xref: /dragonfly/sys/kern/kern_time.c (revision 0db87cb7)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
30  * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/sysproto.h>
37 #include <sys/resourcevar.h>
38 #include <sys/signalvar.h>
39 #include <sys/kernel.h>
40 #include <sys/sysent.h>
41 #include <sys/sysunion.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/time.h>
45 #include <sys/vnode.h>
46 #include <sys/sysctl.h>
47 #include <sys/kern_syscall.h>
48 #include <vm/vm.h>
49 #include <vm/vm_extern.h>
50 
51 #include <sys/msgport2.h>
52 #include <sys/thread2.h>
53 #include <sys/mplock2.h>
54 
55 struct timezone tz;
56 
57 /*
58  * Time of day and interval timer support.
59  *
60  * These routines provide the kernel entry points to get and set
61  * the time-of-day and per-process interval timers.  Subroutines
62  * here provide support for adding and subtracting timeval structures
63  * and decrementing interval timers, optionally reloading the interval
64  * timers when they expire.
65  */
66 
67 static int	settime(struct timeval *);
68 static void	timevalfix(struct timeval *);
69 
70 /*
71  * Nanosleep tries very hard to sleep for a precisely requested time
72  * interval, down to 1uS.  The administrator can impose a minimum delay
73  * and a delay below which we hard-loop instead of initiate a timer
74  * interrupt and sleep.
75  *
76  * For machines under high loads it might be beneficial to increase min_us
77  * to e.g. 1000uS (1ms) so spining processes sleep meaningfully.
78  */
79 static int     nanosleep_min_us = 10;
80 static int     nanosleep_hard_us = 100;
81 static int     gettimeofday_quick = 0;
82 SYSCTL_INT(_kern, OID_AUTO, nanosleep_min_us, CTLFLAG_RW,
83 	   &nanosleep_min_us, 0, "");
84 SYSCTL_INT(_kern, OID_AUTO, nanosleep_hard_us, CTLFLAG_RW,
85 	   &nanosleep_hard_us, 0, "");
86 SYSCTL_INT(_kern, OID_AUTO, gettimeofday_quick, CTLFLAG_RW,
87 	   &gettimeofday_quick, 0, "");
88 
89 static int
90 settime(struct timeval *tv)
91 {
92 	struct timeval delta, tv1, tv2;
93 	static struct timeval maxtime, laststep;
94 	struct timespec ts;
95 	int origcpu;
96 
97 	if ((origcpu = mycpu->gd_cpuid) != 0)
98 		lwkt_setcpu_self(globaldata_find(0));
99 
100 	crit_enter();
101 	microtime(&tv1);
102 	delta = *tv;
103 	timevalsub(&delta, &tv1);
104 
105 	/*
106 	 * If the system is secure, we do not allow the time to be
107 	 * set to a value earlier than 1 second less than the highest
108 	 * time we have yet seen. The worst a miscreant can do in
109 	 * this circumstance is "freeze" time. He couldn't go
110 	 * back to the past.
111 	 *
112 	 * We similarly do not allow the clock to be stepped more
113 	 * than one second, nor more than once per second. This allows
114 	 * a miscreant to make the clock march double-time, but no worse.
115 	 */
116 	if (securelevel > 1) {
117 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
118 			/*
119 			 * Update maxtime to latest time we've seen.
120 			 */
121 			if (tv1.tv_sec > maxtime.tv_sec)
122 				maxtime = tv1;
123 			tv2 = *tv;
124 			timevalsub(&tv2, &maxtime);
125 			if (tv2.tv_sec < -1) {
126 				tv->tv_sec = maxtime.tv_sec - 1;
127 				kprintf("Time adjustment clamped to -1 second\n");
128 			}
129 		} else {
130 			if (tv1.tv_sec == laststep.tv_sec) {
131 				crit_exit();
132 				return (EPERM);
133 			}
134 			if (delta.tv_sec > 1) {
135 				tv->tv_sec = tv1.tv_sec + 1;
136 				kprintf("Time adjustment clamped to +1 second\n");
137 			}
138 			laststep = *tv;
139 		}
140 	}
141 
142 	ts.tv_sec = tv->tv_sec;
143 	ts.tv_nsec = tv->tv_usec * 1000;
144 	set_timeofday(&ts);
145 	crit_exit();
146 
147 	if (origcpu != 0)
148 		lwkt_setcpu_self(globaldata_find(origcpu));
149 
150 	resettodr();
151 	return (0);
152 }
153 
154 static void
155 get_curthread_cputime(struct timespec *ats)
156 {
157 	struct thread *td = curthread;
158 
159 	crit_enter();
160 	/*
161 	 * These are 64-bit fields but the actual values should never reach
162 	 * the limit. We don't care about overflows.
163 	 */
164 	ats->tv_sec = td->td_uticks / 1000000;
165 	ats->tv_sec += td->td_sticks / 1000000;
166 	ats->tv_sec += td->td_iticks / 1000000;
167 	ats->tv_nsec = (td->td_uticks % 1000000) * 1000;
168 	ats->tv_nsec += (td->td_sticks % 1000000) * 1000;
169 	ats->tv_nsec += (td->td_iticks % 1000000) * 1000;
170 	crit_exit();
171 }
172 
173 /*
174  * MPSAFE
175  */
176 int
177 kern_clock_gettime(clockid_t clock_id, struct timespec *ats)
178 {
179 	int error = 0;
180 	struct proc *p;
181 
182 	switch(clock_id) {
183 	case CLOCK_REALTIME:
184 	case CLOCK_REALTIME_PRECISE:
185 		nanotime(ats);
186 		break;
187 	case CLOCK_REALTIME_FAST:
188 		getnanotime(ats);
189 		break;
190 	case CLOCK_MONOTONIC:
191 	case CLOCK_MONOTONIC_PRECISE:
192 	case CLOCK_UPTIME:
193 	case CLOCK_UPTIME_PRECISE:
194 		nanouptime(ats);
195 		break;
196 	case CLOCK_MONOTONIC_FAST:
197 	case CLOCK_UPTIME_FAST:
198 		getnanouptime(ats);
199 		break;
200 	case CLOCK_VIRTUAL:
201 		p = curproc;
202 		ats->tv_sec = p->p_timer[ITIMER_VIRTUAL].it_value.tv_sec;
203 		ats->tv_nsec = p->p_timer[ITIMER_VIRTUAL].it_value.tv_usec *
204 			       1000;
205 		break;
206 	case CLOCK_PROF:
207 	case CLOCK_PROCESS_CPUTIME_ID:
208 		p = curproc;
209 		ats->tv_sec = p->p_timer[ITIMER_PROF].it_value.tv_sec;
210 		ats->tv_nsec = p->p_timer[ITIMER_PROF].it_value.tv_usec *
211 			       1000;
212 		break;
213 	case CLOCK_SECOND:
214 		ats->tv_sec = time_second;
215 		ats->tv_nsec = 0;
216 		break;
217 	case CLOCK_THREAD_CPUTIME_ID:
218 		get_curthread_cputime(ats);
219 		break;
220 	default:
221 		error = EINVAL;
222 		break;
223 	}
224 	return (error);
225 }
226 
227 /*
228  * MPSAFE
229  */
230 int
231 sys_clock_gettime(struct clock_gettime_args *uap)
232 {
233 	struct timespec ats;
234 	int error;
235 
236 	error = kern_clock_gettime(uap->clock_id, &ats);
237 	if (error == 0)
238 		error = copyout(&ats, uap->tp, sizeof(ats));
239 
240 	return (error);
241 }
242 
243 int
244 kern_clock_settime(clockid_t clock_id, struct timespec *ats)
245 {
246 	struct thread *td = curthread;
247 	struct timeval atv;
248 	int error;
249 
250 	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
251 		return (error);
252 	if (clock_id != CLOCK_REALTIME)
253 		return (EINVAL);
254 	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
255 		return (EINVAL);
256 
257 	TIMESPEC_TO_TIMEVAL(&atv, ats);
258 	error = settime(&atv);
259 	return (error);
260 }
261 
262 /*
263  * MPALMOSTSAFE
264  */
265 int
266 sys_clock_settime(struct clock_settime_args *uap)
267 {
268 	struct timespec ats;
269 	int error;
270 
271 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
272 		return (error);
273 
274 	get_mplock();
275 	error = kern_clock_settime(uap->clock_id, &ats);
276 	rel_mplock();
277 	return (error);
278 }
279 
280 /*
281  * MPSAFE
282  */
283 int
284 kern_clock_getres(clockid_t clock_id, struct timespec *ts)
285 {
286 	int error;
287 
288 	switch(clock_id) {
289 	case CLOCK_REALTIME:
290 	case CLOCK_REALTIME_FAST:
291 	case CLOCK_REALTIME_PRECISE:
292 	case CLOCK_MONOTONIC:
293 	case CLOCK_MONOTONIC_FAST:
294 	case CLOCK_MONOTONIC_PRECISE:
295 	case CLOCK_UPTIME:
296 	case CLOCK_UPTIME_FAST:
297 	case CLOCK_UPTIME_PRECISE:
298 	case CLOCK_THREAD_CPUTIME_ID:
299 	case CLOCK_PROCESS_CPUTIME_ID:
300 		/*
301 		 * Round up the result of the division cheaply
302 		 * by adding 1.  Rounding up is especially important
303 		 * if rounding down would give 0.  Perfect rounding
304 		 * is unimportant.
305 		 */
306 		ts->tv_sec = 0;
307 		ts->tv_nsec = 1000000000 / sys_cputimer->freq + 1;
308 		error = 0;
309 		break;
310 	case CLOCK_VIRTUAL:
311 	case CLOCK_PROF:
312 		/* Accurately round up here because we can do so cheaply. */
313 		ts->tv_sec = 0;
314 		ts->tv_nsec = (1000000000 + hz - 1) / hz;
315 		error = 0;
316 		break;
317 	case CLOCK_SECOND:
318 		ts->tv_sec = 1;
319 		ts->tv_nsec = 0;
320 		error = 0;
321 		break;
322 	default:
323 		error = EINVAL;
324 		break;
325 	}
326 
327 	return(error);
328 }
329 
330 /*
331  * MPSAFE
332  */
333 int
334 sys_clock_getres(struct clock_getres_args *uap)
335 {
336 	int error;
337 	struct timespec ts;
338 
339 	error = kern_clock_getres(uap->clock_id, &ts);
340 	if (error == 0)
341 		error = copyout(&ts, uap->tp, sizeof(ts));
342 
343 	return (error);
344 }
345 
346 /*
347  * nanosleep1()
348  *
349  *	This is a general helper function for nanosleep() (aka sleep() aka
350  *	usleep()).
351  *
352  *	If there is less then one tick's worth of time left and
353  *	we haven't done a yield, or the remaining microseconds is
354  *	ridiculously low, do a yield.  This avoids having
355  *	to deal with systimer overheads when the system is under
356  *	heavy loads.  If we have done a yield already then use
357  *	a systimer and an uninterruptable thread wait.
358  *
359  *	If there is more then a tick's worth of time left,
360  *	calculate the baseline ticks and use an interruptable
361  *	tsleep, then handle the fine-grained delay on the next
362  *	loop.  This usually results in two sleeps occuring, a long one
363  *	and a short one.
364  *
365  * MPSAFE
366  */
367 static void
368 ns1_systimer(systimer_t info, int in_ipi __unused,
369     struct intrframe *frame __unused)
370 {
371 	lwkt_schedule(info->data);
372 }
373 
374 int
375 nanosleep1(struct timespec *rqt, struct timespec *rmt)
376 {
377 	static int nanowait;
378 	struct timespec ts, ts2, ts3;
379 	struct timeval tv;
380 	int error;
381 
382 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
383 		return (EINVAL);
384 	/* XXX: imho this should return EINVAL at least for tv_sec < 0 */
385 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
386 		return (0);
387 	nanouptime(&ts);
388 	timespecadd(&ts, rqt);		/* ts = target timestamp compare */
389 	TIMESPEC_TO_TIMEVAL(&tv, rqt);	/* tv = sleep interval */
390 
391 	for (;;) {
392 		int ticks;
393 		struct systimer info;
394 
395 		ticks = tv.tv_usec / ustick;	/* approximate */
396 
397 		if (tv.tv_sec == 0 && ticks == 0) {
398 			thread_t td = curthread;
399 			if (tv.tv_usec > 0 && tv.tv_usec < nanosleep_min_us)
400 				tv.tv_usec = nanosleep_min_us;
401 			if (tv.tv_usec < nanosleep_hard_us) {
402 				lwkt_user_yield();
403 				cpu_pause();
404 			} else {
405 				crit_enter_quick(td);
406 				systimer_init_oneshot(&info, ns1_systimer,
407 						td, tv.tv_usec);
408 				lwkt_deschedule_self(td);
409 				crit_exit_quick(td);
410 				lwkt_switch();
411 				systimer_del(&info); /* make sure it's gone */
412 			}
413 			error = iscaught(td->td_lwp);
414 		} else if (tv.tv_sec == 0) {
415 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
416 		} else {
417 			ticks = tvtohz_low(&tv); /* also handles overflow */
418 			error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
419 		}
420 		nanouptime(&ts2);
421 		if (error && error != EWOULDBLOCK) {
422 			if (error == ERESTART)
423 				error = EINTR;
424 			if (rmt != NULL) {
425 				timespecsub(&ts, &ts2);
426 				if (ts.tv_sec < 0)
427 					timespecclear(&ts);
428 				*rmt = ts;
429 			}
430 			return (error);
431 		}
432 		if (timespeccmp(&ts2, &ts, >=))
433 			return (0);
434 		ts3 = ts;
435 		timespecsub(&ts3, &ts2);
436 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
437 	}
438 }
439 
440 /*
441  * MPSAFE
442  */
443 int
444 sys_nanosleep(struct nanosleep_args *uap)
445 {
446 	int error;
447 	struct timespec rqt;
448 	struct timespec rmt;
449 
450 	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
451 	if (error)
452 		return (error);
453 
454 	error = nanosleep1(&rqt, &rmt);
455 
456 	/*
457 	 * copyout the residual if nanosleep was interrupted.
458 	 */
459 	if (error && uap->rmtp) {
460 		int error2;
461 
462 		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
463 		if (error2)
464 			error = error2;
465 	}
466 	return (error);
467 }
468 
469 /*
470  * The gettimeofday() system call is supposed to return a fine-grained
471  * realtime stamp.  However, acquiring a fine-grained stamp can create a
472  * bottleneck when multiple cpu cores are trying to accessing e.g. the
473  * HPET hardware timer all at the same time, so we have a sysctl that
474  * allows its behavior to be changed to a more coarse-grained timestamp
475  * which does not have to access a hardware timer.
476  */
477 int
478 sys_gettimeofday(struct gettimeofday_args *uap)
479 {
480 	struct timeval atv;
481 	int error = 0;
482 
483 	if (uap->tp) {
484 		if (gettimeofday_quick)
485 			getmicrotime(&atv);
486 		else
487 			microtime(&atv);
488 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
489 		    sizeof (atv))))
490 			return (error);
491 	}
492 	if (uap->tzp)
493 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
494 		    sizeof (tz));
495 	return (error);
496 }
497 
498 /*
499  * MPALMOSTSAFE
500  */
501 int
502 sys_settimeofday(struct settimeofday_args *uap)
503 {
504 	struct thread *td = curthread;
505 	struct timeval atv;
506 	struct timezone atz;
507 	int error;
508 
509 	if ((error = priv_check(td, PRIV_SETTIMEOFDAY)))
510 		return (error);
511 	/*
512 	 * Verify all parameters before changing time.
513 	 *
514 	 * XXX: We do not allow the time to be set to 0.0, which also by
515 	 *	happy coincidence works around a pkgsrc bulk build bug.
516 	 */
517 	if (uap->tv) {
518 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
519 		    sizeof(atv))))
520 			return (error);
521 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
522 			return (EINVAL);
523 		if (atv.tv_sec == 0 && atv.tv_usec == 0)
524 			return (EINVAL);
525 	}
526 	if (uap->tzp &&
527 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
528 		return (error);
529 
530 	get_mplock();
531 	if (uap->tv && (error = settime(&atv))) {
532 		rel_mplock();
533 		return (error);
534 	}
535 	rel_mplock();
536 	if (uap->tzp)
537 		tz = atz;
538 	return (0);
539 }
540 
541 static void
542 kern_adjtime_common(void)
543 {
544 	if ((ntp_delta >= 0 && ntp_delta < ntp_default_tick_delta) ||
545 	    (ntp_delta < 0 && ntp_delta > -ntp_default_tick_delta))
546 		ntp_tick_delta = ntp_delta;
547 	else if (ntp_delta > ntp_big_delta)
548 		ntp_tick_delta = 10 * ntp_default_tick_delta;
549 	else if (ntp_delta < -ntp_big_delta)
550 		ntp_tick_delta = -10 * ntp_default_tick_delta;
551 	else if (ntp_delta > 0)
552 		ntp_tick_delta = ntp_default_tick_delta;
553 	else
554 		ntp_tick_delta = -ntp_default_tick_delta;
555 }
556 
557 void
558 kern_adjtime(int64_t delta, int64_t *odelta)
559 {
560 	int origcpu;
561 
562 	if ((origcpu = mycpu->gd_cpuid) != 0)
563 		lwkt_setcpu_self(globaldata_find(0));
564 
565 	crit_enter();
566 	*odelta = ntp_delta;
567 	ntp_delta = delta;
568 	kern_adjtime_common();
569 	crit_exit();
570 
571 	if (origcpu != 0)
572 		lwkt_setcpu_self(globaldata_find(origcpu));
573 }
574 
575 static void
576 kern_get_ntp_delta(int64_t *delta)
577 {
578 	int origcpu;
579 
580 	if ((origcpu = mycpu->gd_cpuid) != 0)
581 		lwkt_setcpu_self(globaldata_find(0));
582 
583 	crit_enter();
584 	*delta = ntp_delta;
585 	crit_exit();
586 
587 	if (origcpu != 0)
588 		lwkt_setcpu_self(globaldata_find(origcpu));
589 }
590 
591 void
592 kern_reladjtime(int64_t delta)
593 {
594 	int origcpu;
595 
596 	if ((origcpu = mycpu->gd_cpuid) != 0)
597 		lwkt_setcpu_self(globaldata_find(0));
598 
599 	crit_enter();
600 	ntp_delta += delta;
601 	kern_adjtime_common();
602 	crit_exit();
603 
604 	if (origcpu != 0)
605 		lwkt_setcpu_self(globaldata_find(origcpu));
606 }
607 
608 static void
609 kern_adjfreq(int64_t rate)
610 {
611 	int origcpu;
612 
613 	if ((origcpu = mycpu->gd_cpuid) != 0)
614 		lwkt_setcpu_self(globaldata_find(0));
615 
616 	crit_enter();
617 	ntp_tick_permanent = rate;
618 	crit_exit();
619 
620 	if (origcpu != 0)
621 		lwkt_setcpu_self(globaldata_find(origcpu));
622 }
623 
624 /*
625  * MPALMOSTSAFE
626  */
627 int
628 sys_adjtime(struct adjtime_args *uap)
629 {
630 	struct thread *td = curthread;
631 	struct timeval atv;
632 	int64_t ndelta, odelta;
633 	int error;
634 
635 	if ((error = priv_check(td, PRIV_ADJTIME)))
636 		return (error);
637 	error = copyin(uap->delta, &atv, sizeof(struct timeval));
638 	if (error)
639 		return (error);
640 
641 	/*
642 	 * Compute the total correction and the rate at which to apply it.
643 	 * Round the adjustment down to a whole multiple of the per-tick
644 	 * delta, so that after some number of incremental changes in
645 	 * hardclock(), tickdelta will become zero, lest the correction
646 	 * overshoot and start taking us away from the desired final time.
647 	 */
648 	ndelta = (int64_t)atv.tv_sec * 1000000000 + atv.tv_usec * 1000;
649 	get_mplock();
650 	kern_adjtime(ndelta, &odelta);
651 	rel_mplock();
652 
653 	if (uap->olddelta) {
654 		atv.tv_sec = odelta / 1000000000;
655 		atv.tv_usec = odelta % 1000000000 / 1000;
656 		copyout(&atv, uap->olddelta, sizeof(struct timeval));
657 	}
658 	return (0);
659 }
660 
661 static int
662 sysctl_adjtime(SYSCTL_HANDLER_ARGS)
663 {
664 	int64_t delta;
665 	int error;
666 
667 	if (req->newptr != NULL) {
668 		if (priv_check(curthread, PRIV_ROOT))
669 			return (EPERM);
670 		error = SYSCTL_IN(req, &delta, sizeof(delta));
671 		if (error)
672 			return (error);
673 		kern_reladjtime(delta);
674 	}
675 
676 	if (req->oldptr)
677 		kern_get_ntp_delta(&delta);
678 	error = SYSCTL_OUT(req, &delta, sizeof(delta));
679 	return (error);
680 }
681 
682 /*
683  * delta is in nanoseconds.
684  */
685 static int
686 sysctl_delta(SYSCTL_HANDLER_ARGS)
687 {
688 	int64_t delta, old_delta;
689 	int error;
690 
691 	if (req->newptr != NULL) {
692 		if (priv_check(curthread, PRIV_ROOT))
693 			return (EPERM);
694 		error = SYSCTL_IN(req, &delta, sizeof(delta));
695 		if (error)
696 			return (error);
697 		kern_adjtime(delta, &old_delta);
698 	}
699 
700 	if (req->oldptr != NULL)
701 		kern_get_ntp_delta(&old_delta);
702 	error = SYSCTL_OUT(req, &old_delta, sizeof(old_delta));
703 	return (error);
704 }
705 
706 /*
707  * frequency is in nanoseconds per second shifted left 32.
708  * kern_adjfreq() needs it in nanoseconds per tick shifted left 32.
709  */
710 static int
711 sysctl_adjfreq(SYSCTL_HANDLER_ARGS)
712 {
713 	int64_t freqdelta;
714 	int error;
715 
716 	if (req->newptr != NULL) {
717 		if (priv_check(curthread, PRIV_ROOT))
718 			return (EPERM);
719 		error = SYSCTL_IN(req, &freqdelta, sizeof(freqdelta));
720 		if (error)
721 			return (error);
722 
723 		freqdelta /= hz;
724 		kern_adjfreq(freqdelta);
725 	}
726 
727 	if (req->oldptr != NULL)
728 		freqdelta = ntp_tick_permanent * hz;
729 	error = SYSCTL_OUT(req, &freqdelta, sizeof(freqdelta));
730 	if (error)
731 		return (error);
732 
733 	return (0);
734 }
735 
736 SYSCTL_NODE(_kern, OID_AUTO, ntp, CTLFLAG_RW, 0, "NTP related controls");
737 SYSCTL_PROC(_kern_ntp, OID_AUTO, permanent,
738     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
739     sysctl_adjfreq, "Q", "permanent correction per second");
740 SYSCTL_PROC(_kern_ntp, OID_AUTO, delta,
741     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
742     sysctl_delta, "Q", "one-time delta");
743 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, big_delta, CTLFLAG_RD,
744     &ntp_big_delta, sizeof(ntp_big_delta), "Q",
745     "threshold for fast adjustment");
746 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, tick_delta, CTLFLAG_RD,
747     &ntp_tick_delta, sizeof(ntp_tick_delta), "LU",
748     "per-tick adjustment");
749 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, default_tick_delta, CTLFLAG_RD,
750     &ntp_default_tick_delta, sizeof(ntp_default_tick_delta), "LU",
751     "default per-tick adjustment");
752 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, next_leap_second, CTLFLAG_RW,
753     &ntp_leap_second, sizeof(ntp_leap_second), "LU",
754     "next leap second");
755 SYSCTL_INT(_kern_ntp, OID_AUTO, insert_leap_second, CTLFLAG_RW,
756     &ntp_leap_insert, 0, "insert or remove leap second");
757 SYSCTL_PROC(_kern_ntp, OID_AUTO, adjust,
758     CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
759     sysctl_adjtime, "Q", "relative adjust for delta");
760 
761 /*
762  * Get value of an interval timer.  The process virtual and
763  * profiling virtual time timers are kept in the p_stats area, since
764  * they can be swapped out.  These are kept internally in the
765  * way they are specified externally: in time until they expire.
766  *
767  * The real time interval timer is kept in the process table slot
768  * for the process, and its value (it_value) is kept as an
769  * absolute time rather than as a delta, so that it is easy to keep
770  * periodic real-time signals from drifting.
771  *
772  * Virtual time timers are processed in the hardclock() routine of
773  * kern_clock.c.  The real time timer is processed by a timeout
774  * routine, called from the softclock() routine.  Since a callout
775  * may be delayed in real time due to interrupt processing in the system,
776  * it is possible for the real time timeout routine (realitexpire, given below),
777  * to be delayed in real time past when it is supposed to occur.  It
778  * does not suffice, therefore, to reload the real timer .it_value from the
779  * real time timers .it_interval.  Rather, we compute the next time in
780  * absolute time the timer should go off.
781  *
782  * MPALMOSTSAFE
783  */
784 int
785 sys_getitimer(struct getitimer_args *uap)
786 {
787 	struct proc *p = curproc;
788 	struct timeval ctv;
789 	struct itimerval aitv;
790 
791 	if (uap->which > ITIMER_PROF)
792 		return (EINVAL);
793 	lwkt_gettoken(&p->p_token);
794 	if (uap->which == ITIMER_REAL) {
795 		/*
796 		 * Convert from absolute to relative time in .it_value
797 		 * part of real time timer.  If time for real time timer
798 		 * has passed return 0, else return difference between
799 		 * current time and time for the timer to go off.
800 		 */
801 		aitv = p->p_realtimer;
802 		if (timevalisset(&aitv.it_value)) {
803 			getmicrouptime(&ctv);
804 			if (timevalcmp(&aitv.it_value, &ctv, <))
805 				timevalclear(&aitv.it_value);
806 			else
807 				timevalsub(&aitv.it_value, &ctv);
808 		}
809 	} else {
810 		aitv = p->p_timer[uap->which];
811 	}
812 	lwkt_reltoken(&p->p_token);
813 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
814 }
815 
816 /*
817  * MPALMOSTSAFE
818  */
819 int
820 sys_setitimer(struct setitimer_args *uap)
821 {
822 	struct itimerval aitv;
823 	struct timeval ctv;
824 	struct itimerval *itvp;
825 	struct proc *p = curproc;
826 	int error;
827 
828 	if (uap->which > ITIMER_PROF)
829 		return (EINVAL);
830 	itvp = uap->itv;
831 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
832 	    sizeof(struct itimerval))))
833 		return (error);
834 	if ((uap->itv = uap->oitv) &&
835 	    (error = sys_getitimer((struct getitimer_args *)uap)))
836 		return (error);
837 	if (itvp == NULL)
838 		return (0);
839 	if (itimerfix(&aitv.it_value))
840 		return (EINVAL);
841 	if (!timevalisset(&aitv.it_value))
842 		timevalclear(&aitv.it_interval);
843 	else if (itimerfix(&aitv.it_interval))
844 		return (EINVAL);
845 	lwkt_gettoken(&p->p_token);
846 	if (uap->which == ITIMER_REAL) {
847 		if (timevalisset(&p->p_realtimer.it_value))
848 			callout_stop_sync(&p->p_ithandle);
849 		if (timevalisset(&aitv.it_value))
850 			callout_reset(&p->p_ithandle,
851 			    tvtohz_high(&aitv.it_value), realitexpire, p);
852 		getmicrouptime(&ctv);
853 		timevaladd(&aitv.it_value, &ctv);
854 		p->p_realtimer = aitv;
855 	} else {
856 		p->p_timer[uap->which] = aitv;
857 		switch(uap->which) {
858 		case ITIMER_VIRTUAL:
859 			p->p_flags &= ~P_SIGVTALRM;
860 			break;
861 		case ITIMER_PROF:
862 			p->p_flags &= ~P_SIGPROF;
863 			break;
864 		}
865 	}
866 	lwkt_reltoken(&p->p_token);
867 	return (0);
868 }
869 
870 /*
871  * Real interval timer expired:
872  * send process whose timer expired an alarm signal.
873  * If time is not set up to reload, then just return.
874  * Else compute next time timer should go off which is > current time.
875  * This is where delay in processing this timeout causes multiple
876  * SIGALRM calls to be compressed into one.
877  * tvtohz_high() always adds 1 to allow for the time until the next clock
878  * interrupt being strictly less than 1 clock tick, but we don't want
879  * that here since we want to appear to be in sync with the clock
880  * interrupt even when we're delayed.
881  */
882 void
883 realitexpire(void *arg)
884 {
885 	struct proc *p;
886 	struct timeval ctv, ntv;
887 
888 	p = (struct proc *)arg;
889 	PHOLD(p);
890 	lwkt_gettoken(&p->p_token);
891 	ksignal(p, SIGALRM);
892 	if (!timevalisset(&p->p_realtimer.it_interval)) {
893 		timevalclear(&p->p_realtimer.it_value);
894 		goto done;
895 	}
896 	for (;;) {
897 		timevaladd(&p->p_realtimer.it_value,
898 			   &p->p_realtimer.it_interval);
899 		getmicrouptime(&ctv);
900 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
901 			ntv = p->p_realtimer.it_value;
902 			timevalsub(&ntv, &ctv);
903 			callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
904 				      realitexpire, p);
905 			goto done;
906 		}
907 	}
908 done:
909 	lwkt_reltoken(&p->p_token);
910 	PRELE(p);
911 }
912 
913 /*
914  * Used to validate itimer timeouts and utimes*() timespecs.
915  */
916 int
917 itimerfix(struct timeval *tv)
918 {
919 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
920 		return (EINVAL);
921 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < ustick)
922 		tv->tv_usec = ustick;
923 	return (0);
924 }
925 
926 /*
927  * Used to validate timeouts and utimes*() timespecs.
928  */
929 int
930 itimespecfix(struct timespec *ts)
931 {
932 	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000ULL)
933 		return (EINVAL);
934 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < nstick)
935 		ts->tv_nsec = nstick;
936 	return (0);
937 }
938 
939 /*
940  * Decrement an interval timer by a specified number
941  * of microseconds, which must be less than a second,
942  * i.e. < 1000000.  If the timer expires, then reload
943  * it.  In this case, carry over (usec - old value) to
944  * reduce the value reloaded into the timer so that
945  * the timer does not drift.  This routine assumes
946  * that it is called in a context where the timers
947  * on which it is operating cannot change in value.
948  */
949 int
950 itimerdecr(struct itimerval *itp, int usec)
951 {
952 
953 	if (itp->it_value.tv_usec < usec) {
954 		if (itp->it_value.tv_sec == 0) {
955 			/* expired, and already in next interval */
956 			usec -= itp->it_value.tv_usec;
957 			goto expire;
958 		}
959 		itp->it_value.tv_usec += 1000000;
960 		itp->it_value.tv_sec--;
961 	}
962 	itp->it_value.tv_usec -= usec;
963 	usec = 0;
964 	if (timevalisset(&itp->it_value))
965 		return (1);
966 	/* expired, exactly at end of interval */
967 expire:
968 	if (timevalisset(&itp->it_interval)) {
969 		itp->it_value = itp->it_interval;
970 		itp->it_value.tv_usec -= usec;
971 		if (itp->it_value.tv_usec < 0) {
972 			itp->it_value.tv_usec += 1000000;
973 			itp->it_value.tv_sec--;
974 		}
975 	} else
976 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
977 	return (0);
978 }
979 
980 /*
981  * Add and subtract routines for timevals.
982  * N.B.: subtract routine doesn't deal with
983  * results which are before the beginning,
984  * it just gets very confused in this case.
985  * Caveat emptor.
986  */
987 void
988 timevaladd(struct timeval *t1, const struct timeval *t2)
989 {
990 
991 	t1->tv_sec += t2->tv_sec;
992 	t1->tv_usec += t2->tv_usec;
993 	timevalfix(t1);
994 }
995 
996 void
997 timevalsub(struct timeval *t1, const struct timeval *t2)
998 {
999 
1000 	t1->tv_sec -= t2->tv_sec;
1001 	t1->tv_usec -= t2->tv_usec;
1002 	timevalfix(t1);
1003 }
1004 
1005 static void
1006 timevalfix(struct timeval *t1)
1007 {
1008 
1009 	if (t1->tv_usec < 0) {
1010 		t1->tv_sec--;
1011 		t1->tv_usec += 1000000;
1012 	}
1013 	if (t1->tv_usec >= 1000000) {
1014 		t1->tv_sec++;
1015 		t1->tv_usec -= 1000000;
1016 	}
1017 }
1018 
1019 /*
1020  * ratecheck(): simple time-based rate-limit checking.
1021  */
1022 int
1023 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1024 {
1025 	struct timeval tv, delta;
1026 	int rv = 0;
1027 
1028 	getmicrouptime(&tv);		/* NB: 10ms precision */
1029 	delta = tv;
1030 	timevalsub(&delta, lasttime);
1031 
1032 	/*
1033 	 * check for 0,0 is so that the message will be seen at least once,
1034 	 * even if interval is huge.
1035 	 */
1036 	if (timevalcmp(&delta, mininterval, >=) ||
1037 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1038 		*lasttime = tv;
1039 		rv = 1;
1040 	}
1041 
1042 	return (rv);
1043 }
1044 
1045 /*
1046  * ppsratecheck(): packets (or events) per second limitation.
1047  *
1048  * Return 0 if the limit is to be enforced (e.g. the caller
1049  * should drop a packet because of the rate limitation).
1050  *
1051  * maxpps of 0 always causes zero to be returned.  maxpps of -1
1052  * always causes 1 to be returned; this effectively defeats rate
1053  * limiting.
1054  *
1055  * Note that we maintain the struct timeval for compatibility
1056  * with other bsd systems.  We reuse the storage and just monitor
1057  * clock ticks for minimal overhead.
1058  */
1059 int
1060 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1061 {
1062 	int now;
1063 
1064 	/*
1065 	 * Reset the last time and counter if this is the first call
1066 	 * or more than a second has passed since the last update of
1067 	 * lasttime.
1068 	 */
1069 	now = ticks;
1070 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
1071 		lasttime->tv_sec = now;
1072 		*curpps = 1;
1073 		return (maxpps != 0);
1074 	} else {
1075 		(*curpps)++;		/* NB: ignore potential overflow */
1076 		return (maxpps < 0 || *curpps < maxpps);
1077 	}
1078 }
1079