xref: /dragonfly/sys/kern/kern_synch.c (revision f9993810)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vmmeter.h>
47 #include <sys/sysctl.h>
48 #include <sys/lock.h>
49 #include <sys/caps.h>
50 #include <sys/kcollect.h>
51 #include <sys/malloc.h>
52 #ifdef KTRACE
53 #include <sys/ktrace.h>
54 #endif
55 #include <sys/ktr.h>
56 #include <sys/serialize.h>
57 
58 #include <sys/signal2.h>
59 #include <sys/thread2.h>
60 #include <sys/spinlock2.h>
61 #include <sys/mutex2.h>
62 
63 #include <machine/cpu.h>
64 #include <machine/smp.h>
65 
66 #include <vm/vm_extern.h>
67 
68 struct tslpque {
69 	TAILQ_HEAD(, thread)	queue;
70 	const volatile void	*ident0;
71 	const volatile void	*ident1;
72 	const volatile void	*ident2;
73 	const volatile void	*ident3;
74 };
75 
76 static void sched_setup (void *dummy);
77 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL);
78 static void sched_dyninit (void *dummy);
79 SYSINIT(sched_dyninit, SI_BOOT1_DYNALLOC, SI_ORDER_FIRST, sched_dyninit, NULL);
80 
81 int	lbolt;
82 void	*lbolt_syncer;
83 __read_mostly int tsleep_crypto_dump = 0;
84 __read_mostly int ncpus;
85 __read_mostly int ncpus_fit, ncpus_fit_mask;	/* note: mask not cpumask_t */
86 __read_mostly int safepri;
87 __read_mostly int tsleep_now_works;
88 
89 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
90 
91 #define __DEALL(ident)	__DEQUALIFY(void *, ident)
92 
93 #if !defined(KTR_TSLEEP)
94 #define KTR_TSLEEP	KTR_ALL
95 #endif
96 KTR_INFO_MASTER(tsleep);
97 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
98 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
99 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
100 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
101 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", const volatile void *ident);
102 
103 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
104 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
105 
106 __exclusive_cache_line
107 struct loadavg averunnable =
108 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
109 /*
110  * Constants for averages over 1, 5, and 15 minutes
111  * when sampling at 5 second intervals.
112  */
113 __read_mostly
114 static fixpt_t cexp[3] = {
115 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
116 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
117 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
118 };
119 
120 static void	endtsleep (void *);
121 static void	loadav (void *arg);
122 static void	schedcpu (void *arg);
123 
124 __read_mostly static int pctcpu_decay = 10;
125 SYSCTL_INT(_kern, OID_AUTO, pctcpu_decay, CTLFLAG_RW,
126 	   &pctcpu_decay, 0, "");
127 
128 /*
129  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
130  */
131 __read_mostly int fscale __unused = FSCALE;	/* exported to systat */
132 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
133 
134 /*
135  * Issue a wakeup() from userland (debugging)
136  */
137 static int
138 sysctl_wakeup(SYSCTL_HANDLER_ARGS)
139 {
140 	uint64_t ident = 1;
141 	int error = 0;
142 
143 	if (req->newptr != NULL) {
144 		if (caps_priv_check_self(SYSCAP_RESTRICTEDROOT))
145 			return (EPERM);
146 		error = SYSCTL_IN(req, &ident, sizeof(ident));
147 		if (error)
148 			return error;
149 		kprintf("issue wakeup %016jx\n", ident);
150 		wakeup((void *)(intptr_t)ident);
151 	}
152 	if (req->oldptr != NULL) {
153 		error = SYSCTL_OUT(req, &ident, sizeof(ident));
154 	}
155 	return error;
156 }
157 
158 static int
159 sysctl_wakeup_umtx(SYSCTL_HANDLER_ARGS)
160 {
161 	uint64_t ident = 1;
162 	int error = 0;
163 
164 	if (req->newptr != NULL) {
165 		if (caps_priv_check_self(SYSCAP_RESTRICTEDROOT))
166 			return (EPERM);
167 		error = SYSCTL_IN(req, &ident, sizeof(ident));
168 		if (error)
169 			return error;
170 		kprintf("issue wakeup %016jx, PDOMAIN_UMTX\n", ident);
171 		wakeup_domain((void *)(intptr_t)ident, PDOMAIN_UMTX);
172 	}
173 	if (req->oldptr != NULL) {
174 		error = SYSCTL_OUT(req, &ident, sizeof(ident));
175 	}
176 	return error;
177 }
178 
179 SYSCTL_PROC(_debug, OID_AUTO, wakeup, CTLTYPE_UQUAD|CTLFLAG_RW, 0, 0,
180 	    sysctl_wakeup, "Q", "issue wakeup(addr)");
181 SYSCTL_PROC(_debug, OID_AUTO, wakeup_umtx, CTLTYPE_UQUAD|CTLFLAG_RW, 0, 0,
182 	    sysctl_wakeup_umtx, "Q", "issue wakeup(addr, PDOMAIN_UMTX)");
183 
184 /*
185  * Recompute process priorities, once a second.
186  *
187  * Since the userland schedulers are typically event oriented, if the
188  * estcpu calculation at wakeup() time is not sufficient to make a
189  * process runnable relative to other processes in the system we have
190  * a 1-second recalc to help out.
191  *
192  * This code also allows us to store sysclock_t data in the process structure
193  * without fear of an overrun, since sysclock_t are guarenteed to hold
194  * several seconds worth of count.
195  *
196  * WARNING!  callouts can preempt normal threads.  However, they will not
197  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
198  */
199 static int schedcpu_stats(struct proc *p, void *data __unused);
200 static int schedcpu_resource(struct proc *p, void *data __unused);
201 
202 static void
203 schedcpu(void *arg)
204 {
205 	allproc_scan(schedcpu_stats, NULL, 1);
206 	allproc_scan(schedcpu_resource, NULL, 1);
207 	if (mycpu->gd_cpuid == 0) {
208 		wakeup((caddr_t)&lbolt);
209 		wakeup(lbolt_syncer);
210 	}
211 	callout_reset(&mycpu->gd_schedcpu_callout, hz, schedcpu, NULL);
212 }
213 
214 /*
215  * General process statistics once a second
216  */
217 static int
218 schedcpu_stats(struct proc *p, void *data __unused)
219 {
220 	struct lwp *lp;
221 
222 	/*
223 	 * Threads may not be completely set up if process in SIDL state.
224 	 */
225 	if (p->p_stat == SIDL)
226 		return(0);
227 
228 	PHOLD(p);
229 	if (lwkt_trytoken(&p->p_token) == FALSE) {
230 		PRELE(p);
231 		return(0);
232 	}
233 
234 	p->p_swtime++;
235 	FOREACH_LWP_IN_PROC(lp, p) {
236 		if (lp->lwp_stat == LSSLEEP) {
237 			++lp->lwp_slptime;
238 			if (lp->lwp_slptime == 1)
239 				p->p_usched->uload_update(lp);
240 		}
241 
242 		/*
243 		 * Only recalculate processes that are active or have slept
244 		 * less then 2 seconds.  The schedulers understand this.
245 		 * Otherwise decay by 50% per second.
246 		 *
247 		 * NOTE: uload_update is called separately from kern_synch.c
248 		 *	 when slptime == 1, removing the thread's
249 		 *	 uload/ucount.
250 		 */
251 		if (lp->lwp_slptime <= 1) {
252 			p->p_usched->recalculate(lp);
253 		} else {
254 			int decay;
255 
256 			decay = pctcpu_decay;
257 			cpu_ccfence();
258 			if (decay <= 1)
259 				decay = 1;
260 			if (decay > 100)
261 				decay = 100;
262 			lp->lwp_pctcpu = (lp->lwp_pctcpu * (decay - 1)) / decay;
263 		}
264 	}
265 	lwkt_reltoken(&p->p_token);
266 	lwkt_yield();
267 	PRELE(p);
268 	return(0);
269 }
270 
271 /*
272  * Resource checks.  XXX break out since ksignal/killproc can block,
273  * limiting us to one process killed per second.  There is probably
274  * a better way.
275  */
276 static int
277 schedcpu_resource(struct proc *p, void *data __unused)
278 {
279 	u_int64_t ttime;
280 	struct lwp *lp;
281 
282 	if (p->p_stat == SIDL)
283 		return(0);
284 
285 	PHOLD(p);
286 	if (lwkt_trytoken(&p->p_token) == FALSE) {
287 		PRELE(p);
288 		return(0);
289 	}
290 
291 	if (p->p_stat == SZOMB || p->p_limit == NULL) {
292 		lwkt_reltoken(&p->p_token);
293 		PRELE(p);
294 		return(0);
295 	}
296 
297 	ttime = 0;
298 	FOREACH_LWP_IN_PROC(lp, p) {
299 		/*
300 		 * We may have caught an lp in the middle of being
301 		 * created, lwp_thread can be NULL.
302 		 */
303 		if (lp->lwp_thread) {
304 			ttime += lp->lwp_thread->td_sticks;
305 			ttime += lp->lwp_thread->td_uticks;
306 		}
307 	}
308 
309 	switch(plimit_testcpulimit(p, ttime)) {
310 	case PLIMIT_TESTCPU_KILL:
311 		killproc(p, "exceeded maximum CPU limit");
312 		break;
313 	case PLIMIT_TESTCPU_XCPU:
314 		if ((p->p_flags & P_XCPU) == 0) {
315 			p->p_flags |= P_XCPU;
316 			ksignal(p, SIGXCPU);
317 		}
318 		break;
319 	default:
320 		break;
321 	}
322 	lwkt_reltoken(&p->p_token);
323 	lwkt_yield();
324 	PRELE(p);
325 	return(0);
326 }
327 
328 /*
329  * This is only used by ps.  Generate a cpu percentage use over
330  * a period of one second.
331  */
332 void
333 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
334 {
335 	fixpt_t acc;
336 	int remticks;
337 
338 	acc = (cpticks << FSHIFT) / ttlticks;
339 	if (ttlticks >= ESTCPUFREQ) {
340 		lp->lwp_pctcpu = acc;
341 	} else {
342 		remticks = ESTCPUFREQ - ttlticks;
343 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
344 				ESTCPUFREQ;
345 	}
346 }
347 
348 /*
349  * Handy macros to calculate hash indices.  LOOKUP() calculates the
350  * global cpumask hash index, TCHASHSHIFT() converts that into the
351  * pcpu hash index.
352  *
353  * By making the pcpu hash arrays smaller we save a significant amount
354  * of memory at very low cost.  The real cost is in IPIs, which are handled
355  * by the much larger global cpumask hash table.
356  */
357 #define LOOKUP_PRIME	66555444443333333ULL
358 #define LOOKUP(x)	((((uintptr_t)(x) + ((uintptr_t)(x) >> 18)) ^	\
359 			  LOOKUP_PRIME) % slpque_tablesize)
360 #define TCHASHSHIFT(x)	((x) >> 4)
361 
362 __read_mostly static uint32_t	slpque_tablesize;
363 __read_mostly static cpumask_t *slpque_cpumasks;
364 
365 SYSCTL_UINT(_kern, OID_AUTO, slpque_tablesize, CTLFLAG_RD, &slpque_tablesize,
366     0, "");
367 
368 /*
369  * This is a dandy function that allows us to interlock tsleep/wakeup
370  * operations with unspecified upper level locks, such as lockmgr locks,
371  * simply by holding a critical section.  The sequence is:
372  *
373  *	(acquire upper level lock)
374  *	tsleep_interlock(blah)
375  *	(release upper level lock)
376  *	tsleep(blah, ...)
377  *
378  * Basically this functions queues us on the tsleep queue without actually
379  * descheduling us.  When tsleep() is later called with PINTERLOCK it
380  * assumes the thread was already queued, otherwise it queues it there.
381  *
382  * Thus it is possible to receive the wakeup prior to going to sleep and
383  * the race conditions are covered.
384  */
385 static __inline void
386 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
387 {
388 	thread_t td = gd->gd_curthread;
389 	struct tslpque *qp;
390 	uint32_t cid;
391 	uint32_t gid;
392 
393 	if (ident == NULL) {
394 		kprintf("tsleep_interlock: NULL ident %s\n", td->td_comm);
395 		print_backtrace(5);
396 	}
397 
398 	crit_enter_quick(td);
399 	if (td->td_flags & TDF_TSLEEPQ) {
400 		/*
401 		 * Shortcut if unchanged
402 		 */
403 		if (td->td_wchan == ident &&
404 		    td->td_wdomain == (flags & PDOMAIN_MASK)) {
405 			crit_exit_quick(td);
406 			return;
407 		}
408 
409 		/*
410 		 * Remove current sleepq
411 		 */
412 		cid = LOOKUP(td->td_wchan);
413 		gid = TCHASHSHIFT(cid);
414 		qp = &gd->gd_tsleep_hash[gid];
415 		TAILQ_REMOVE(&qp->queue, td, td_sleepq);
416 		if (TAILQ_FIRST(&qp->queue) == NULL) {
417 			qp->ident0 = NULL;
418 			qp->ident1 = NULL;
419 			qp->ident2 = NULL;
420 			qp->ident3 = NULL;
421 			ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
422 					       gd->gd_cpuid);
423 		}
424 	} else {
425 		td->td_flags |= TDF_TSLEEPQ;
426 	}
427 	cid = LOOKUP(ident);
428 	gid = TCHASHSHIFT(cid);
429 	qp = &gd->gd_tsleep_hash[gid];
430 	TAILQ_INSERT_TAIL(&qp->queue, td, td_sleepq);
431 	if (qp->ident0 != ident && qp->ident1 != ident &&
432 	    qp->ident2 != ident && qp->ident3 != ident) {
433 		if (qp->ident0 == NULL)
434 			qp->ident0 = ident;
435 		else if (qp->ident1 == NULL)
436 			qp->ident1 = ident;
437 		else if (qp->ident2 == NULL)
438 			qp->ident2 = ident;
439 		else if (qp->ident3 == NULL)
440 			qp->ident3 = ident;
441 		else
442 			qp->ident0 = (void *)(intptr_t)-1;
443 	}
444 	ATOMIC_CPUMASK_ORBIT(slpque_cpumasks[cid], gd->gd_cpuid);
445 	td->td_wchan = ident;
446 	td->td_wdomain = flags & PDOMAIN_MASK;
447 	crit_exit_quick(td);
448 }
449 
450 void
451 tsleep_interlock(const volatile void *ident, int flags)
452 {
453 	_tsleep_interlock(mycpu, ident, flags);
454 }
455 
456 /*
457  * Remove thread from sleepq.  Must be called with a critical section held.
458  * The thread must not be migrating.
459  */
460 static __inline void
461 _tsleep_remove(thread_t td)
462 {
463 	globaldata_t gd = mycpu;
464 	struct tslpque *qp;
465 	uint32_t cid;
466 	uint32_t gid;
467 
468 	KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
469 	KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
470 	if (td->td_flags & TDF_TSLEEPQ) {
471 		td->td_flags &= ~TDF_TSLEEPQ;
472 		cid = LOOKUP(td->td_wchan);
473 		gid = TCHASHSHIFT(cid);
474 		qp = &gd->gd_tsleep_hash[gid];
475 		TAILQ_REMOVE(&qp->queue, td, td_sleepq);
476 		if (TAILQ_FIRST(&qp->queue) == NULL) {
477 			ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
478 					       gd->gd_cpuid);
479 		}
480 		td->td_wchan = NULL;
481 		td->td_wdomain = 0;
482 	}
483 }
484 
485 void
486 tsleep_remove(thread_t td)
487 {
488 	_tsleep_remove(td);
489 }
490 
491 /*
492  * General sleep call.  Suspends the current process until a wakeup is
493  * performed on the specified identifier.  The process will then be made
494  * runnable with the specified priority.  Sleeps at most timo/hz seconds
495  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
496  * before and after sleeping, else signals are not checked.  Returns 0 if
497  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
498  * signal needs to be delivered, ERESTART is returned if the current system
499  * call should be restarted if possible, and EINTR is returned if the system
500  * call should be interrupted by the signal (return EINTR).
501  *
502  * Note that if we are a process, we release_curproc() before messing with
503  * the LWKT scheduler.
504  *
505  * During autoconfiguration or after a panic, a sleep will simply
506  * lower the priority briefly to allow interrupts, then return.
507  *
508  * WARNING!  This code can't block (short of switching away), or bad things
509  *           will happen.  No getting tokens, no blocking locks, etc.
510  */
511 int
512 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
513 {
514 	struct thread *td = curthread;
515 	struct lwp *lp = td->td_lwp;
516 	struct proc *p = td->td_proc;		/* may be NULL */
517 	globaldata_t gd;
518 	int sig;
519 	int catch;
520 	int error;
521 	int oldpri;
522 	struct callout thandle1;
523 	struct _callout thandle2;
524 
525 	/*
526 	 * Currently a severe hack.  Make sure any delayed wakeups
527 	 * are flushed before we sleep or we might deadlock on whatever
528 	 * event we are sleeping on.
529 	 */
530 	if (td->td_flags & TDF_DELAYED_WAKEUP)
531 		wakeup_end_delayed();
532 
533 	/*
534 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
535 	 * even in stable.  Just scrap it for now.
536 	 */
537 	if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
538 		/*
539 		 * After a panic, or before we actually have an operational
540 		 * softclock, just give interrupts a chance, then just return;
541 		 *
542 		 * don't run any other procs or panic below,
543 		 * in case this is the idle process and already asleep.
544 		 */
545 		splz();
546 		oldpri = td->td_pri;
547 		lwkt_setpri_self(safepri);
548 		lwkt_switch();
549 		lwkt_setpri_self(oldpri);
550 		return (0);
551 	}
552 	logtsleep2(tsleep_beg, ident);
553 	gd = td->td_gd;
554 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
555 
556 	/*
557 	 * NOTE: all of this occurs on the current cpu, including any
558 	 * callout-based wakeups, so a critical section is a sufficient
559 	 * interlock.
560 	 *
561 	 * The entire sequence through to where we actually sleep must
562 	 * run without breaking the critical section.
563 	 */
564 	catch = flags & PCATCH;
565 	error = 0;
566 	sig = 0;
567 
568 	crit_enter_quick(td);
569 
570 	KASSERT(ident != NULL, ("tsleep: no ident"));
571 	KASSERT(lp == NULL ||
572 		lp->lwp_stat == LSRUN ||	/* Obvious */
573 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
574 		("tsleep %p %s %d",
575 			ident, wmesg, lp->lwp_stat));
576 
577 	/*
578 	 * We interlock the sleep queue if the caller has not already done
579 	 * it for us.  This must be done before we potentially acquire any
580 	 * tokens or we can loose the wakeup.
581 	 */
582 	if ((flags & PINTERLOCKED) == 0) {
583 		_tsleep_interlock(gd, ident, flags);
584 	}
585 
586 	/*
587 	 * Setup for the current process (if this is a process).  We must
588 	 * interlock with lwp_token to avoid remote wakeup races via
589 	 * setrunnable()
590 	 */
591 	if (lp) {
592 		lwkt_gettoken(&lp->lwp_token);
593 
594 		/*
595 		 * If the umbrella process is in the SCORE state then
596 		 * make sure that the thread is flagged going into a
597 		 * normal sleep to allow the core dump to proceed, otherwise
598 		 * the coredump can end up waiting forever.  If the normal
599 		 * sleep is woken up, the thread will enter a stopped state
600 		 * upon return to userland.
601 		 *
602 		 * We do not want to interrupt or cause a thread exist at
603 		 * this juncture because that will mess-up the state the
604 		 * coredump is trying to save.
605 		 */
606 		if (p->p_stat == SCORE) {
607 			lwkt_gettoken(&p->p_token);
608 			if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
609 				atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
610 				++p->p_nstopped;
611 			}
612 			lwkt_reltoken(&p->p_token);
613 		}
614 
615 		/*
616 		 * PCATCH requested.
617 		 */
618 		if (catch) {
619 			/*
620 			 * Early termination if PCATCH was set and a
621 			 * signal is pending, interlocked with the
622 			 * critical section.
623 			 *
624 			 * Early termination only occurs when tsleep() is
625 			 * entered while in a normal LSRUN state.
626 			 */
627 			if ((sig = CURSIG(lp)) != 0)
628 				goto resume;
629 
630 			/*
631 			 * Causes ksignal to wake us up if a signal is
632 			 * received (interlocked with lp->lwp_token).
633 			 */
634 			lp->lwp_flags |= LWP_SINTR;
635 		}
636 	} else {
637 		KKASSERT(p == NULL);
638 	}
639 
640 	/*
641 	 * Make sure the current process has been untangled from
642 	 * the userland scheduler and initialize slptime to start
643 	 * counting.
644 	 *
645 	 * NOTE: td->td_wakefromcpu is pre-set by the release function
646 	 *	 for the dfly scheduler, and then adjusted by _wakeup()
647 	 */
648 	if (lp) {
649 		p->p_usched->release_curproc(lp);
650 		lp->lwp_slptime = 0;
651 	}
652 
653 	/*
654 	 * For PINTERLOCKED operation, TDF_TSLEEPQ might not be set if
655 	 * a wakeup() was processed before the thread could go to sleep.
656 	 *
657 	 * If TDF_TSLEEPQ is set, make sure the ident matches the recorded
658 	 * ident.  If it does not then the thread slept inbetween the
659 	 * caller's initial tsleep_interlock() call and the caller's tsleep()
660 	 * call.
661 	 *
662 	 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
663 	 * to process incoming IPIs, thus draining incoming wakeups.
664 	 */
665 	if ((td->td_flags & TDF_TSLEEPQ) == 0) {
666 		logtsleep2(ilockfail, ident);
667 		goto resume;
668 	} else if (td->td_wchan != ident ||
669 		   td->td_wdomain != (flags & PDOMAIN_MASK)) {
670 		logtsleep2(ilockfail, ident);
671 		goto resume;
672 	}
673 
674 	/*
675 	 * scheduling is blocked while in a critical section.  Coincide
676 	 * the descheduled-by-tsleep flag with the descheduling of the
677 	 * lwkt.
678 	 *
679 	 * The timer callout is localized on our cpu and interlocked by
680 	 * our critical section.
681 	 */
682 	lwkt_deschedule_self(td);
683 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
684 	td->td_wmesg = wmesg;
685 
686 	/*
687 	 * Setup the timeout, if any.  The timeout is only operable while
688 	 * the thread is flagged descheduled.
689 	 */
690 	KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
691 	if (timo) {
692 		_callout_setup_quick(&thandle1, &thandle2, timo, endtsleep, td);
693 	}
694 
695 	/*
696 	 * Beddy bye bye.
697 	 */
698 	if (lp) {
699 		/*
700 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
701 		 */
702 		KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
703 
704 		/*
705 		 * tstop() sets LSSTOP, so don't fiddle with that.
706 		 */
707 		if (lp->lwp_stat != LSSTOP)
708 			lp->lwp_stat = LSSLEEP;
709 		lp->lwp_ru.ru_nvcsw++;
710 		p->p_usched->uload_update(lp);
711 		lwkt_switch();
712 
713 		/*
714 		 * And when we are woken up, put us back in LSRUN.  If we
715 		 * slept for over a second, recalculate our estcpu.
716 		 */
717 		lp->lwp_stat = LSRUN;
718 		if (lp->lwp_slptime) {
719 			p->p_usched->uload_update(lp);
720 			p->p_usched->recalculate(lp);
721 		}
722 		lp->lwp_slptime = 0;
723 	} else {
724 		lwkt_switch();
725 	}
726 
727 	/*
728 	 * Make sure we haven't switched cpus while we were asleep.  It's
729 	 * not supposed to happen.  Cleanup our temporary flags.
730 	 */
731 	KKASSERT(gd == td->td_gd);
732 
733 	/*
734 	 * Cleanup the timeout.  If the timeout has already occured thandle
735 	 * has already been stopped, otherwise stop thandle.
736 	 *
737 	 * If the timeout is still running the callout thread must be blocked
738 	 * trying to get lwp_token, or this is a VM where cpu-cpu races are
739 	 * common, then wait for us to get scheduled.
740 	 */
741 	if (timo) {
742 		while (td->td_flags & TDF_TIMEOUT_RUNNING) {
743 			/* else we won't get rescheduled! */
744 			if (lp->lwp_stat != LSSTOP)
745 				lp->lwp_stat = LSSLEEP;
746 			lwkt_deschedule_self(td);
747 			td->td_wmesg = "tsrace";
748 			lwkt_switch();
749 		}
750 		if (td->td_flags & TDF_TIMEOUT) {
751 			td->td_flags &= ~TDF_TIMEOUT;
752 			error = EWOULDBLOCK;
753 		} else {
754 			/*
755 			 * We are on the same cpu so use the quick version
756 			 * which is guaranteed not to block or race.
757 			 */
758 			_callout_cancel_quick(&thandle2);
759 		}
760 	}
761 	td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
762 
763 	/*
764 	 * Make sure we have been removed from the sleepq.  In most
765 	 * cases this will have been done for us already but it is
766 	 * possible for a scheduling IPI to be in-flight from a
767 	 * previous tsleep/tsleep_interlock() or due to a straight-out
768 	 * call to lwkt_schedule() (in the case of an interrupt thread),
769 	 * causing a spurious wakeup.
770 	 */
771 	_tsleep_remove(td);
772 	td->td_wmesg = NULL;
773 
774 	/*
775 	 * Figure out the correct error return.  If interrupted by a
776 	 * signal we want to return EINTR or ERESTART.
777 	 */
778 resume:
779 	if (lp) {
780 		if (catch && error == 0) {
781 			if (sig != 0 || (sig = CURSIG(lp))) {
782 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
783 					error = EINTR;
784 				else
785 					error = ERESTART;
786 			}
787 		}
788 
789 		lp->lwp_flags &= ~LWP_SINTR;
790 
791 		/*
792 		 * Unconditionally set us to LSRUN on resume.  lwp_stat could
793 		 * be in a weird state due to the goto resume, particularly
794 		 * when tsleep() is called from tstop().
795 		 */
796 		lp->lwp_stat = LSRUN;
797 		lwkt_reltoken(&lp->lwp_token);
798 	}
799 	logtsleep1(tsleep_end);
800 	crit_exit_quick(td);
801 
802 	return (error);
803 }
804 
805 /*
806  * Interlocked spinlock sleep.  An exclusively held spinlock must
807  * be passed to ssleep().  The function will atomically release the
808  * spinlock and tsleep on the ident, then reacquire the spinlock and
809  * return.
810  *
811  * This routine is fairly important along the critical path, so optimize it
812  * heavily.
813  */
814 int
815 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
816        const char *wmesg, int timo)
817 {
818 	globaldata_t gd = mycpu;
819 	int error;
820 
821 	_tsleep_interlock(gd, ident, flags);
822 	spin_unlock_quick(gd, spin);
823 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
824 	KKASSERT(gd == mycpu);
825 	_spin_lock_quick(gd, spin, wmesg);
826 
827 	return (error);
828 }
829 
830 int
831 lksleep(const volatile void *ident, struct lock *lock, int flags,
832 	const char *wmesg, int timo)
833 {
834 	globaldata_t gd = mycpu;
835 	int error;
836 
837 	_tsleep_interlock(gd, ident, flags);
838 	lockmgr(lock, LK_RELEASE);
839 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
840 	lockmgr(lock, LK_EXCLUSIVE);
841 
842 	return (error);
843 }
844 
845 /*
846  * Interlocked mutex sleep.  An exclusively held mutex must be passed
847  * to mtxsleep().  The function will atomically release the mutex
848  * and tsleep on the ident, then reacquire the mutex and return.
849  */
850 int
851 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
852 	 const char *wmesg, int timo)
853 {
854 	globaldata_t gd = mycpu;
855 	int error;
856 
857 	_tsleep_interlock(gd, ident, flags);
858 	mtx_unlock(mtx);
859 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
860 	mtx_lock_ex_quick(mtx);
861 
862 	return (error);
863 }
864 
865 /*
866  * Interlocked serializer sleep.  An exclusively held serializer must
867  * be passed to zsleep().  The function will atomically release
868  * the serializer and tsleep on the ident, then reacquire the serializer
869  * and return.
870  */
871 int
872 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
873        const char *wmesg, int timo)
874 {
875 	globaldata_t gd = mycpu;
876 	int ret;
877 
878 	ASSERT_SERIALIZED(slz);
879 
880 	_tsleep_interlock(gd, ident, flags);
881 	lwkt_serialize_exit(slz);
882 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
883 	lwkt_serialize_enter(slz);
884 
885 	return ret;
886 }
887 
888 /*
889  * Directly block on the LWKT thread by descheduling it.  This
890  * is much faster then tsleep(), but the only legal way to wake
891  * us up is to directly schedule the thread.
892  *
893  * Setting TDF_SINTR will cause new signals to directly schedule us.
894  *
895  * This routine must be called while in a critical section.
896  */
897 int
898 lwkt_sleep(const char *wmesg, int flags)
899 {
900 	thread_t td = curthread;
901 	int sig;
902 
903 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
904 		td->td_flags |= TDF_BLOCKED;
905 		td->td_wmesg = wmesg;
906 		lwkt_deschedule_self(td);
907 		lwkt_switch();
908 		td->td_wmesg = NULL;
909 		td->td_flags &= ~TDF_BLOCKED;
910 		return(0);
911 	}
912 	if ((sig = CURSIG(td->td_lwp)) != 0) {
913 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
914 			return(EINTR);
915 		else
916 			return(ERESTART);
917 
918 	}
919 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
920 	td->td_wmesg = wmesg;
921 	lwkt_deschedule_self(td);
922 	lwkt_switch();
923 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
924 	td->td_wmesg = NULL;
925 	return(0);
926 }
927 
928 /*
929  * Implement the timeout for tsleep.
930  *
931  * This type of callout timeout is scheduled on the same cpu the process
932  * is sleeping on.  Also, at the moment, the MP lock is held.
933  */
934 static void
935 endtsleep(void *arg)
936 {
937 	thread_t td = arg;
938 	struct lwp *lp;
939 
940 	/*
941 	 * We are going to have to get the lwp_token, which means we might
942 	 * block.  This can race a tsleep getting woken up by other means
943 	 * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
944 	 * processing to complete (sorry tsleep!).
945 	 *
946 	 * We can safely set td_flags because td MUST be on the same cpu
947 	 * as we are.
948 	 */
949 	KKASSERT(td->td_gd == mycpu);
950 	crit_enter();
951 	td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
952 
953 	/*
954 	 * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
955 	 * from exiting the tsleep on us.  The flag is interlocked by virtue
956 	 * of lp being on the same cpu as we are.
957 	 */
958 	if ((lp = td->td_lwp) != NULL)
959 		lwkt_gettoken(&lp->lwp_token);
960 
961 	KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
962 
963 	if (lp) {
964 		/*
965 		 * callout timer should normally never be set in tstop()
966 		 * because it passes a timeout of 0.  However, there is a
967 		 * case during thread exit (which SSTOP's all the threads)
968 		 * for which tstop() must break out and can (properly) leave
969 		 * the thread in LSSTOP.
970 		 */
971 		KKASSERT(lp->lwp_stat != LSSTOP ||
972 			 (lp->lwp_mpflags & LWP_MP_WEXIT));
973 		setrunnable(lp);
974 		lwkt_reltoken(&lp->lwp_token);
975 	} else {
976 		_tsleep_remove(td);
977 		lwkt_schedule(td);
978 	}
979 	KKASSERT(td->td_gd == mycpu);
980 	td->td_flags &= ~TDF_TIMEOUT_RUNNING;
981 	crit_exit();
982 }
983 
984 /*
985  * Make all processes sleeping on the specified identifier runnable.
986  * count may be zero or one only.
987  *
988  * The domain encodes the sleep/wakeup domain, flags, plus the originating
989  * cpu.
990  *
991  * This call may run without the MP lock held.  We can only manipulate thread
992  * state on the cpu owning the thread.  We CANNOT manipulate process state
993  * at all.
994  *
995  * _wakeup() can be passed to an IPI so we can't use (const volatile
996  * void *ident).
997  */
998 static void
999 _wakeup(void *ident, int domain)
1000 {
1001 	struct tslpque *qp;
1002 	struct thread *td;
1003 	struct thread *ntd;
1004 	globaldata_t gd;
1005 	cpumask_t mask;
1006 	uint32_t cid;
1007 	uint32_t gid;
1008 	int wids = 0;
1009 
1010 	crit_enter();
1011 	logtsleep2(wakeup_beg, ident);
1012 	gd = mycpu;
1013 	cid = LOOKUP(ident);
1014 	gid = TCHASHSHIFT(cid);
1015 	qp = &gd->gd_tsleep_hash[gid];
1016 restart:
1017 	for (td = TAILQ_FIRST(&qp->queue); td != NULL; td = ntd) {
1018 		ntd = TAILQ_NEXT(td, td_sleepq);
1019 		if (td->td_wchan == ident &&
1020 		    td->td_wdomain == (domain & PDOMAIN_MASK)
1021 		) {
1022 			KKASSERT(td->td_gd == gd);
1023 			_tsleep_remove(td);
1024 			td->td_wakefromcpu = PWAKEUP_DECODE(domain);
1025 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
1026 				lwkt_schedule(td);
1027 				if (domain & PWAKEUP_ONE)
1028 					goto done;
1029 			}
1030 			goto restart;
1031 		}
1032 		if (td->td_wchan == qp->ident0)
1033 			wids |= 1;
1034 		else if (td->td_wchan == qp->ident1)
1035 			wids |= 2;
1036 		else if (td->td_wchan == qp->ident2)
1037 			wids |= 4;
1038 		else if (td->td_wchan == qp->ident3)
1039 			wids |= 8;
1040 		else
1041 			wids |= 16;	/* force ident0 to be retained (-1) */
1042 	}
1043 
1044 	/*
1045 	 * Because a bunch of cpumask array entries cover the same queue, it
1046 	 * is possible for our bit to remain set in some of them and cause
1047 	 * spurious wakeup IPIs later on.  Make sure that the bit is cleared
1048 	 * when a spurious IPI occurs to prevent further spurious IPIs.
1049 	 */
1050 	if (TAILQ_FIRST(&qp->queue) == NULL) {
1051 		ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid], gd->gd_cpuid);
1052 		qp->ident0 = NULL;
1053 		qp->ident1 = NULL;
1054 		qp->ident2 = NULL;
1055 		qp->ident3 = NULL;
1056 	} else {
1057 		if ((wids & 1) == 0) {
1058 			if ((wids & 16) == 0) {
1059 				qp->ident0 = NULL;
1060 			} else {
1061 				KKASSERT(qp->ident0 == (void *)(intptr_t)-1);
1062 			}
1063 		}
1064 		if ((wids & 2) == 0)
1065 			qp->ident1 = NULL;
1066 		if ((wids & 4) == 0)
1067 			qp->ident2 = NULL;
1068 		if ((wids & 8) == 0)
1069 			qp->ident3 = NULL;
1070 	}
1071 
1072 	/*
1073 	 * We finished checking the current cpu but there still may be
1074 	 * more work to do.  Either wakeup_one was requested and no matching
1075 	 * thread was found, or a normal wakeup was requested and we have
1076 	 * to continue checking cpus.
1077 	 *
1078 	 * It should be noted that this scheme is actually less expensive then
1079 	 * the old scheme when waking up multiple threads, since we send
1080 	 * only one IPI message per target candidate which may then schedule
1081 	 * multiple threads.  Before we could have wound up sending an IPI
1082 	 * message for each thread on the target cpu (!= current cpu) that
1083 	 * needed to be woken up.
1084 	 *
1085 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
1086 	 *	 should be ok since we are passing idents in the IPI rather
1087 	 *	 then thread pointers.
1088 	 *
1089 	 * NOTE: We MUST mfence (or use an atomic op) prior to reading
1090 	 *	 the cpumask, as another cpu may have written to it in
1091 	 *	 a fashion interlocked with whatever the caller did before
1092 	 *	 calling wakeup().  Otherwise we might miss the interaction
1093 	 *	 (kern_mutex.c can cause this problem).
1094 	 *
1095 	 *	 lfence is insufficient as it may allow a written state to
1096 	 *	 reorder around the cpumask load.
1097 	 */
1098 	if ((domain & PWAKEUP_MYCPU) == 0) {
1099 		globaldata_t tgd;
1100 		const volatile void *id0;
1101 		int n;
1102 
1103 		cpu_mfence();
1104 		/* cpu_lfence(); */
1105 		mask = slpque_cpumasks[cid];
1106 		CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
1107 		while (CPUMASK_TESTNZERO(mask)) {
1108 			n = BSRCPUMASK(mask);
1109 			CPUMASK_NANDBIT(mask, n);
1110 			tgd = globaldata_find(n);
1111 
1112 			/*
1113 			 * Both ident0 compares must from a single load
1114 			 * to avoid ident0 update races crossing the two
1115 			 * compares.
1116 			 */
1117 			qp = &tgd->gd_tsleep_hash[gid];
1118 			id0 = qp->ident0;
1119 			cpu_ccfence();
1120 			if (id0 == (void *)(intptr_t)-1) {
1121 				lwkt_send_ipiq2(tgd, _wakeup, ident,
1122 						domain | PWAKEUP_MYCPU);
1123 				++tgd->gd_cnt.v_wakeup_colls;
1124 			} else if (id0 == ident ||
1125 				   qp->ident1 == ident ||
1126 				   qp->ident2 == ident ||
1127 				   qp->ident3 == ident) {
1128 				lwkt_send_ipiq2(tgd, _wakeup, ident,
1129 						domain | PWAKEUP_MYCPU);
1130 			}
1131 		}
1132 #if 0
1133 		if (CPUMASK_TESTNZERO(mask)) {
1134 			lwkt_send_ipiq2_mask(mask, _wakeup, ident,
1135 					     domain | PWAKEUP_MYCPU);
1136 		}
1137 #endif
1138 	}
1139 done:
1140 	logtsleep1(wakeup_end);
1141 	crit_exit();
1142 }
1143 
1144 /*
1145  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
1146  */
1147 void
1148 wakeup(const volatile void *ident)
1149 {
1150     globaldata_t gd = mycpu;
1151     thread_t td = gd->gd_curthread;
1152 
1153     if (td && (td->td_flags & TDF_DELAYED_WAKEUP)) {
1154 	/*
1155 	 * If we are in a delayed wakeup section, record up to two wakeups in
1156 	 * a per-CPU queue and issue them when we block or exit the delayed
1157 	 * wakeup section.
1158 	 */
1159 	if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[0], NULL, ident))
1160 		return;
1161 	if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[1], NULL, ident))
1162 		return;
1163 
1164 	ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[1]),
1165 				__DEALL(ident));
1166 	ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[0]),
1167 				__DEALL(ident));
1168     }
1169 
1170     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
1171 }
1172 
1173 /*
1174  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
1175  */
1176 void
1177 wakeup_one(const volatile void *ident)
1178 {
1179     /* XXX potentially round-robin the first responding cpu */
1180     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1181 			    PWAKEUP_ONE);
1182 }
1183 
1184 /*
1185  * Wakeup threads tsleep()ing on the specified ident on the current cpu
1186  * only.
1187  */
1188 void
1189 wakeup_mycpu(const volatile void *ident)
1190 {
1191     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1192 			    PWAKEUP_MYCPU);
1193 }
1194 
1195 /*
1196  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
1197  * only.
1198  */
1199 void
1200 wakeup_mycpu_one(const volatile void *ident)
1201 {
1202     /* XXX potentially round-robin the first responding cpu */
1203     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1204 			    PWAKEUP_MYCPU | PWAKEUP_ONE);
1205 }
1206 
1207 /*
1208  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
1209  * only.
1210  */
1211 void
1212 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
1213 {
1214     globaldata_t mygd = mycpu;
1215     if (gd == mycpu) {
1216 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1217 				PWAKEUP_MYCPU);
1218     } else {
1219 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1220 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1221 			PWAKEUP_MYCPU);
1222     }
1223 }
1224 
1225 /*
1226  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1227  * only.
1228  */
1229 void
1230 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1231 {
1232     globaldata_t mygd = mycpu;
1233     if (gd == mygd) {
1234 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1235 				PWAKEUP_MYCPU | PWAKEUP_ONE);
1236     } else {
1237 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1238 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1239 			PWAKEUP_MYCPU | PWAKEUP_ONE);
1240     }
1241 }
1242 
1243 /*
1244  * Wakeup all threads waiting on the specified ident that slept using
1245  * the specified domain, on all cpus.
1246  */
1247 void
1248 wakeup_domain(const volatile void *ident, int domain)
1249 {
1250     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1251 }
1252 
1253 /*
1254  * Wakeup one thread waiting on the specified ident that slept using
1255  * the specified  domain, on any cpu.
1256  */
1257 void
1258 wakeup_domain_one(const volatile void *ident, int domain)
1259 {
1260     /* XXX potentially round-robin the first responding cpu */
1261     _wakeup(__DEALL(ident),
1262 	    PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1263 }
1264 
1265 void
1266 wakeup_start_delayed(void)
1267 {
1268     globaldata_t gd = mycpu;
1269 
1270     crit_enter();
1271     gd->gd_curthread->td_flags |= TDF_DELAYED_WAKEUP;
1272     crit_exit();
1273 }
1274 
1275 void
1276 wakeup_end_delayed(void)
1277 {
1278     globaldata_t gd = mycpu;
1279 
1280     if (gd->gd_curthread->td_flags & TDF_DELAYED_WAKEUP) {
1281 	crit_enter();
1282 	gd->gd_curthread->td_flags &= ~TDF_DELAYED_WAKEUP;
1283 	if (gd->gd_delayed_wakeup[0] || gd->gd_delayed_wakeup[1]) {
1284 	    if (gd->gd_delayed_wakeup[0]) {
1285 		    wakeup(gd->gd_delayed_wakeup[0]);
1286 		    gd->gd_delayed_wakeup[0] = NULL;
1287 	    }
1288 	    if (gd->gd_delayed_wakeup[1]) {
1289 		    wakeup(gd->gd_delayed_wakeup[1]);
1290 		    gd->gd_delayed_wakeup[1] = NULL;
1291 	    }
1292 	}
1293 	crit_exit();
1294     }
1295 }
1296 
1297 /*
1298  * setrunnable()
1299  *
1300  * Make a process runnable.  lp->lwp_token must be held on call and this
1301  * function must be called from the cpu owning lp.
1302  *
1303  * This only has an effect if we are in LSSTOP or LSSLEEP.
1304  */
1305 void
1306 setrunnable(struct lwp *lp)
1307 {
1308 	thread_t td = lp->lwp_thread;
1309 
1310 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1311 	KKASSERT(td->td_gd == mycpu);
1312 	crit_enter();
1313 	if (lp->lwp_stat == LSSTOP)
1314 		lp->lwp_stat = LSSLEEP;
1315 	if (lp->lwp_stat == LSSLEEP) {
1316 		_tsleep_remove(td);
1317 		lwkt_schedule(td);
1318 	} else if (td->td_flags & TDF_SINTR) {
1319 		lwkt_schedule(td);
1320 	}
1321 	crit_exit();
1322 }
1323 
1324 /*
1325  * The process is stopped due to some condition, usually because p_stat is
1326  * set to SSTOP, but also possibly due to being traced.
1327  *
1328  * Caller must hold p->p_token
1329  *
1330  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
1331  * because the parent may check the child's status before the child actually
1332  * gets to this routine.
1333  *
1334  * This routine is called with the current lwp only, typically just
1335  * before returning to userland if the process state is detected as
1336  * possibly being in a stopped state.
1337  */
1338 void
1339 tstop(void)
1340 {
1341 	struct lwp *lp = curthread->td_lwp;
1342 	struct proc *p = lp->lwp_proc;
1343 	struct proc *q;
1344 
1345 	lwkt_gettoken(&lp->lwp_token);
1346 	crit_enter();
1347 
1348 	/*
1349 	 * If LWP_MP_WSTOP is set, we were sleeping
1350 	 * while our process was stopped.  At this point
1351 	 * we were already counted as stopped.
1352 	 */
1353 	if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1354 		/*
1355 		 * If we're the last thread to stop, signal
1356 		 * our parent.
1357 		 */
1358 		p->p_nstopped++;
1359 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1360 		wakeup(&p->p_nstopped);
1361 		if (p->p_nstopped == p->p_nthreads) {
1362 			/*
1363 			 * Token required to interlock kern_wait()
1364 			 */
1365 			q = p->p_pptr;
1366 			PHOLD(q);
1367 			lwkt_gettoken(&q->p_token);
1368 			p->p_flags &= ~P_WAITED;
1369 			wakeup(p->p_pptr);
1370 			if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1371 				ksignal(q, SIGCHLD);
1372 			lwkt_reltoken(&q->p_token);
1373 			PRELE(q);
1374 		}
1375 	}
1376 
1377 	/*
1378 	 * Wait here while in a stopped state, interlocked with lwp_token.
1379 	 * We must break-out if the whole process is trying to exit.
1380 	 */
1381 	while (STOPLWP(p, lp)) {
1382 		lp->lwp_stat = LSSTOP;
1383 		tsleep(p, 0, "stop", 0);
1384 	}
1385 	p->p_nstopped--;
1386 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1387 	crit_exit();
1388 	lwkt_reltoken(&lp->lwp_token);
1389 }
1390 
1391 /*
1392  * Compute a tenex style load average of a quantity on
1393  * 1, 5 and 15 minute intervals.  This is a pcpu callout.
1394  *
1395  * We segment the lwp scan on a pcpu basis.  This does NOT
1396  * mean the associated lwps are on this cpu, it is done
1397  * just to break the work up.
1398  *
1399  * The callout on cpu0 rolls up the stats from the other
1400  * cpus.
1401  */
1402 static int loadav_count_runnable(struct lwp *p, void *data);
1403 
1404 static void
1405 loadav(void *arg)
1406 {
1407 	globaldata_t gd = mycpu;
1408 	struct loadavg *avg;
1409 	int i, nrun;
1410 
1411 	nrun = 0;
1412 	alllwp_scan(loadav_count_runnable, &nrun, 1);
1413 	gd->gd_loadav_nrunnable = nrun;
1414 	if (gd->gd_cpuid == 0) {
1415 		avg = &averunnable;
1416 		nrun = 0;
1417 		for (i = 0; i < ncpus; ++i)
1418 			nrun += globaldata_find(i)->gd_loadav_nrunnable;
1419 		for (i = 0; i < 3; i++) {
1420 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1421 			    (long)nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1422 		}
1423 	}
1424 
1425 	/*
1426 	 * Schedule the next update to occur after 5 seconds, but add a
1427 	 * random variation to avoid synchronisation with processes that
1428 	 * run at regular intervals.
1429 	 */
1430 	callout_reset(&gd->gd_loadav_callout,
1431 		      hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1432 		      loadav, NULL);
1433 }
1434 
1435 static int
1436 loadav_count_runnable(struct lwp *lp, void *data)
1437 {
1438 	int *nrunp = data;
1439 	thread_t td;
1440 
1441 	switch (lp->lwp_stat) {
1442 	case LSRUN:
1443 		if ((td = lp->lwp_thread) == NULL)
1444 			break;
1445 		if (td->td_flags & TDF_BLOCKED)
1446 			break;
1447 		++*nrunp;
1448 		break;
1449 	default:
1450 		break;
1451 	}
1452 	lwkt_yield();
1453 	return(0);
1454 }
1455 
1456 /*
1457  * Regular data collection
1458  */
1459 static uint64_t
1460 collect_load_callback(int n)
1461 {
1462 	int fscale = averunnable.fscale;
1463 
1464 	return ((averunnable.ldavg[0] * 100 + (fscale >> 1)) / fscale);
1465 }
1466 
1467 static void
1468 sched_setup(void *dummy __unused)
1469 {
1470 	globaldata_t save_gd = mycpu;
1471 	globaldata_t gd;
1472 	int n;
1473 
1474 	kcollect_register(KCOLLECT_LOAD, "load", collect_load_callback,
1475 			  KCOLLECT_SCALE(KCOLLECT_LOAD_FORMAT, 0));
1476 
1477 	/*
1478 	 * Kick off timeout driven events by calling first time.  We
1479 	 * split the work across available cpus to help scale it,
1480 	 * it can eat a lot of cpu when there are a lot of processes
1481 	 * on the system.
1482 	 */
1483 	for (n = 0; n < ncpus; ++n) {
1484 		gd = globaldata_find(n);
1485 		lwkt_setcpu_self(gd);
1486 		callout_init_mp(&gd->gd_loadav_callout);
1487 		callout_init_mp(&gd->gd_schedcpu_callout);
1488 		schedcpu(NULL);
1489 		loadav(NULL);
1490 	}
1491 	lwkt_setcpu_self(save_gd);
1492 }
1493 
1494 /*
1495  * Extremely early initialization, dummy-up the tables so we don't have
1496  * to conditionalize for NULL in _wakeup() and tsleep_interlock().  Even
1497  * though the system isn't blocking this early, these functions still
1498  * try to access the hash table.
1499  *
1500  * This setup will be overridden once sched_dyninit() -> sleep_gdinit()
1501  * is called.
1502  */
1503 void
1504 sleep_early_gdinit(globaldata_t gd)
1505 {
1506 	static struct tslpque	dummy_slpque;
1507 	static cpumask_t dummy_cpumasks;
1508 
1509 	slpque_tablesize = 1;
1510 	gd->gd_tsleep_hash = &dummy_slpque;
1511 	slpque_cpumasks = &dummy_cpumasks;
1512 	TAILQ_INIT(&dummy_slpque.queue);
1513 }
1514 
1515 /*
1516  * PCPU initialization.  Called after KMALLOC is operational, by
1517  * sched_dyninit() for cpu 0, and by mi_gdinit() for other cpus later.
1518  *
1519  * WARNING! The pcpu hash table is smaller than the global cpumask
1520  *	    hash table, which can save us a lot of memory when maxproc
1521  *	    is set high.
1522  */
1523 void
1524 sleep_gdinit(globaldata_t gd)
1525 {
1526 	struct thread *td;
1527 	size_t hash_size;
1528 	uint32_t n;
1529 	uint32_t i;
1530 
1531 	/*
1532 	 * This shouldn't happen, that is there shouldn't be any threads
1533 	 * waiting on the dummy tsleep queue this early in the boot.
1534 	 */
1535 	if (gd->gd_cpuid == 0) {
1536 		struct tslpque *qp = &gd->gd_tsleep_hash[0];
1537 		TAILQ_FOREACH(td, &qp->queue, td_sleepq) {
1538 			kprintf("SLEEP_GDINIT SWITCH %s\n", td->td_comm);
1539 		}
1540 	}
1541 
1542 	/*
1543 	 * Note that we have to allocate one extra slot because we are
1544 	 * shifting a modulo value.  TCHASHSHIFT(slpque_tablesize - 1) can
1545 	 * return the same value as TCHASHSHIFT(slpque_tablesize).
1546 	 */
1547 	n = TCHASHSHIFT(slpque_tablesize) + 1;
1548 
1549 	hash_size = sizeof(struct tslpque) * n;
1550 	gd->gd_tsleep_hash = (void *)kmem_alloc3(kernel_map, hash_size,
1551 						 VM_SUBSYS_GD,
1552 						 KM_CPU(gd->gd_cpuid));
1553 	memset(gd->gd_tsleep_hash, 0, hash_size);
1554 	for (i = 0; i < n; ++i)
1555 		TAILQ_INIT(&gd->gd_tsleep_hash[i].queue);
1556 }
1557 
1558 /*
1559  * Dynamic initialization after the memory system is operational.
1560  */
1561 static void
1562 sched_dyninit(void *dummy __unused)
1563 {
1564 	int tblsize;
1565 	int tblsize2;
1566 	int n;
1567 
1568 	/*
1569 	 * Calculate table size for slpque hash.  We want a prime number
1570 	 * large enough to avoid overloading slpque_cpumasks when the
1571 	 * system has a large number of sleeping processes, which will
1572 	 * spam IPIs on wakeup().
1573 	 *
1574 	 * While it is true this is really a per-lwp factor, generally
1575 	 * speaking the maxproc limit is a good metric to go by.
1576 	 */
1577 	for (tblsize = maxproc | 1; ; tblsize += 2) {
1578 		if (tblsize % 3 == 0)
1579 			continue;
1580 		if (tblsize % 5 == 0)
1581 			continue;
1582 		tblsize2 = (tblsize / 2) | 1;
1583 		for (n = 7; n < tblsize2; n += 2) {
1584 			if (tblsize % n == 0)
1585 				break;
1586 		}
1587 		if (n == tblsize2)
1588 			break;
1589 	}
1590 
1591 	/*
1592 	 * PIDs are currently limited to 6 digits.  Cap the table size
1593 	 * at double this.
1594 	 */
1595 	if (tblsize > 2000003)
1596 		tblsize = 2000003;
1597 
1598 	slpque_tablesize = tblsize;
1599 	slpque_cpumasks = kmalloc(sizeof(*slpque_cpumasks) * slpque_tablesize,
1600 				  M_TSLEEP, M_WAITOK | M_ZERO);
1601 	sleep_gdinit(mycpu);
1602 }
1603