030  * Wakeup one thread waiting on the specified ident that slept using
1031  * the specified  domain, on any cpu.
1032  */
1033 void
1034 wakeup_domain_one(const volatile void *ident, int domain)
1035 {
1036     /* XXX potentially round-robin the first responding cpu */
1037     _wakeup(__DEALL(ident),
1038 	    PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1039 }
1040 
1041 void
1042 wakeup_start_delayed(void)
1043 {
1044     globaldata_t gd = mycpu;
1045 
1046     crit_enter();
1047     gd->gd_curthread->td_flags |= TDF_DELAYED_WAKEUP;
1048     crit_exit();
1049 }
1050 
1051 void
1052 wakeup_end_delayed(void)
1053 {
1054     globaldata_t gd = mycpu;
1055 
1056     if (gd->gd_curthread->td_flags & TDF_DELAYED_WAKEUP) {
1057 	crit_enter();
1058 	gd->gd_curthread->td_flags &= ~TDF_DELAYED_WAKEUP;
1059 	if (gd->gd_delayed_wakeup[0] || gd->gd_delayed_wakeup[1]) {
1060 	    if (gd->gd_delayed_wakeup[0]) {
1061 		    wakeup(gd->gd_delayed_wakeup[0]);
1062 		    gd->gd_delayed_wakeup[0] = NULL;
1063 	    }
1064 	    if (gd->gd_delayed_wakeup[1]) {
1065 		    wakeup(gd->gd_delayed_wakeup[1]);
1066 		    gd->gd_delayed_wakeup[1] = NULL;
1067 	    }
1068 	}
1069 	crit_exit();
1070     }
1071 }
1072 
1073 /*
1074  * setrunnable()
1075  *
1076  * Make a process runnable.  lp->lwp_token must be held on call and this
1077  * function must be called from the cpu owning lp.
1078  *
1079  * This only has an effect if we are in LSSTOP or LSSLEEP.
1080  */
1081 void
1082 setrunnable(struct lwp *lp)
1083 {
1084 	thread_t td = lp->lwp_thread;
1085 
1086 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1087 	KKASSERT(td->td_gd == mycpu);
1088 	crit_enter();
1089 	if (lp->lwp_stat == LSSTOP)
1090 		lp->lwp_stat = LSSLEEP;
1091 	if (lp->lwp_stat == LSSLEEP) {
1092 		_tsleep_remove(td);
1093 		lwkt_schedule(td);
1094 	} else if (td->td_flags & TDF_SINTR) {
1095 		lwkt_schedule(td);
1096 	}
1097 	crit_exit();
1098 }
1099 
1100 /*
1101  * The process is stopped due to some condition, usually because p_stat is
1102  * set to SSTOP, but also possibly due to being traced.
1103  *
1104  * Caller must hold p->p_token
1105  *
1106  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
1107  * because the parent may check the child's status before the child actually
1108  * gets to this routine.
1109  *
1110  * This routine is called with the current lwp only, typically just
1111  * before returning to userland if the process state is detected as
1112  * possibly being in a stopped state.
1113  */
1114 void
1115 tstop(void)
1116 {
1117 	struct lwp *lp = curthread->td_lwp;
1118 	struct proc *p = lp->lwp_proc;
1119 	struct proc *q;
1120 
1121 	lwkt_gettoken(&lp->lwp_token);
1122 	crit_enter();
1123 
1124 	/*
1125 	 * If LWP_MP_WSTOP is set, we were sleeping
1126 	 * while our process was stopped.  At this point
1127 	 * we were already counted as stopped.
1128 	 */
1129 	if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1130 		/*
1131 		 * If we're the last thread to stop, signal
1132 		 * our parent.
1133 		 */
1134 		p->p_nstopped++;
1135 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1136 		wakeup(&p->p_nstopped);
1137 		if (p->p_nstopped == p->p_nthreads) {
1138 			/*
1139 			 * Token required to interlock kern_wait()
1140 			 */
1141 			q = p->p_pptr;
1142 			PHOLD(q);
1143 			lwkt_gettoken(&q->p_token);
1144 			p->p_flags &= ~P_WAITED;
1145 			wakeup(p->p_pptr);
1146 			if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1147 				ksignal(q, SIGCHLD);
1148 			lwkt_reltoken(&q->p_token);
1149 			PRELE(q);
1150 		}
1151 	}
1152 	while (p->p_stat == SSTOP) {
1153 		lp->lwp_stat = LSSTOP;
1154 		tsleep(p, 0, "stop", 0);
1155 	}
1156 	p->p_nstopped--;
1157 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1158 	crit_exit();
1159 	lwkt_reltoken(&lp->lwp_token);
1160 }
1161 
1162 /*
1163  * Compute a tenex style load average of a quantity on
1164  * 1, 5 and 15 minute intervals.
1165  */
1166 static int loadav_count_runnable(struct lwp *p, void *data);
1167 
1168 static void
1169 loadav(void *arg)
1170 {
1171 	struct loadavg *avg;
1172 	int i, nrun;
1173 
1174 	nrun = 0;
1175 	alllwp_scan(loadav_count_runnable, &nrun);
1176 	avg = &averunnable;
1177 	for (i = 0; i < 3; i++) {
1178 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1179 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1180 	}
1181 
1182 	/*
1183 	 * Schedule the next update to occur after 5 seconds, but add a
1184 	 * random variation to avoid synchronisation with processes that
1185 	 * run at regular intervals.
1186 	 */
1187 	callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1188 		      loadav, NULL);
1189 }
1190 
1191 static int
1192 loadav_count_runnable(struct lwp *lp, void *data)
1193 {
1194 	int *nrunp = data;
1195 	thread_t td;
1196 
1197 	switch (lp->lwp_stat) {
1198 	case LSRUN:
1199 		if ((td = lp->lwp_thread) == NULL)
1200 			break;
1201 		if (td->td_flags & TDF_BLOCKED)
1202 			break;
1203 		++*nrunp;
1204 		break;
1205 	default:
1206 		break;
1207 	}
1208 	lwkt_yield();
1209 	return(0);
1210 }
1211 
1212 /* ARGSUSED */
1213 static void
1214 sched_setup(void *dummy)
1215 {
1216 	callout_init_mp(&loadav_callout);
1217 	callout_init_mp(&schedcpu_callout);
1218 
1219 	/* Kick off timeout driven events by calling first time. */
1220 	schedcpu(NULL);
1221 	loadav(NULL);
1222 }
1223 
1224